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Abstract

Having in mind the task of improving the solving methods for Answer Set
Programming (ASP), there are two usual ways to reach this goal: (i) extending
state-of-the-art techniques and ASP solvers, or (ii) designing a new ASP solver
from scratch. An alternative to these trends is to build on top of state-of-the-art
solvers, and to apply machine learning techniques for choosing automatically the
“best” available solver on a per-instance basis.

In this paper we pursue this latter direction. We first define a set of cheap-to-
compute syntactic features that characterize several aspects of ASP programs.
Then, we apply classification methods that, given the features of the instances in
a training set and the solvers performance on these instances, inductively learn
algorithm selection strategies to be applied to a test set. We report the results
of a number of experiments considering solvers and different training and test
sets of instances taken from the ones submitted to the “System Track” of the
3rd ASP competition. Our analysis shows that, by applying machine learning
techniques to ASP solving, it is possible to obtain very robust performance: our
approach can solve a significantly higher number of instances compared with any
solver that entered the 3rd ASP competition.

1 Introduction

Having in mind the task of improving the robustness, i.e., the ability to perform
well across a wide set of problem domains, and the efficiency, i.e., the quality of
solving a high number of instances, of solving methods for Answer Set Program-
ming (ASP) [14, 30, 33, 29, 15, 3], it is possible to extend existing state-of-the-art
techniques implemented in ASP solvers, or design from scratch a new ASP system
with powerful techniques and heuristics. An alternative to these trends is to build
on top of state-of-the-art solvers, leveraging on a number of efficient ASP systems,
e.g., [40, 25, 27, 11, 31, 24, 40], and applying machine learning techniques for induc-
tively choosing, among a set of available ones, the “best” solver on the basis of the char-
acteristics, called features, of the input program. This approach falls in the framework
of the algorithm selection problem [38]. Related approaches, following a per-instance
selection, have been exploited for solving propositional satisfiability (SAT), e.g., [44],
and Quantified SAT (QSAT), e.g., [35] problems. In ASP, an approach for selecting the
“best” clasp internal configuration is followed in [10], while another approach that
imposes learned heuristics ordering to smodels is [2].

In this paper we pursue this direction, and design a multi-engine approach to ASP
solving. We first define a set of cheap-to-compute syntactic features that describe sev-
eral characteristics of ASP programs, paying particular attention to ASP peculiarities.

1marco@dist.unige.it, DIST, Università degli Studi di Genova, Viale F.Causa 15, 16145 Genova,
Italy
2ricca@mat.unical.it, Dipartimento di Matematica, Università della Calabria, Via P. Bucci, 87030
Rende, Italy
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We then compute such features for the grounded version of all benchmark submitted to
the “System Track” of the 3rd ASP Competition [5] falling in the “NP” and “Beyond
NP” categories of the competition: this track is well suited for our study given that (i)
contains many ASP instances, (ii) the language specification, ASP-Core, is a common
ASP fragment such that (iii) many ASP systems can deal with it.

Then, we apply classification methods that, starting from the features of the in-
stances in a training set, and the solvers performance on these instances, inductively
learn general algorithm selection strategies to be applied to a test set. We consider
five well-known multinomial classification methods, some of them considered in [35].
We perform a number of analyses considering different training and test sets. Our
experiments show that it is possible to obtain a very robust performance, by solving a
significantly higher number of instances than all the solvers that entered the 3rd ASP
competition and DLV [25].

The paper is structured as follow. Section 2 contains preliminaries about ASP
and classification methods. Section 3 then describes our benchmarks setting, in terms
of dataset and solvers employed. Section 4 defines how features and solvers have
been selected, and presents the classification methods employed. Section 5 shows the
performance analysis, while Section 6 and 7 end the paper with discussion about related
work and conclusions, respectively.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming
and machine learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [14, 30, 33, 29, 15, 3] is a declarative programming
formalism proposed in the area of non-monotonic reasoning and logic programming.
The idea of ASP is to represent a given computational problem by a logic program
whose answer sets correspond to solutions, and then use a solver to find those solutions
[29].

In the following, we recall both the syntax and semantics of ASP. The presented
constructs are included in ASP-Core [5], which is the language specification that was
originally introduced in the 3rd ASP Competition [5] as well as the one employed
in our experiments (see Section 3). Hereafter, we assume the reader is familiar with
logic programming conventions, and refer the reader to [15, 3, 13] for complementary
introductory material on ASP, and to [4] for obtaining the full specification of ASP-
Core.

Syntax. A variable or a constant is a term. An atom is p(t1, ..., tn), where p is a
predicate of arity n and t1, ..., tn are terms. A literal is either a positive literal p or a
negative literal not p, where p is an atom. A (disjunctive) rule r is of the form:

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.
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where a1, . . . , an, b1, . . . , bm are atoms. The disjunction a1 ∨ . . . ∨ an is the head of r,
while the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r. We denote by
H(r) the set of atoms occurring in the head of r, and we denote by B(r) the set of
body literals. A rule s.t. |H(r)| = 1 (i.e., n = 1) is called a normal rule; if the body is
empty (i.e., k = m = 0) it is called a fact (and the :– sign is omitted); if |H(r)| = 0
(i.e., n = 0) is called a constraint. A rule r is safe if each variable appearing in r
appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not -free (resp., ∨-free) program
is called positive (resp., normal). A term, an atom, a literal, a rule, or a program is
ground if no variable appears in it.

Semantics. Given a program P , the Herbrand Universe UP is the set of all constants
appearing in P , and the Herbrand Base BP is the set of all possible ground atoms
which can be constructed from the predicates appearing in P with the constants of UP .
Given a rule r, Ground(r) denotes the set of rules obtained by applying all possible
substitutions from the variables in r to elements of UP . Similarly, given a program P ,
the ground instantiation of P is Ground(P) =

⋃
r∈P Ground(r).

An interpretation for a program P is a subset I of BP . A ground positive literal A
is true (resp., false) w.r.t. I if A ∈ I (resp., A 6∈ I). A ground negative literal not A
is true w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I.

The answer sets of a program P are defined in two steps using its ground instan-
tiation: First the answer sets of positive disjunctive programs are defined; then the
answer sets of general programs are defined by a reduction to positive ones and a
stability condition.

Let r be a ground rule, the head of r is true w.r.t. I if H(r) ∩ I 6= ∅. The body of
r is true w.r.t. I if all body literals of r are true w.r.t. I, otherwise the body of r is
false w.r.t. I. The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its
body is false w.r.t. I.

Given a ground positive program Pg, an answer set for Pg is a subset-minimal
interpretation A for Pg such that every rule r ∈ Pg is true w.r.t. A (i.e., there is no
other interpretation I ⊂ A that satisfies all the rules of Pg).

Given a ground program Pg and an interpretation I, the (Gelfond-Lifschitz) reduct [15]
of Pg w.r.t. I is the positive program P I

g , obtained from Pg by (i) deleting all rules
r ∈ Pg whose negative body is false w.r.t. I, and (ii) deleting the negative body from
the remaining rules of Pg.

An answer set (or stable model) of a general program P is an interpretation I of P
such that I is an answer set of Ground(P)I .

As an example consider the program P = { a∨b :– c., b :– not a, not c., a∨c :– not b.,
k :– a., k :– b. } and I = {b, k}. The reduct PI is {a ∨ b :– c., b. k :– a., k :– b.}. I is an
answer set of PI , and for this reason it is also an answer set of P .

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarely a best algorithm to solve a
given combinatorial problem, while it is often the case that different algorithms perform
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Problem Class #Instances

DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying NP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
WeightAssignmentTree NP 62

MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

Table 1: Problems and instances.

well on different problem instances. Among the approaches for solving this problem, in
this work we rely on a per-instance selection algorithm in which, given a set of features
–i.e., numeric values that represent particular characteristics of a given instance–, it is
possible to choose the best algorithm among a pool of them –in our case, tools to solve
ASP instances. In order to make such a selection in an automatic way, we model the
problem using multinomial classification algorithms, i.e., machine learning techniques
that allow automatic classification of a set of instances, given instance features.

More in detail, in multinomial classification we are given a set of patterns, i.e., input
vectors X = {x1, . . . xk} with xi ∈ Rn, and a corresponding set of labels, i.e., output
values Y ∈ {0, . . . ,m}, where Y is composed of values representing the m classes of the
multinomial classification problem. In our modeling, the m classes are m ASP solvers.
We think of the labels as generated by some unknown function f : Rn → {0, . . . ,m}
applied to the patterns, i.e., f(xi) = yi for i ∈ {1, . . . , k} and yi ∈ {0, . . . ,m}. Given
a set of patterns X and a corresponding set of labels Y , the task of a multinomial
classifier c is to extrapolate f given X and Y , i.e., construct c from X and Y so that
when we are given some x? ∈ X we should ensure that c(x?) is equals to f(x?). This
task is called training, and the pair (X, Y ) is called the training set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed
in this work, which is needed for properly introducing the techniques described in the
remainder of the paper. In particular, we report some data concerning: benchmark
problems, instances and ASP solvers employed, as well as the hardware platform, and
the execution settings for reproducibility of experiments.
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3.1 Dataset

The benchmarks considered for the experiments belong to the suite of the third ASP
Competition [5]. This is a large and heterogeneous suite of hard benchmarks, which
was already employed for evaluating the performance of state-of-the-art ASP solvers,
which are encoded in ASP-Core. That suite includes planning domains, temporal and
spatial scheduling problems, combinatorial puzzles, graph problems, and a number
of application domains i.e., database, information extraction and molecular biology
field.1 More in detail, we have employed the encodings used in the System Track of the
competition, and all the problem instances made available (in form of facts) from the
contributors of the problem submission stage of the competition, which are available
from the competition website [4]. Note that this is a superset of the instances actually
selected for running (and, thus evaluated in) the competition itself. Hereafter, with
instance we refer to the complete input program (i.e., encoding+facts) to be fed to a
solver for each instance of the problem to be solved.

The techniques presented in this paper are conceived for dealing with proposi-
tional programs, thus we have grounded all the mentioned instances by using GrinGo
(v.3.0.3) [12] to obtain a setup very close to the one of the competition.2 We consid-
ered only computationally-hard benchmarks, corresponding to all problems belonging
to the categories NP and Beyond NP of the competition. The dataset is summarized
in Table 1, which also reports the complexity classification and the number of available
instances for each problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that entered the System Track of
the third ASP Competition [4] with the addition of DLV [25] (which did not partici-
pate in the competition since it is developed by the organizers of the event). In this
way we have covered –to the best of our knowledge– all the state-of-the-art solutions
fitting the benchmark settings. In detail, we have run: clasp [11], claspD [8], clasp-
folio [10], idp [43], cmodels [27], sup [28], Smodels [40], and several solvers from
both the lp2sat [23] and lp2diff [24] families, namely: lp2gminisat, lp2lminisat,
lp2lgminisat, lp2minisat, lp2diffgz3, lp2difflgz3, lp2difflz3, and lp2diffz3.
More in detail, clasp is a native ASP solver relying on conflict-driven nogood learn-
ing; claspD is an extension of clasp that is able to deal with disjunctive logic pro-
grams, while claspfolio exploits machine-learning techniques in order to choose the
best-suited execution options of clasp; idp is a finite model generator for extended
first-order logic theories, which is based on MiniSatID [31]; Smodels is one of the first
robust native ASP solvers that have been made available to the community; DLV [25]
is one of the first systems able to cope with disjunctive programs; cmodels exploits a
SAT solver as a search engine for enumerating models, and also verifying model min-
imality whenever needed; sup exploits nonclausal constraints, and can be seen as a
combination of the computational ideas behind cmodels and Smodels; the lp2sat

1An exhaustive description of the benchmark problems can be found in [4].
2We have obtained similar results by employing DLV [25] as grounder.
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family employs several variants (indicated by the trailing g, l and lg) of a transla-
tion strategy to SAT and resorts on MiniSat [9] for actually computing the answer
sets; the lp2diff family translates programs in difference logic over integers [41] and
exploit Z3 [7] as underlying solver (again, g, l and lg indicate different translation
strategies). Solvers were run on the same configuration (i.e., parameter settings) as in
the competition.

Concerning the hardware employed and the execution settings, all the experiments
were carried out on CyberSAR [32], a cluster comprised of 50 Intel Xeon E5420 blades
equipped with 64 bit Gnu Scientific Linux 5.5. Unless otherwise specified, the resources
granted to the solvers are 600s of CPU time and 2GB of memory. Time measurements
were carried out using the time command shipped with Gnu Scientific Linux 5.5.

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several steps: (i) design of (syntactic) fea-
tures that are both significant for classifying the instances and cheap-to-compute (so
that the classifier can be fast and accurate); (ii) selection of solvers that are represen-
tative of the state of the art (to be able to obtain the best possible performance in any
considered instance); and (iii) selection of the classification algorithm, and fair design
of training and test sets, to obtain a robust and unbiased classifier.

In the following we describe the choices we have made for designing me-asp, which
is our multi-engine solver for ground ASP programs.

4.1 Features

We consider syntactic features that are cheap-to-compute, i.e., computable in linear
time in the size of the input, given that in previous work (e.g., [35]) syntactic features
have been profitably used for characterizing (inherently) ground instances. The features
that we compute for each ground program are divided into four groups: problems size,
balance, “proximity to horn” and ASP-based peculiar features. This categorization is
borrowed from [34]. The problem size features are: number of rules r, number of atoms
a, ratios r/a, (r/a)2, (r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3. The balance
features are: fraction of unary, binary and ternary rules. The “proximity to horn”
features are: fraction of horn rules and number of occurrences in a horn rule for each
atom. We have added a number of ASP peculiar features, namely: number of true and
disjunctive facts, fraction of normal rules and constraints c. Also some combinations,
e.g., c/r, are considered for a total of 52 features.

We were able to ground with GrinGo 1425 instances out of a total of 1462 in
less than 600s.3 Our system for extracting features from ground programs can then
compute all features (in less than 600s) for 1371 programs: to have an idea of its
performance, it can compute all features of a ground program of approximately 20MB
in about 4s.

3The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respec-
tively.
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Solver Solved Unique Solver Solved Unique

clasp 445 26 lp2diffz3 307 –
cmodels 333 6 lp2sat2gminisat 328 –
dlv 241 37 lp2sat2lgminisat 322 –
idp 419 15 lp2sat2lminisat 324 –
lp2diffgz3 254 – lp2sat2minisat 336 –
lp2difflgz3 242 – smodels 134 –
lp2difflz3 248 – sup 311 1

Table 2: Results of a pool af ASP solvers on the NP benchmarks of the third ASP Compe-
tition. The table is organized as follows: Column “Solver” reports the solver name, column
“Solved” reports the total amount of instances solved with a time limit of 600 CPU second,
and, finally, in column “Unique” we report the total amount of instances solved uniquely by
the corresponding solver.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative of the
state-of-the-art solver (sota), i.e., considering a problem instance, the oracle that
always fares the best among available solvers. In order to do that, we ran preliminary
experiments, and we report the results (regarding the NP class) in Table 2. Looking
at the table, first we notice that we do not report results related to both claspD
and claspfolio. Concerning the results of claspD, we report that –considering the
NP class– its performance is subsumed by the performance of clasp. Considering the
performance of claspfolio, we exclude such system from this analysis because we
consider it as a yardstick system, i.e., we will compare its performance against the ones
related to me-asp.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a
noticeable amount of instances uniquely, namely clasp, cmodels, DLV, and idp.
Concerning Beyond NP instances, we report that only three solvers are able to cope
with such class of problems, name claspD, cmodels, and DLV. Considering that
both cmodels and DLV are involved in the previous selection, the pool of engines
used in me-asp will be composed of 5 solvers, namely clasp, claspD, cmodels,
DLV, and idp.

4.3 Classification algorithms and training

In the following, we briefly review the classifiers that we use in our empirical analysis.
Considering the wide range of multinomial classifiers described in the scientific litera-
ture, we test a subset of algorithms, some of them considered in [35], built on different
inductive biases in the computation of their classification hypotheses:

• Aggregation Pheromone density based pattern Classification (apc): It
is a pattern classification algorithm modeled on the ants colony behavior and
distributed adaptive organization in nature. Each data pattern is considered as
an ant, and the training patterns (ants) form several groups or colonies depending
on the number of classes present in the data set. A new test pattern (ant) will
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Figure 1: Two-dimensional space projection of the whole dataset (top), ts1, and ts2
(bottom-left and bottom-right, respectively).

TR No. CVL -2012-003 University of Sassari



Applying Machine Learning Techniques to ASP Solving 11

move along the direction where average aggregation pheromone density (at the
location of the new ant) formed due to each colony of ants is higher and hence
eventually it will join that colony. We direct the reader to [18] for further details.

• Decision rules (furia): A classifier providing a set of “if-then-elsif” constructs,
wherein the “if” part contains a test on some attributes and the “then” part
contains a label; we use furia [20] to induce decision rules.

• Decision trees (j48): A classifier arranged in a tree structure, wherein each
inner node contains a test on some attributes, and each leaf node contains a
label; we use j48, an optimized implementation of c4.5 [37], to induce decision
trees.

• Nearest-neighbor (nn): It is a classifier yielding the label of the training in-
stance which is closer to the given test instance, whereby closeness is evaluated
using some proximity measure, e.g., Euclidean distance; we use the method de-
scribed in [1] to store the training instances for fast look-up.

• Support Vector Machine (svm): It is a supervised learning algorithm used
for both classification and regression tasks. Roughly speaking, the basic training
principle of svms is finding an optimal linear hyperplane such that the expected
classification error for (unseen) test patterns is minimized. We address the reader
to [6] for further details.

As mentioned in Section 2.2, in order to train the classifier, we have to select a pool
of instances for training purpose, i.e., the training set. Concerning such selection, our
aim is twofold. On the one hand, we want to compose a training set in order to train a
robust model, while, on the other hand, we want to test the generalization performance
of me-asp also on instances comprised in benchmarks not comprised in the training
set.

As result of the considerations above, we design two training sets. The first one –
ts1 in the following– is composed of the 320 instances solved uniquely –without taking
into account the instances involved in the competition– by the pool of engines selected
in Section 4.2. The rational of this choice is to try to “mask” noisy information during
model training. The second one –ts2 in the following– is a subset of ts1, and it is
composed of the 77 instances uniquely solved considering only the (randomly-chosen)
GraphColouring, Labyrinth, Numberlink, and StrategicCompanies problems. The
rationale of this choice is to draw some considerations about the trained models con-
sidering unknown parts of the instances space.

In order to depict both the differences of ts1 and ts2 and the coverage of our
training set with respect to the whole available dataset, in Figure 1 we considered each
instance as a point in the multidimensional features space. In the plots, we consider
a two-dimensional projection obtained by means of a principal components analysis
(PCA), and considering only the first two principal components (PC). The x-axis and
the y-axis in the plots are the first and the second PCs, respectively. Each point in
the plots is labeled by the best solver on the related instance. In the top-most plot, we
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Classifier Accuracy
mod1 mod2

apc 96.58% 89.83%
furia 94.09% 83.39%
j48 93.12% 79.46%
nn 92.81% 80.71%
svm 94.38% 82.32%

Table 3: Accuracy of the trained models of me-asp using cross-validation. The table is
structured as follows. In the first column (“Classifier”), we report the classifier, and it is
followed by a group of columns (“Accuracy”). The group is composed of two columns,
reporting the accuracy –in percentage– related to mod1 and mod2 (columns “mod1” and
“mod2”, respectively).

add a label denoting the benchmark name of the depicted instances, in order to give
an hint about the “location” of each benchmark.

Considering the classification algorithms listed above, our next experiment is de-
voted to training the classifiers, and to assessing their accuracy. Referring to the
notation introduced in Section 2.2, even assuming that a training set is sufficient to
learn f , it is still the case that different sets may yield a different f . The problem is
that the resulting trained classifier may underfit the unknown pattern –i.e., its pre-
diction is wrong– or overfit –i.e., be very accurate only when the input pattern is in
the training set. Both underfitting and overfitting lead to poor generalization perfor-
mance, i.e., c fails to predict f(x∗) when x∗ 6= x. However, statistical techniques can
provide reasonable estimates of the generalization error. In order to test the gener-
alization performance, we use a technique known as stratified 10-times 10-fold cross
validation to estimate the generalization in terms of accuracy, i.e., the total amount
of correct predictions with respect to the total amount of patterns. Given a training
set (X, Y ), we partition X in subsets Xi with i ∈ {1, . . . 10} such that X =

⋃10
i=1 Xi

and Xi ∩Xj = ∅ whenever i 6= j; we then train c(i) on the patterns X(i) = X \Xi and
corresponding labels Y(i). We repeat the process 10 times, to yield 10 different c and
we obtain the global accuracy estimate.

In Table 3 we report the accuracy results related to the experiment described above.
Looking at the table, we denote as mod1 and mod2 the inductive models computed
training the classifiers on ts1 and ts2, respectively. Notice that, in this stage, we
also explore for each algorithm its parameters space, in order to tune it. Looking at
Table 3, we report a 90% greater accuracy for each classification algorithm trained on
ts1. Concerning mod2, we report a lower accuracy with respect to mod1. The main
motivation for this result is that ts2 is composed of a smaller number of instances with
respect to ts1, so the classification algorithms are not able to generalize with the same
accuracy. This result is not surprising, also considering the plots in Figure 1 and, as
we will see in the experimental section, this will influence the performance of me-asp.
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Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

clasp 60 5132.45 – – 60 5132.25
claspD – – 13 2344.00 13 2344.00
cmodels 56 5092.43 9 2079.79 65 7172.22
DLV 37 1682.76 15 1359.71 52 3042.47
idp 61 5010.79 – – 61 5010.79
me-asp (apc) 63 5531.68 15 3286.28 78 8817.96
me-asp (furia) 63 5244.73 15 3187.73 78 8432.46
me-asp (j48) 68 5873.25 15 3187.73 83 9060.98
me-asp (nn) 66 4854.78 15 3187.31 81 8042.09
me-asp (svm) 60 4830.70 15 2308.60 75 7139.30

sota 71 5403.54 15 1221.01 86 6624.55

Table 4: Results of the various solvers on the grounded instances evaluated at the 3rd ASP
competition. me-asp has been trained on the ts1 training set.

5 Performance analysis

In this section we present the results of the analysis we have performed. We consider
three different combinations of training and test sets, where the training sets are the
ts1 and ts2 sets introduced in Section 4, composed of uniquely solved instances, and
the test set ranges over the 3rd ASP competition ground instances. In particular, the
first (resp. second) experiment has ts1 as training set, and as test set the successfully
grounded instances evaluated (resp. submitted) to the 3rd ASP Competition: the goal
of this analysis is to test the efficiency of our approach on all the evaluated (resp.
submitted) instances when the model is trained on the whole space of the uniquely
solved instances. The third experiment considers ts2 as a training set, composed of
uniquely solved instances of some domains, and all the successfully grounded instances
submitted to the competition as test test: in this case, given that the model is not
trained on all the space of the uniquely solved instances, but on a portion, and that
the test set contains “unseen” instances, the goal is to test, in particular, the robustness
of our approach.

We devoted one subsection to each of our experiments. For each experiment the
results are reported in a table structured as follows: the first column reports the name
of a solver, the second, third and fourth columns report the results of each solver on
NP, and Beyond NP classes, respectively, in terms of the number of solved instances
within the time limit and sum of their solving times (a sub-column is devoted to each
of these numbers). We report the results obtained by running: me-asp with the five
classification methods introduced in Section 4.3, in particular me-asp(X) indicates
me-asp employing the classification method X∈ {apc, furia, j48, nn, svm }, the
component engines employed by me-asp on each class as explained in Section 4.2,
and as reference sota, which is the ideal multi-engine solver (considering the engines
employed).

We remind the reader that, for me-asp, the number of instances on which me-asp
is run is further limited to the ones for which we were able to compute all features,

TR No. CVL -2012-003 University of Sassari



Applying Machine Learning Techniques to ASP Solving 14

Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

clasp 445 47096.14 – – 445 47096.14
claspD – – 433 52029.74 433 52029.74
cmodels 333 40357.30 270 38654.29 603 79011.59
DLV 241 21678.46 364 9150.47 605 30828.93
idp 419 37582.47 – – 419 37582.47
me-asp (apc) 497 55334.15 516 60537.67 1013 115871.82
me-asp (furia) 480 48563.26 518 60009.23 998 108572.49
me-asp (j48) 490 49564.19 510 59922.86 1000 109487.05
me-asp (nn) 490 46780.31 518 55043.39 1008 101823.70
me-asp (svm) 445 40917.70 518 52553.84 963 93471.54

sota 516 39857.76 520 24300.82 1036 64158.58

Table 5: Results of the various solvers on the grounded instances submitted to the 3rd ASP
competition. me-asp has been trained on the ts1 training set.

and its timings include both the time spent for extracting the features from the ground
instances, and the time spent by the classifier.

5.1 Efficiency on instances evaluated at the Competition

In the first experiment, we consider ts1 introduced in Section 4 as training set, and
as test set all the instances evaluated at the 3rd ASP Competition (a total of 88
instances). Results are shown in Table 4. We can see that, on problems of the NP
class, me-asp(j48) solves the highest number of instances, 7 more than idp, 8 more
than clasp and, moreover, 4 out of 5 classification methods lead me-asp to have better
performance than each of its engines. On the Beyond NP problems, instead, all versions
of me-asp and DLV solve 15 instances (DLV having best mean CPU time), followed
by claspD and cmodels, which solve 13 and 9 instances, respectively. Summarizing,
me-asp(j48) is the solver that solves the highest number of instances: here it is very
interesting to note that its performance is very close to the sota solver which, we
remind, has the ideal performance that we could expect in these instances with these
engines.

5.2 Efficiency on instances submitted to the Competition

In the second experiment we consider the same training set as for the previous experi-
ment, while the test set is composed of all successfully grounded instances submitted
to the 3rd ASP competition. The results are now shown in Table 5. It is immediately
noticeable here that in both NP and Beyond NP classes, all me-asp versions solve
more instances (or in shorter time in one case) than the component engines: in par-
ticular, in the NP class, me-asp(apc) solves the highest number of instances, 52 more
than clasp, which is the best engine in this class, while in the Beyond NP class three
me-asp versions solve 518 instances, i.e. 85 more instances than claspD which is the
engine that solves more instances in the Beyond NP class. As far as the comparison
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Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

clasp 445 47096.14 – – 445 47096.14
claspD – – 433 52029.74 433 52029.74
cmodels 333 40357.30 270 38654.29 603 79011.59
DLV 241 21678.46 364 9150.47 605 30828.93
idp 419 37582.47 – – 419 37582.47
me-asp (apc) 491 53875.41 444 57555.34 935 111430.75
me-asp (furia) 450 50495.50 365 10483.81 815 61429.31
me-asp (j48) 450 53272.70 366 10486.43 816 63759.13
me-asp (nn) 484 52191.49 364 10550.01 848 62741.50
me-asp (svm) 383 36786.04 364 10543.00 747 47329.04

sota 516 39857.76 520 24300.82 1036 64158.58

Table 6: Results of the various solvers on the grounded instances submitted to the 3rd ASP
competition. me-asp has been trained on the ts2 training set.

with the sota solver is concerned, the best me-asp version solves only 23, out of 1036,
instances less than the sota solver, mostly from the NP class.

5.3 Robustness on instances submitted to the Competition

In this experiment, we use the ts2 training set as introduced in Section 4, and the
same test set as that of previous experiment. The rationale of this last experiment
is to test our approach on “unseen” instances, i.e. in a situation where the test set
contains instances that come from problems whose instances have not been used to
train the model. We can thus expect this experiment to be particularly challenging for
our multi-engine approach. Results are presented in Table 6. By looking at the results,
it is clear that me-asp(apc) performs better that the other alternatives, and solves 46
instances more than clasp in the NP class, and 11 more instances than claspD in
the Beyond NP class, clasp and claspD being the best engines in the two classes.
However, even if with a multi-engine approach we can solve also in this case far more
instances than all the engines, we report that in this case the performance of our best
configuration are not that close to the sota solver, which solves in total 101 more
instances, the majority coming from the Beyond NP class in this case.

5.4 Discussion and Comparison with the State of the Art

Summing up the three experiments, the first comment is that it is clear that me-asp
has a very robust and efficient performance: it often can solve (much) more instances
than its engines, even considering the single NP and Beyond NP classes. We also report
that all versions of me-asp have reasonable performance, so –from a machine learning
point of view– we can conclude that, on one hand, we computed a representative pool of
features, and, on the other hand, the robustness of our inductive models let us conclude
that we made a fair selection of the instances used for classifier training purpose.
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Concerning comparison with the state of the art, the following table summarizes
the performance of claspD and claspfolio (respectively the overall winner, and the
fastest solver in the NP class that entered the System Track of the competition), in
terms of number of solved instances (belonging to NP within parentheses) on both in-
stance sets, i.e., evaluated (EVAL) and submitted (SUBM), and of the various versions
of me-asp trained on ts1.

me-asp me-asp me-asp me-asp me-asp claspD claspfolio
(apc) (furia) (j48) (nn) (svm)

EVAL 78(63) 78(63) 83(68) 81(66) 75(60) 65(52) 62(62)
SUBM 1013(467) 998(480) 1000(490) 1008(490) 963(445) 835(402) 431(431)

We observe that all me-asp versions outperform yardstick state of the art solvers
considering all submitted instances. (Recall that claspfolio run on NP instances
only). Moreover, three me-asp versions out of five always outperform state of the art
solvers, this holds even even considering the most challenging setting for me-asp, with
ts2 as training set (see Tab. 6). A final consideration is about experiments conducted
considering ts2, and in particular concerning experiment 3: we have seen that this is
the only experiment where the difference in performance between me-asp and sota
is significant. One option to try to reduce the gap is to introduce adaptations of
the learned selection policies when the approach fails to give a good prediction: in,
e.g., [36], this proved to be effective on QSAT problems. Nonetheless, even without
considering this further technique, me-asp clearly advances the state of the art.

6 Related Work

Starting from the consideration that, on empirically hard problems, there is rarely a
“global” best algorithm, while it is often the case that different algorithms perform
well on different problem instances, Rice [38] defined the algorithm selection problem
as the problem of finding an effective, or good, or best algorithm, based on an abstract
model of the problem at hand. Along this line, several works have been done to
tackle combinatorial problems efficiently. [17, 26] described the concept of “algorithm
portfolio” as a general method for combining existing algorithms into new ones that are
unequivocally preferable to any of the component algorithms. Most related papers to
our work are [44, 35] for solving SAT and QSAT problems. Both [44] and [35] rely on a
per-instance analysis, like the one we have performed in this paper: in [35], which is the
work closest to our, the goal is to design a multi-engine solver, i.e. a tool that can choose
among its engines the one which is more likely to yield optimal results. The approach
in [44] has also the ability to compute features on-line, e.g., by running a solver for an
allotted amount of time and looking “internally” to solver statistics, with the option of
changing the solver on-line: this is a per-instance algorithm portfolio approach. The
algorithm portfolio approach is employed also in, e.g., [17] on Constraint Satisfaction
and MIP, [39] on QSAT and [16] on planning problems. The advantage of the algorithm
portfolio over a multi-engine is that it is possible, by combining algorithms, to reach,
in each instance, better performance than the best engine, while this is the bound for a
multi-engine solver. On the other hand, an algorithm portfolio needs internal changes
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in the code of the engines, while the multi-engine treats the engines as black-box, thus
no internal modification, even minor, is requested, resulting in higher modularity for
this approach: when a new engine is added, there is just the need to update the model.
It has to be noticed that both [35] and [44] reached very good results, e.g., aqme, the
multi-engine solver implementing the approach in [35] had top performance at the 2007
QBF competition4. [36] extends [35] by introducing a self-adaptation of the learned
selection policies when the approach fails to give a good prediction.

Other approaches work by designing methods for automatically tuning and config-
uring the solver parameters: this approach is followed in, e.g., [22, 21] for solving SAT
and MIP problems, and [42] for planning problems. An overview can be found in [19].

In ASP, the approach implemented in claspfolio [10] mixes characteristics of
the algorithm portfolio approach with others more similar to this second trend: it
works by selecting the most promising clasp internal configuration on the basis of
both static and dynamic features of the input program, the latter obtained by running
clasp for a given amount of time. In claspfolio, features are extracted by means
of the claspre tool. Thus, like the algorithms portfolio approaches, it can compute
both static and dynamic features, while trying to automatically configure the “best”
clasp configuration on the basis of the computed features. An alternative approach
is followed in the dors framework of [2], where in the off-line learning phase, carried
out on representative programs from a given domain, a heuristic ordering is selected
to be then used in smodels when solving other programs from the same domain.
The target of this work seems to be real-world problem domains where instances have
similar structures, and heuristic ordering learned in some (possibly small) instances in
the domain can help to improve the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniques to ASP solving with the
goal of developing a fast and robust multi-engine ASP solver. To this end, we have:
(i) specified a number of cheap-to-compute syntactic features that allow for accu-
rate classification of ground ASP programs; (ii) applied five multinomial classifica-
tion methods to learning algorithm selection strategies; (iii) implemented these tech-
niques in our multi-engine solver me-asp, which is available for download at http:

//www.mat.unical.it/ricca/me-asp. The performance of me-asp was assessed on
three experiments, which were conceived for checking efficiency and robustness of our
approach, involving different training and test sets of instances taken from the ones
submitted to the System Track of the 3rd ASP competition. Our analysis shows that,
our multi-engine solver me-asp is very robust and efficient, and outperforms both its
component engines and state of the art solvers.

As far as future work is concerned, we are setting up an experimental analysis to
compare me-asp with the dors framework [2]. At the time of writing we have not
been able to build dors in such a way that it can be run on our cluster CyberSAR.

4http:www.qbflib.org/qbfeval.
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We are solving this technical problem with the help of the author of dors whom we
thank for his assistance.
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gramming Paradigm. In Ilkka Niemelä and Torsten Schaub, editors, Proceedings
of the Workshop on Computational Aspects of Nonmonotonic Reasoning, pages
72–79, Trento, Italy, May/June 1998.

[34] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav
Shoham. Understanding random sat: Beyond the clauses-to-variables ratio. In
Mark Wallace, editor, Proc. of the 10th International Conference on Principles and
Practice of Constraint Programming (CP), Lecture Notes in Computer Science,
pages 438–452, Toronto, Canada, 2004. Springer.

[35] Luca Pulina and Armando Tacchella. A multi-engine solver for quantified boolean
formulas. In Christian Bessiere, editor, Proc. of the 13th International Conference
on Principles and Practice of Constraint Programming (CP), Lecture Notes in
Computer Science, pages 574–589, Providence, Rhode Island, 2007. Springer.

[36] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quan-
tified boolean formulas. Constraints, 14(1):80–116, 2009.

[37] J.R. Quinlan. C4.5: programs for machine learning. Morgan kaufmann, 1993.

[38] John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–
118, 1976.

[39] Horst Samulowitz and Roland Memisevic. Learning to solve qbf. In Proc. of
the 22th AAAI Conference on Artificial Intelligence, pages 255–260, Vancouver,
Canada, 2007. AAAI Press.
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