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Abstract

The recent application of Machine Learning techniques to the Answer Set Pro-
gramming (ASP) field proved to be effective. In particular, the multi-engine ASP
solver me-asp is efficient: it is able to solve more instances than any other ASP
system that participated to the 3rd ASP Competition on the “System Track”
benchmarks. In the me-asp approach, classification methods inductively learn
off-line algorithm selection policies starting from both a set of features of in-
stances in a training set, and the solvers performance on such instances. In this
paper we present an improvement to the multi-engine framework of me-asp, in
which we add the capability of updating the learned policies when the original
approach fails to give good predictions. An experimental analysis, conducted on
training and test sets of ground instances obtained from the ones submitted to
the “System Track” of the 3rd ASP Competition, shows that the policy adapta-
tion improves the performance of me-asp when applied to test sets containing
domains of instances that were not considered for training.

1 Introduction

Answer Set Programming [3, 9, 14, 15, 30, 33] (ASP) is a truly-declarative program-
ming paradigm proposed in the area of non-monotonic reasoning and logic program-
ming. The idea of ASP is to represent a given computational problem by a logic
program whose answer sets correspond to solutions, and then use a system to find such
solutions [26]. The language of ASP is very expressive: it can be used to solve all
problems in the second level of the polynomial hierarchy [9]. Moreover, on the side of
computation a number of efficient ASP systems is available, e.g., [11, 21, 22, 24, 31, 40];
nonetheless, there is room for improvement. For instance, the recent application of Ma-
chine Learning techniques to ASP solving has contributed to push forward the state
of the art. Machine-Learning-based approaches to ASP solving range from algorithm
portfolios [10], to learning heuristics orders [2], to multi-engine solvers [27, 28]. In
particular, the latter approach is very promising; indeed, the multi-engine ASP system
me-asp [29] was able to solve (see [27, 28]) more ground instances than any other ASP
solver that participated to the 3rd ASP Competition [5] on the “System Track” bench-
marks. In the multi-engine approach, classification methods inductively learn engine
selection policies, starting from a set of features of instances in a training set, and
the solvers performance on such instances. Basically, Machine Learning techniques are
applied for inductively choosing, among a set of available ones, the “best” ASP solver
on a per-instance basis. In [28, 27] me-asp engines were selected among the ones that
entered the 3rd ASP Competition, plus DLV [22], and the learned algorithm selection
policies are decided during training and are never updated. This is similar to what was

1marco@dist.unige.it, DIST, Università degli Studi di Genova, Viale F.Causa 15, 16145 Genova,
Italy
2ricca@mat.unical.it, Dipartimento di Matematica, Università della Calabria, Via P. Bucci, 87030
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done in QSAT solving [36], and also portfolio-based ASP solvers do not modify their
policies on-line; whereas there are already approaches in QSAT and ASP [18, 37] that
exploit methods for updating the policies. A consequence of using selection policies
that are learned off-line in the me-asp framework is that the multi-engine solver might
do suboptimal predictions when the instances in input belong to “unseen” domains
(i.e., belong to family of instances that were not known or were not considered in the
training phase). Despite me-asp already showed (see [27, 28]) good performance also
on unseen domains, there is room for improvement in this specific setting for the above
considerations.

In this paper we cope with this issue. In particular, we introduce a retraining
procedure in the framework for multi-engine ASP solving, which has the ability of
updating the learned policies when the original approach fails to give good predictions.
In particular, our proposal relies on a method that classifies instances according to
their “similarity” (defined by some measures computed on the features), and a policy
that (i) first tries to solve the program by granting to all engines a fixed amount
of time, starting from the predicted engine; then, (iia) in case all these runs fail,
grants all the remaining time to the predicted engine; or (iib) updates the policy if the
program was solved by an engine different from the one predicted at the beginning.
A similar approach was already employed in [37], where it lead to positive results
on QSAT instances. We have implemented these ideas in the multi-engine system me-
asp [29], obtaining the enhanced system me-aspA, i.e., me-asp with policy Adaptation.
Moreover, we conducted an experimental analysis, considering training and test sets
of ground instances taken from the ones submitted to the “System Track” of the 3rd
ASP Competition [5]. The analysis focuses on settings that are challenging for me-
asp, i.e., whose test sets contain a large number of domains of instances that were
not considered for training. The results show that the ability of me-aspA to adapt
the algorithm selection policy on-line can significantly improve the performance of the
multi-engine system on these settings. To sum up, the main contributions of this paper
are:

1. The extension of the framework for multi-engine ASP solving with policy adap-
tation.

2. The implementation of an extended version of the multi-engine solver me-asp,
called me-aspA, that features on-line adaptation of the engine selection policy.

3. An experimental analysis involving the enhanced system me-aspA, performed on
the computationally-hard benchmarks of the 3rd ASP Competition, that high-
lights the advantages of the new solutions when the test set contains a large
number of domains that were not used for training.

The paper is structured as follows. Section 2 introduces basic concepts about ASP
and classification methods. Section 3 then describes our benchmark setting in terms of
dataset, solvers and hardware employed. Section 4 shows the architecture of the multi-
engine ASP solver me-asp, and the choices made for its basic components. Section 5
shows the performance analysis, while Section 6 and 7 end the paper with discussion
about the related work and conclusions.
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2 Preliminaries

In this section we recall some preliminary notions concerning ASP and Machine Learn-
ing techniques for algorithm selection.

2.1 Answer Set Programming

In the following, we recall both the syntax and semantics of ASP. The presented con-
structs are included in ASP-Core [5], which is the language specification that was
originally introduced in the 3rd ASP Competition [5], as well as the one supported
by our system and employed in our experiments (see Section 3). Hereafter, we as-
sume the reader is familiar with logic programming conventions, and refer the reader
to [15, 3, 13] for complementary introductory material on ASP, and to [4] for obtaining
the full specification of ASP-Core.

Syntax. Terms are variables and constants. An atom is of the form p(t1, ..., tn),
where p is a predicate and t1, ..., tn are terms, and n is the arity of p. A literal is either
a positive literal p or a negative literal not p, where p is an atom. A (disjunctive) rule
r is of the form:

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

where a1, . . . , an, b1, . . . , bm are atoms. The head of r is the disjunction a1 ∨ . . . ∨ an,
while the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r. The set of atoms
occurring in the head of r is denoted by H(r), and B(r) denotes the set of body literals.
A rule s.t. n = 1 is called a normal rule; and if k = m = 0 (i.e., the body is empty)
it is called a fact (and the :– sign is omitted); if n = 0 (i.e., empty head) is called a
constraint. A rule r is safe if each variable appearing in r appears also in some positive
body literal of r. An ASP program P is a finite set of safe rules. A not -free (resp.,
∨-free) program is called positive (resp., normal). A term, an atom, a literal, a rule, or
a program is ground (or propositional) if no variable appears in it.

Semantics. Given a program P , the Herbrand Universe UP is the set of all constants
appearing in P , and the Herbrand Base BP is the set of all possible ground atoms
which can be constructed from the predicates appearing in P with the constants of UP .
Given a rule r, Ground(r) denotes the set of rules obtained by applying all possible
substitutions from the variables in r to elements of UP . Similarly, given a program P ,
the ground instantiation of P is Ground(P) =

⋃
r∈P Ground(r).

An interpretation for a program P is a subset I of BP . A ground positive literal A
is true (resp., false) w.r.t. I if A ∈ I (resp., A 6∈ I). A ground negative literal not A
is true w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I.

The answer sets of a program P are defined in two steps using its ground instan-
tiation: first, the answer sets of positive disjunctive programs are defined; then, the
answer sets of general programs are defined by a reduction to positive ones and a sta-
bility condition. Let r be a ground rule, the head of r is true w.r.t. I if H(r) ∩ I 6= ∅.
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The body of r is true w.r.t. I if all body literals of r are true w.r.t. I, otherwise the
body of r is false w.r.t. I. The rule r is satisfied (or true) w.r.t. I if its head is true
w.r.t. I or its body is false w.r.t. I. Given a ground positive program Pg, an answer set
for Pg is a subset-minimal interpretation A for Pg such that every rule r ∈ Pg is true
w.r.t. A (i.e., there is no other interpretation I ⊂ A that satisfies all the rules of Pg).
Given a ground program Pg and an interpretation I, the (Gelfond-Lifschitz) reduct [15]
of Pg w.r.t. I is the positive program P I

g , obtained from Pg by (i) deleting all rules
r ∈ Pg whose negative body is false w.r.t. I, and (ii) deleting the negative body from
the remaining rules of Pg.

An answer set (or stable model) of a general program P is an interpretation I of P
such that I is an answer set of Ground(P)I .

As an example consider the program P = { a∨b :– c., b :– not a, not c., a∨c :– not b.,
k :– a., k :– b. } and I = {b, k}. The reduct PI is {a ∨ b :– c., b. k :– a., k :– b.}. I is an
answer set of PI , and for this reason it is also an answer set of P .

2.2 Multinomial Classification for Algorithm Selection

The results of the recent ASP competitions show that ASP solvers are not that robust,
i.e., able to perform well across different problem domains. Considering hard combi-
natorial problems, this is a not surprising behavior: every heuristic algorithm will find
problem instances that are exceptionally hard to solve, while the same instances can
easily be solved by another algorithm, or by using a different heuristic. In this work, we
model the problem using multinomial classification algorithms, i.e., Machine Learning
techniques that allow automatic classification of a set of instances, given some sets of
numeric values representing syntactic characteristics of the instances, i.e., the features.
Leveraging on such kind of per-instance selection algorithm, it is possible to select in
an automatic way the best algorithm among a pool of them –in our case, tools to
solve ASP instances. In more detail, in multinomial classification we are given a set of
patterns, i.e., input vectors X = {x1, . . . xk} with xi ∈ Rn, and a corresponding set of
labels, i.e., output values Y ∈ {1, . . . ,m}, where Y is composed of values representing
the m classes of the multinomial classification problem. In our modeling, the m classes
are m ASP solvers. We think of the labels as generated by some unknown function
f : Rn → {1, . . . ,m} applied to the patterns, i.e., f(xi) = yi for i ∈ {1, . . . , k} and
yi ∈ {1, . . . ,m}. Given a set of patterns X and a corresponding set of labels Y , the
task of a multinomial classifier c is to extrapolate f given X and Y , i.e., construct c
from X and Y so that when we are given some x? ∈ X we should ensure that c(x?) is
equal to f(x?). This task is called training, and the pair (X, Y ) is called the training
set.

3 Benchmark Data and Settings

In this section we report data concerning the hardware platform, benchmarks and
ASP solvers employed, as well as and the execution settings for reproducibility of
experiments.
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Problem Class #Instances

DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying NP 73
Numberlink NP 150
PackingProblem NP 50
PartnerUnitsPolynomial NP 65
SokobanDecision NP 50
Solitaire NP 25
StableMarriage NP 56
WeightAssignmentTree NP 62

MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

Total 1583

Table 1: Problems and instances.

3.1 Executables and Hardware Settings

We have run all the ASP solvers that entered the System Track of the 3rd ASP
Competition [4] with the addition of DLV [22] (which did not participate in the
competition since it is developed by the organizers of the event). In this way we
have covered –to the best of our knowledge– all the state-of-the-art solutions fit-
ting the benchmark settings. We have run: clasp [11], claspD [7], claspfo-
lio [10], idp [43], cmodels [24], sup [25], Smodels [40], and several solvers from
both the lp2sat [20] and lp2diff [21] families, namely: lp2gminisat, lp2lminisat,
lp2lgminisat, lp2minisat, lp2diffgz3, lp2difflgz3, lp2difflz3, and lp2diffz3.
In more detail, clasp is a native ASP solver relying on conflict-driven nogood learning;
claspD is an extension of clasp that is able to deal with disjunctive logic programs,
while claspfolio exploits Machine Learning techniques in order to choose the best-
suited execution option of clasp; idp is a finite model generator for extended first-order
logic theories, which is based on MiniSatID [31]; Smodels is one of the first robust
native ASP solvers that have been made available to the community; DLV [22] is one
of the first systems able to cope with disjunctive programs. cmodels exploits a SAT
solver as a search engine for enumerating models, and also verifying model minimality
with SAT, whenever needed; sup exploits nonclausal constraints, and can be seen as a
combination of the computational ideas behind cmodels and Smodels. The lp2sat
family employs several variants (indicated by the trailing g, l and lg) of a translation
strategy to SAT and resorts on MiniSat [8] for actually computing the answer sets.
Finally, the lp2diff family translates programs in difference logic over integers [41]
and exploit Z3 [6] as underlying solver (again, g, l and lg indicate different translation
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strategies). DLV was run with default setting, while the remaining solvers were run
on the same configuration (i.e., parameter settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments
were carried out on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped with 64
bit Lubuntu 12.04. Unless otherwise specified, the resources granted to the solvers are
3600s of CPU time and 4GB of memory. Time measurements were carried out using
the time command shipped with Lubuntu.

3.2 Dataset

The benchmarks used in this paper belong to a large and heterogeneous suite of bench-
marks encoded in ASP-Core that has been submitted to the 3rd ASP Competition [5].
Such benchmarks are related to a wide range of combinatorial problems, including,
e.g., planning, temporal and spatial scheduling problems, combinatorial puzzles, and
graph problems, related to a number of application domains, e.g., database, informa-
tion extraction and molecular biology field.

The set of benchmarks considered in this work is reported in Table 1 where they
are classified according to the problem they solve, the corresponding complexity class,
and the total amount of instances available. We considered only computationally-
hard benchmarks, corresponding to all problems belonging to the categories NP and
Beyond NP of the competition, together with StableMarriage and PartnerUnitsPoly-
nomial, which are problems that can be solved in polynomial time but featured in the
competition a natural declarative encoding making usage of disjunction and, thus, can
not be solved by the grounder. Both problems are classified in this paper as NP for
simplicity, even if they are not hard for this complexity class; however, note that no
solver is able to detect from the provided encoding that the corresponding problem in-
stance could be evaluated by employing a different (i.e., cheaper) strategy from the one
employed for evaluating “true” NP problems. For the domains listed in Table 1 we em-
ploy a superset of the instances actually evaluated to System Track of the competition.
In particular, we considered all the instances made available (in form of facts) from the
contributors of the problem submission stage of the competition, which are available
from the competition website [4]. me-asp is a solver for propositional programs, thus
to obtain a net measure of its performance we have first grounded all the mentioned
instances by using GrinGo (v.3.0.3) [12]. Thus, we actually considered the 1540 in-
stances (out of a total of 1583 instances) that we were able to ground with GrinGo in
less than 3600s, of which 938 are NP instances. (The exceptions are 43 instances of the
PackingProblem domain.) In the following, with instance we refer to a ground ASP
program, which was obtained by running GrinGo on the corresponding ASP program
made of non-ground encoding+facts that is available from the competition web site [4].
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Figure 1: The architecture of me-aspA. The dotted box denotes the whole system and,
inside it, each solid box represents its modules. Arrows denote functional connections
between modules.

4 Design and Architecture of me-asp with Policy

Adaptation

In this section we present the architecture of me-aspA describing the modules com-
posing a multiengine ASP solver with policy adaptation; moreover, at the same time,
we describe the key design and implementation choices behind the development our
system. The general architecture of a multiengine ASP solver with policy adaptation
is depicted in Figure 1. In the following we describe, in a separate paragraph, the
functionality of each module and the way it was designed and implemented.

INTERFACE. It manages both the input received by the user and the output of the
whole system. It also dispatches the input data to the remaining modules, as denoted
by the outgoing arrows. In particular, INTERFACE collects (i) the ground ASP program
in ASP-Core format [5], (ii) the classifier and (iii) its inductive model.

FEATURE EXTRACTION. This module extracts a number of syntactic features from the
input program, which will be used for its classification. For each ground program, we
consider only “cheap-to-compute” features, i.e., computable in linear time in the size
of the program. The set of features employed by me-asp (see [27] for more details)
can be divided into four groups (such a categorization is borrowed from [34]):

• Problem size features: number of rules r, number of atoms a, ratios r/a,
(r/a)2, (r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3;

• Balance features: fraction of unary, binary and ternary rules;
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• “Proximity to horn” features: fraction of horn rules and number of occur-
rences in a horn rule for each atom;

• ASP specific features: number of true and disjunctive facts, fraction of normal
rules and constraints c;

plus some of their combinations (e.g., c/r), for a total number of 52 computed features.
The main motivations that lead to the choice of easy to compute features are the

following: first, we have to consider that the time spent computing the features will
be integral part of our solving process: thus, in case “costly” features are considered,
the risk is to spend too much time in calculating the features of a program. Second,
the selected features are sufficient to obtain a robust classification process, as it is wit-
nessed by our experiments. In order to corroborate the first point, we run preliminary
experiments with claspfolio, a portfolio ASP solver that relies on some “costly”
features, e.g., number of Strongly Connected Components and loops: it turned out
that claspfolio feature extractor could not compute all its features for a significant
number of programs in a reasonable CPU time.1 The same choice was also done in
related works (see e.g., [36]) where syntactic features have been profitably used.

We then implemented a feature extractor tool that is able to compute the above-
reported set of features. Concerning its performance we report that it can compute
all the features (in less than 3600s) for 1500 programs out of the 1540 available in our
benchmarks. The distribution of the CPU times (in seconds) for extracting features
is characterized by the following five numbers: 0.002, 2.961, 4.720, 10.596, 3211.041.
We remark that, the highest CPU times correspond processing instances for ground
programs whose size is in the order of tens of GB.

ENGINES. The final set of engines of me-aspA, as depicted in Figure 1 is composed
by five state-of-the-art ASP solvers, namely clasp [11] and its disjunctive version
claspD [7], cmodels [24], DLV [22], and idp [31]; nonetheless, the architecture of
me-aspA is modular and allows one to easily update the engines set with additional
solvers. Finally note that engines are used as “black-boxes”, i.e., me-aspA interacts
with them via system calls.

The selection of these engines arise from the idea to collect a pool of solvers that is
representative of the state-of-the-art solver (sota), i.e., the oracle that always fares the
best among the available solvers. In order to do that, we have done some preliminary
experiment (details reported in [27]). This is done by selecting the solvers that are
able to solve a noticeable amount of instances uniquely. This analysis revealed that,
concerning NP problems, only 4 solvers out of the sixteen mentioned in Section 3
are able to give an effective contribution, namely clasp, cmodels, DLV, and idp.
Concerning Beyond NP instances, we report that only three solvers are able to cope
with such class of problems, namely claspD, cmodels, and DLV. Considering that
both cmodels and DLV are involved in the previous selection, the pool of engines
used in me-aspA is composed by the 5 solvers mentioned above.

1In a preliminary experiment, see [27], with different hardware setting, CPU time limited to 600s,
and a memory limit of 2GB, it turned out that claspfolio feature extractor could compute all its
features for 573 out of 823 NP instances belonging to the ASP Competition instance set.
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ENGINE MANAGER AND POLICY MANAGER. The interaction with the engines is handled
by ENGINE MANAGER. It receives from POLICY MANAGER data about the engine to fire.
At the end of the engine computation, ENGINE MANAGER returns to POLICY MANAGER

the result. This is the module that contains the retraining procedure. It also works as a
coordinator of me-aspA modules, and, finally, it provides the final result to INTERFACE.

Given the engines available, we need to define what is the policy to be used when the
classifier fails to give a good prediction. A general behavior of heuristic-based solvers
that deal with hard combinatorial problems is that systems have a point at which the
time taken to find solutions starts to increase dramatically. After this point, called
Peter Principle Point (PPP) – see, e.g., [42], a linear increase in the computational
resources would not lead to the solution of a noticeable amount of additional problems.
It is also the case for the considered ASP solvers, as we will detail in the next section.

In the light of the above considerations, the method we employ exploits the PPP,
granting to the predicted solver a small (w.r.t. the global time limit) amount of CPU
time t, and, in the case of failure, run in sequence all the remaining engines for the same
time t. If all solvers fail to solve the instance, the remaining time to the timeout is all
granted to the predicted engine. If the successful engine is different to the predicted
one, a new pattern, labeled with the fired engine, is added to the training set, and the
classification algorithm is retrained; thus, the selection policy is updated.

The rationale about this choice is that we mostly trust the prediction coming from
the learned model, but we also give a chance to the other engines. This method has been
introduced and implemented in [37] in QSAT solving, where it is called TPE (Trust
the Predicted Engine). The value of t will be empirically determined considering the
distribution of the solving times of the various engines; we will discuss this point in
the next section.

CLASSIFICATION ALGORITHMS AND TRAINING. This module receives as input the clas-
sifier and its inductive model (from INTERFACE) and a vector of features (from FEATURE

EXTRACTION). It returns to POLICY MANAGER the name of the predicted engine.
The classifier considered in this paper is Nearest-neighbor, nn in the following. nn

is a classifier yielding the label of the training instance which is closer to the given test
instance, whereby closeness is evaluated using some proximity measure, e.g., Euclidean
distance, and training instances are stored in order to have fast look-up, see, e.g., [1].
nn is built on top of the rapidminer library [32].

The reasons for choosing this classification method are manifold, and summarized
in the following: first, it is the classification method employed in the original paper
on multi-engine ASP solving [28]; second, we already had some experience in coupling
this classifier with policy adaptation methods, given that one of the authors dealt with
this issue in the multi-engine QSAT solver aqme; finally, in [35] it has been shown
that – in the case of QSAT problems and solvers – nn coupled with the TPE policy
is the best choice w.r.t. some issues as the growing-up of the training set due to the
retraining process if compared with other classification algorithms, e.g., decision trees,
decision rules, and sub-symbolic learning algorithms.

To give a hint of the performance of nn, in comparison with other classification
methods in a multi-engine framework for ASP solving, we direct the reader to [27],
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Figure 2: Dataset coverage: two-dimensional space projection of the whole dataset.

where it is possible to find such analysis within me-asp. The analysis shows that nn
has good performance w.r.t. other classifiers; moreover, Section 5 will confirm its good
behavior also in me-aspA.

As mentioned in Section 2.2, in order to train our classifier, we have to select a pool
of instances for training purpose, called the training set. In order to give an idea about
what is the distribution of all our available instances, we depict in Figure 2 the coverage
of whole available dataset. In particular, the plot reports a two-dimensional projection
obtained by means of a principal components analysis (PCA), and considering only the
first two principal components (PC). The x-axis and the y-axis in the plots are the first
and the second PCs, respectively. Each point in the plots is labeled by the best solver
on the related instance. In Figure 2 we add a label denoting the problem name of the
depicted instances, in order to give an idea about the “location” of each benchmark.

As a result of the considerations above, we designed our reference training set (ts
in the following) that is composed of the 316 instances solved uniquely – without
taking into account the instances evaluated in the competition – by the pool of engines
previously selected. The rationale of this choice is to try to “mask” noisy information
during model training to obtain a robust model. We can think about this training
set as being the one designed by a domain expert that perfectly knows what are the
“good” instances to be considered for each domain for training.

In order to test the effectiveness of the policy adaptation in me-asp, the idea is to
design further, challenging training sets having the following desiderata: a very limited
number of instances, coming from only one problem, and such that each engine solves
at least one instance uniquely, or a large amount of selected engines are sota solvers
on the instances of such problems. The rationale of employing these additional training
sets is to test our solution on very challenging and corner cases. On these settings we
expect (i) me-asp not to perform that well, and (ii) the retraining solution of me-aspA

to be useful. In Section 5 we will see what are the problems on which building these
training sets, and the intuition about the results will be confirmed.

We then trained the classifier. Referring to the notation introduced in Section 2.2,
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even assuming that a training set is sufficient to learn f , it is still the case that different
sets may yield a different f . The problem is that the resulting trained classifier may
underfit the unknown pattern –i.e., its prediction is wrong– or overfit –i.e., be very
accurate only when the input pattern is in the training set. Both underfitting and
overfitting lead to poor generalization performance, i.e., c fails to predict f(x∗) when
x∗ 6= x. However, statistical techniques can provide reasonable estimates of the gen-
eralization error. In order to test the generalization performance, we use a technique
known as stratified 10-times 10-fold cross validation to estimate the generalization in
terms of accuracy, i.e., the total amount of correct predictions w.r.t. the total amount of
patterns. Given a training set (X, Y ), we partition X in subsets Xi with i ∈ {1, . . . 10}
such that X =

⋃10
i=1 Xi and Xi ∩ Xj = ∅ whenever i 6= j; we then train c(i) on the

patterns X(i) = X \Xi and corresponding labels Y(i). We repeat the process 10 times,
to yield 10 different c.

5 Experimental Analysis

In the experimental results reported in [27], we have shown how such performance of
me-asp – in terms of total amount of solved instances – can be obtained through an
appropriate design of the training set, that in this work correspond to ts. In [27] we
also showed that changes in the training set could lead to a degradation impact on
me-asp performance when it deals with “unseen” problems, i.e., in a situation where
instances in the test set have a feature configuration that is completely unknown to the
model. In practice, when a reasoning task is modeled and encoded into ASP, it is very
difficult to establish in advance how the syntactic structure of the computed instances
will fit to a trained model. Our main goal in the design of me-aspA is thus to improve
the performance in situations that are challenging without retraining.

This section is devoted to test the benefits of an on-line policy adaptation in the
case of the test set is composed of “unseen” instances – i.e., belonging to domains
that were left unknown during training. This is a challenging experiment for me-asp,
because the models are not trained on all the space of the uniquely solved instances;
here, we made the settings even harder by considering a single domain in the training
sets.

The first step is thus devoted to define training sets that are challenging for me-
asp, having the characteristics mentioned in the previous section. The second step in
order to use me-aspA is to tune the self-adaptive component doing some considerations
about runtime performance of its engines. Finally, we run the engines, me-asp and
me-aspA on the chosen benchmarks. We devoted one subsection to each of these steps.

5.1 Challenging training sets for me-asp

We remind that the first test set is ts, as defined in the previous section. We can
think about this training set as being the one designed by a domain expert, that knows
all available domains. We expect ts to lead to robust performance, and not be that
sensitive to policy adaptation, given that no unseen problems is in it.
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Figure 3: Runtimes of the engines of me-asp on NP (top) and Beyond NP (bottom)
instances.

About the other sets, concerning NP problems, in our experimental setting we found
two problems close to the desiderata mentioned, namely Labyrinth and Numberlink.
In the case of Labyrinth, we compute a training set – tsl in the following – composed
of 35 uniquely solved instances, of which 21 solved by clasp, 4 by cmodels, 7 by
DLV, and 3 by idp. Concerning the problem Numberlink – tsn in the following – , it
is composed of 22 uniquely solved instances, of which 19 are solved by clasp, 1 and 2
are solved by DLV and idp, respectively.

Considering Beyond NP problems, the picture is even more challenging given that
we have only two problems, namely MinimalDiagnosis and StrategicCompanies.
More, in our setting we report that for each problem we have only one solver that
is able to solve instances uniquely. In the first case, it is claspD– able to solve 197
instances –, while in the latter is DLV, that solves uniquely 32 StrategicCompanies

instances. Accordingly, we compute two different training sets, namely tsm and tss,
related to the MinimalDiagnosis and StrategicCompanies problems, respectively.

5.2 Tuning the self-adaptive component

In Figure 3, we plot the performance – in terms of CPU time of solved instances –
for each engine of me-aspA on the instances submitted to the 3rd ASP Competition,
both for NP (top-most plot) and Beyond NP (the plot in the bottom) classes. Looking
at the plot, the x axis is labeled by the total amount of solved instances, while in the
y axis it is reported the CPU time (in seconds). Each dot in the plot represents the
performance of the related solver on a given instance. Concerning the top-most plot,
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Solver #Solved Time
Ind. Model

clasp 588 232556.53
cmodels 459 245029.81
DLV 344 130804.50
idp 521 152632.95
me-asp ts 638 270848.09
me-asp tsl 589 230017.95
me-aspA tsl 613 337359.31
me-asp tsn 514 103169.88
me-aspA tsn 608 289735.77
sota 658 222244.38

Table 2: Results of me-asp, me-aspA, and their engines on the NP instances submitted
to the 3rd ASP Competition.

clasp performance is represented by blue diamonds, cmodels performance is denoted
by red squares, DLV by yellow triangles, idp performance is denoted by using green
circles, and, finally, sota solver performance is depicted by purple stars. Considering
the plot in the bottom, we represented by blue diamonds claspD instead of clasp.

Looking at Figure 3 – the top-most plot –, we can see that after 60s all solvers were
able to solve a noticeable amount of instances with respect to the total amount: clasp
is able to solve 49% of its solved set of instances (287 instances out of 588), cmodels
solves 41% (190 out of 459), DLV 46% (158 out of 344), and, finally, idp solves 54% of
its set of solved instances (281 out of 521). Shifting the time cap to 600s, we can see
that all solvers are able to solve at least 75% of their set of solved instances: clasp
solves 81% of its set (477 instances out of 588), cmodels 76% (348 out of 459), DLV
83% (285 out of 344), and idp 84% (438 instances out of 521). These results let us
conclude that 600s could be a good setting in order to tune the time t granted to each
engine for the adaptive policy and try to exploit such mechanism in an effective way.
Analogous conclusions can be drawn in the case of Beyond NP instances.

5.3 Analysis

In order to test the effectiveness of the policy adaptation on me-asp we investigate the
performance of me-aspA considering the challenging training sets previously described,
namely tsl, tsn, tsm, and tss.

We remind the reader that the compared engines were run on all the 1540 instances
(938 NP, and 602 Beyond NP) grounded in less than 3600s and 4GB of memory,
whereas the instances on which me-aspA was run are limited to the ones for which we
were able to compute all features (i.e., 1500 instances – 898 NP, and 602 Beyond NP),
and the timings for multi-engine systems include both the time spent for extracting
the features from the ground instances, and the time spent by the classifier.

In Tables 2 and 3 we report the experiments concerning NP and Beyond NP in-
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Solver #Solved Time
Ind. Model

claspD 565 171659.25
cmodels 351 104161.58
DLV 394 46293.13
me-asp ts 595 192538.72
me-asp tsm 565 171659.25
me-aspA tsm 569 173719.26
me-asp tss 394 46293.14
me-aspA tss 563 163952.77
sota 596 115226.80

Table 3: Results of me-asp, me-aspA, and their engines on the Beyond NP instances
submitted to the 3rd ASP Competition.

stances, respectively. The tables are structured as follows. The first column reports the
name of the solver and (when needed) the related training set on which the inductive
model is computed in a subcolumn; the second and third columns report the result of
each solver in terms of total amount of solved instances (column “#Solved”) within
the time limit and sum of their solving times (column “Time”).

Looking at Table 2, we can see that me-asp solves more instances than the com-
ponent engines, i.e., it solves 50 instances more than clasp, which is the best engine
in this class, and 117 more than idp, which is the second best. Looking now at Ta-
ble 3, about Beyond NP instances, me-asp solves 595 instances, i.e., 30 more instances
than claspD which is the best engine. Summing up, it is interesting to note that
the me-asp performance is very close to the sota solver which, we remind, has the
ideal performance that we could expect in these instances with these engines. In sum,
me-asp solves only 21 out of 1254 instances less than the sota solver, mostly from
the NP class. We also report that the results of me-aspA with ts are very similar to
me-asp. This confirms the intuition mentioned before, and for this reason we do not
show the related numbers in the tables.

Concerning the analysis of the self-adaptive component, considering training set
tsl, we can see that me-asp is able to perform only slightly better than its engines,
solving one more instance than clasp, and its performance are not close to the one
reported for me-asp. Comparing its performance with me-aspA, we can see that the
retraining procedure allows to solve 24 instances more, i.e. 25 more than clasp. The
price that has to be paid for this increasing of performance on the total amount of
solved instances is the increasing in solving time: about 50% of the CPU time spent by
me-aspA is reported as a consequence of the policy adaptation. In the whole solving
process, the retraining procedure has been called 157 times.

Looking now at performance with the training set tsn, we can see that me-asp is
not able to do better than its engines. It solves 514 instances, and it is far from the
performance reported for both clasp and idp. On the other hand me-aspA solves
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Solver Ind. Model #clasp #claspD #cmodels #DLV #idp #sota #sb
me-asp tsl 586 – 0 3 0 303 166
me-aspA tsl 283 – 33 110 187 365 133
me-asp tsn 510 – 0 0 4 253 145
me-aspA tsn 370 – 18 102 118 378 129
me-asp tsm – 565 0 0 – 210 325
me-aspA tsm – 427 0 142 – 334 223
me-asp tss – 0 0 394 – 386 8
me-aspA tss – 428 0 135 – 323 229

Table 4: Total amount of successfully calls to the predicted component engines of the
various versions of me-aspA on the instances submitted to the 3rd ASP Competition.

20 instances more than its best engine and a total of 94 instances more than me-asp.
Also in this case, the CPU time devoted to retrain is not negligible – about 41% of the
total amount. In the case of tsn, the retraining procedure has been called 113 times.

Finally, concerning the performance of me-asp related to training sets composed of
Beyond NP instances, namely tsm, and tss, not surprisingly – in terms of total amount
of solved instances – its performance is equal to claspD and DLV, respectively. As
mentioned above, this is a challenging setting given there are two problems only, and
the starting training sets contain only one label. Concerning the usage of the self-
adaptive component, me-aspA is able to solve 4 instance more than claspD in the
first case, while, considering the last test set, it solves 2 instances less than claspD,
but the improvements w.r.t. me-asp is impressive, solving 169 instances more.

We report in Table 4 some detailed results about the behavior of the various versions
of me-aspA on the instances submitted to the 3rd ASP Competition, among the others
the number of times the component engines were called as predicted solver and solved
the instance. The table is composed of 9 columns. In the first column it is reported the
considered solver, followed by a column that denotes the related inductive model. It
is followed by five columns that report the total amount of calls to the related engine,
e.g., “#clasp” denotes the total amount of calls to clasp. Last two columns, namely
“#sota” and “#sb”, denote the total amount of calls to the SOTA solver, and to the
second best – considering the CPU time –, respectively.

Looking at Table 4, we can draw some conclusions about the improvements of
performance due to the policy adaptation of me-aspA w.r.t. me-asp. Concerning tsl,
we can see that me-asp calls substantially clasp – with the noticeable exception of 3
times, in which DLV is called –, and me-asp predicts the sota solver 303 times only.
Considering now me-aspA on the same training set, we can see that the distribution of
the calls between the engines is substantially different. The self-adaptive component
improves the engine selection, and it leads me-aspA to predict the sota solver 62 times
more than me-asp. We report a similar picture for tsn, for which me-aspA predicts
the sota solver 125 times more than me-asp. This explains the fact that me-aspA

solves 94 instances more than me-asp, as reported in Table 2. Concerning Beyond NP
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Solver #Solved Time
Ind. Model

claspD 543 263705.94
claspfolio 569 237697.56
me-asp ts 638 270848.09
me-aspA tsl 613 337359.31
me-aspA tsn 608 289735.77

Table 5: Performance of solvers on the NP grounded instances submitted to the System
Track of the 3rd ASP Competition.

instances, we confirm the same picture for tsm, while it seems to be different for tss.
This is explained by the fact that, concerning Beyond NP instances, the CPU times
reported for claspD and DLV are similar.

To conclude our analysis, in order to compare me-aspA them with other state-of-
the-art ASP solvers, in Table 5 we report the results of the solvers on NP submitted
to the System Track of the 3rd ASP Competition. The analysis includes claspfolio,
i.e., the winner of the track at the competition on NP instances, and claspD, the
winner of the whole System Track of the 3rd ASP Competition. Looking at the table,
we can confirm the general picture described above: we can see that, on NP instances,
me-aspA solves more instances than claspfolio and claspD, and it is very close to
me-asp.

6 Related Work

We first remark that this paper is an extended and revised version of [27]. The main im-
provements are: (i) the introduction of a retraining technique, to update the algorithm
selection policy in a multi-engine framework, when it fails to give good prediction; (ii)
the implementation of this technique in the me-asp multi-engine solver; (iii) an exper-
imental analysis involving the enhanced system me-aspA, that proved its effectiveness
on (iv) domains on instances that are a superset of the ones in [27], where the test set
is composed of unseen instances. In addition, also the related work comparison is ex-
tended in this paper, which discusses also the papers that deal with policies adaptation
in hard combinatorial problems.

Three main directions have been recently followed for exploiting Machine Learning
techniques in ASP solving, possibly including methods for policy adaptation.
Portfolio-based. This approach is implemented in claspfolio [10], the winner of the
3rd ASP Competition on NP domains. It builds on ideas originally presented in [17, 23],
where it is described the concept of “algorithm portfolio” as a general method for com-
bining existing algorithms into new ones that are preferable to any of the component
algorithms. claspfolio works by selecting the most promising clasp internal config-
uration on the basis of both “static” and “dynamic” features of the input program, the
latter being on-line features obtained by running clasp for a given amount of time.
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The ideas underlying claspfolio are highly related with the papers [44, 38, 17, 16],
where a portfolio-based approach is applied for solving SAT, QSAT, CSP and planning
problems, respectively. A recent paper in ASP that builds on claspfolio is [39],
where the authors present a framework where portfolio and automatic algorithm con-
figuration approaches are combined. An automatic algorithm configuration approach,
whose idea is to design methods for automatically tuning and configuring the solver
parameters, see, e.g., [19], is (partly) already employed in claspfolio for choosing
the “best” clasp configuration on the basis of the computed features. [18] is another
recent paper that deals with the issue of policy adaptation: the ASPeed solver pre-
sented automatically selects a scheduling of solvers for minimizing some metrics, the
number of overall timeouts being the most important. It relies on a policy for order-
ing solvers based on similar ideas to the one we use in this paper, originally employed
in [37]. It is not based on computed features, and solves the problem as a multi-criteria
optimization problem provided as ASP encoding. In [18], the scheduled solvers are var-
ious clasp configurations.

Multi-engine. This is the approach followed in [28, 27], and it is at the basis of this work.
Another application of multi-engine techniques to problem solving is [36], where it is
designed, implemented and experimental evaluated a multi-engine QSAT solver. [37]
extends [36] by introducing a self-adaptation of the learned selection policies when the
approach fails to give a good prediction. The present work imports in multi-engine ASP
solving a method for policy adaptation which is similar to one employed in [37], that
allows a fixed amount of time to all the engines and, if all fail, grants all the remaining
time (assuming there is time left) to the predicted solver. The nn classifier, used in our
paper, was among the classifiers evaluated in [37], and has other features we already
discussed in Section 4, e.g., it is the classification method employed in [28], which
we remind is the first work published on multi-engine ASP solving. satzilla [44],
i.e., a popular SAT solver that won several prizes in SAT competitions, can act as a
multi-engine solver. The differences w.r.t. our work is that satzilla can also compute
dynamic features, but do not provide any policy adaption. As a general comment,
the advantage of the algorithm portfolio over a multi-engine is that it is possible, by
combining algorithms, to reach a performance than is better than the one of the best
engine on each instance, which is instead the upper bound for a multi-engine solver.
On the other hand, an algorithm portfolio needs internal changes in the code of the
engines, while the multi-engine treats the engines as a black-box. No internal modi-
fication of engines, even minor, is requested in a multi-engine system, which thus has
higher modularity. Focusing on the difference between me-aspA and claspfolio on
the topic of this paper, claspfolio does not implement retraining but grants all the
time to the chosen configuration of clasp.

Balduccini. This is an alternative approach, employed in ASP, followed by the dors
framework of [2]. In this framework, in the off-line learning phase, carried out on rep-
resentative programs from a given domain, a heuristic ordering is selected to be then
used in the second run of the underlying engine (smodels in [2]) when solving other
programs from the same domain. The target of this work seems to be real-world prob-
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lem domains where instances have similar structures, and heuristic ordering learned in
some “small” instances in the domain can help to improve the performance on other
“big” instances. This approach, differently from the majority of the ones presented
above, does not need features computation; on the other hand, differently from the
multi-engine approach, it needs to internally modify the engine. Given its nature, it
does not employ policy adaptation. According to Marcello Balduccini, i.e., dors au-
thor the solving method behind dors can be considered “complementary” more than
alternative w.r.t. the one of me-asp, i.e., they could in principle be combined. For
this reason, dors is not included in the analysis.

7 Conclusion

In this paper we have presented an improvement to the multi-engine ASP computation
framework that deals with updating the learned algorithm selection policy when it
fails to give good predictions. In fact, the policy considered in the multi-engine solver
me-asp is decided off-line and never updated, thus this framework can not “react”
to imprecise predictions. In this respect, we have implemented a retraining procedure
in me-asp, resulting in the enhanced system me-aspA. The experimental analysis,
conducted on benchmarks from the 3rd ASP Competition, shows that the retraining
procedure is useful on training sets that are challenging for me-asp. me-aspA is
available for download at http://www.mat.unical.it/ricca/me-aspA.
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[8] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT 2003.,
pages 502–518. LNCS Springer, 2003.

[9] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364–418, September 1997.

[10] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Mar-
ius Thomas Schneider, and Stefan Ziller. A portfolio solver for answer set program-
ming: Preliminary report. In James P. Delgrande and Wolfgang Faber, editors,
Proc. of the 11th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), volume 6645 of LNCS, pages 352–357, Vancouver,
Canada, 2011. Springer.

[11] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
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