70,777 research outputs found

    Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

    Get PDF
    Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test

    Determinants of Long-term Economic Development: An Empirical Cross-country Study Involving Rough Sets Theory and Rule Induction

    Get PDF
    Empirical findings on determinants of long-term economic growth are numerous, sometimes inconsistent, highly exciting and still incomplete. The empirical analysis was almost exclusively carried out by standard econometrics. This study compares results gained by cross-country regressions as reported in the literature with those gained by the rough sets theory and rule induction. The main advantages of using rough sets are being able to classify classes and to discretize. Thus, we do not have to deal with distributional, independence, (log-)linearity, and many other assumptions, but can keep the data as they are. The main difference between regression results and rough sets is that most education and human capital indicators can be labeled as robust attributes. In addition, we find that political indicators enter in a non-linear fashion with respect to growth.Economic growth, Rough sets, Rule induction

    Rough-set-based ADR signaling from spontaneous reporting data with missing values

    Get PDF
    AbstractSpontaneous reporting systems of adverse drug events have been widely established in many countries to collect as could as possible all adverse drug events to facilitate the detection of suspected ADR signals via some statistical or data mining methods. Unfortunately, due to privacy concern or other reasons, the reporters sometimes may omit consciously some attributes, causing many missing values existing in the reporting database. Most of research work on ADR detection or methods applied in practice simply adopted listwise deletion to eliminate all data with missing values. Very little work has noticed the possibility and examined the effect of including the missing data in the process of ADR detection.This paper represents our endeavor towards the exploration of this question. We aim at inspecting the feasibility of applying rough set theory to the ADR detection problem. Based on the concept of utilizing characteristic set based approximation to measure the strength of ADR signals, we propose twelve different rough set based measuring methods and show only six of them are feasible for the purpose. Experimental results conducted on the FARES database show that our rough-set-based approach exhibits similar capability in timeline warning of suspicious ADR signals as traditional method with missing deletion, and sometimes can yield noteworthy measures earlier than the traditional method

    Customer churn prediction in telecom using machine learning and social network analysis in big data platform

    Full text link
    Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features' engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers' information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree "GBM" and Extreme Gradient Boosting "XGBOOST". However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model.Comment: 24 pages, 14 figures. PDF https://rdcu.be/budK
    • 

    corecore