6 research outputs found

    Applying machine learning techniques to ASP solving

    Get PDF
    Having in mind the task of improving the solving methods for Answer Set Programming (ASP), there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the “best” available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to- compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a training set and the solvers performance on these instances, inductively learn algorithm selection strategies to be applied to a test set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the “System Track” of the 3rd ASP competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve a significantly higher number of instances compared with any solver that entered the 3rd ASP competition

    A Multi-Engine Approach to Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a truly-declarative programming paradigm proposed in the area of non-monotonic reasoning and logic programming, that has been recently employed in many applications. The development of efficient ASP systems is, thus, crucial. Having in mind the task of improving the solving methods for ASP, there are two usual ways to reach this goal: (i)(i) extending state-of-the-art techniques and ASP solvers, or (ii)(ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a {\sl training} set and the solvers' performance on these instances, inductively learn algorithm selection strategies to be applied to a {\sl test} set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP Competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve more instances compared with any solver that entered the 3rd ASP Competition. (To appear in Theory and Practice of Logic Programming (TPLP).)Comment: 26 pages, 8 figure

    Introduction to the 28th International Conference on Logic Programming Special Issue

    Full text link
    We are proud to introduce this special issue of the Journal of Theory and Practice of Logic Programming (TPLP), dedicated to the full papers accepted for the 28th International Conference on Logic Programming (ICLP). The ICLP meetings started in Marseille in 1982 and since then constitute the main venue for presenting and discussing work in the area of logic programming

    Multi-engine ASP solving with policy adaptation

    Get PDF
    The recent application of Machine Learning techniques to the Answer Set Programming (ASP) field proved to be effective. In particular, the multi-engine ASP solver ME-ASP is efficient: it is able to solve more instances than any other ASP system that participated to the 3rd ASP Competition on the "System Track" benchmarks. In the ME-ASP approach, classification methods inductively learn off-line algorithm selection policies starting from both a set of features of instances in a training set, and the solvers performance on such instances. In this paper we present an improvement to the multi-engine framework of ME-ASP, in which we add the capability of updating the learned policies when the original approach fails to give good predictions. An experimental analysis, conducted on training and test sets of ground instances obtained from the ones submitted to the "System Track" of the 3rd ASP Competition, shows that the policy adaptation improves the performance of ME-ASP when applied to test sets containing domains of instances that were not considered for training
    corecore