2,864 research outputs found

    Conceptual Modeling in Law: An Interdisciplinary Research Agenda

    Get PDF
    The article describes how different approaches from the IS field of conceptual modeling should be transferred to the legal domain to enhance comprehensibility of legal regulations and contracts. It is further described how this in turn would benefit the IS discipline. The findings emphasize the importance of further interdisciplinary research on that topic. A research agenda that synthesizes the presented ideas is proposed based on a framework that structures the research field. Researchers from both disciplines, IS and Law, that are interested in this field should use the research agenda to position their research and to derive new and innovative research questions

    Ontologies in domain specific languages : a systematic literature review

    Get PDF
    The systematic literature review conducted in this paper explores the current techniques employed to leverage the development of DSLs using ontologies. Similarities and differences between ontologies and DSLs, techniques to combine DSLs with ontologies, the rationale of these techniques and challenges in the DSL approaches addressed by the used techniques have been investigated. Details about these topics have been provided for each relevant research paper that we were able to investigate in the limited amount of time of one month. At the same time, a synthesis describing the main trends in all the topics mentioned above has been done

    Software Evolution for Industrial Automation Systems. Literature Overview

    Get PDF

    MDA-driven development of standard-compliant OSS components: the OSS/J inventory case-study.

    Get PDF
    The telecommunications-oriented Operational Support Systems (OSS) industry have recognised the value of technology independent modelling of OSS solutions as a way to reduce cost, add agility, validate and verify solution designs against architectural guidelines of an enterprise and most importantly provide traceability in the design methodology process. The challenges faced by the OSS community is how MDA tools can deliver the promise of advanced meta-modelling, model definition and validation and model transformation for both OSS software components and integration logic in the larger OSS landscape. This paper describes how an advanced extensible meta-modelling tool is used to build an OSS component following best practice industry guidelines. Extended MOF, extended executable OCL and a powerful transformation language are used to capture the constraints in the meta-models as well as models followed by complete, 100% code generation from models. Furthermore, meta-models are also developed to capture graphical user interface elements in conjunction with the inventory data models, which are then automatically translated into code. This work is the precursor for defining extensive meta-models for a component-based OSS infrastructure based on industry best practice, for adding high degree of formality to model specifications and for enabling the verification of domain requirements by executing the models through model snapshot creation, way before system implementation takes place

    Assistance in Model Driven Development: Toward an Automated Transformation Design Process

    Get PDF
    Model driven engineering aims to shorten the development cycle by focusing on abstractions and partially automating code generation. We long lived in the myth of automatic Model Driven Development (MDD) with promising approaches, techniques, and tools. Describing models should be a main concern in software development as well as model verification and model transformation to get running applications from high level models. We revisit the subject of MDD through the prism of experimentation and open mindness. In this article, we explore assistance for the stepwise transition from the model to the code to reduce the time between the analysis model and implementation. The current state of practice requires methods and tools. We provide a general process and detailed transformation specifications where reverse-engineering may play its part. We advocate a model transformation approach in which transformations remain simple, the complexity lies in the process of transformation that is adaptable and configurable. We demonstrate the usefulness, and scalability of our proposed MDD process by conducting experiments. We conduct experiments within a simple case study in software automation systems. It is both representative and scalable. The models are written in UML; the transformations are implemented mainly using ATL, and the programs are deployed on Android and Lego EV3. Last we report the lessons learned from experimentation for future community work

    Extending relational model transformations to better support the verification of increasingly autonomous systems

    Get PDF
    Over the past decade the capabilities of autonomous systems have been steadily increasing. Unmanned systems are moving from systems that are predominantly remotely operated, to systems that include a basic decision making capability. This is a trend that is expected to continue with autonomous systems making decisions in increasingly complex environments, based on more abstract, higher-level missions and goals. These changes have significant implications for how these systems should be designed and engineered. Indeed, as the goals and tasks these systems are to achieve become more abstract, and the environments they operate in become more complex, are current approaches to verification and validation sufficient? Domain Specific Modelling is a key technology for the verification of autonomous systems. Verifying these systems will ultimately involve understanding a significant number of domains. This includes goals/tasks, environments, systems functions and their associated performance. Relational Model Transformations provide a means to utilise, combine and check models for consistency across these domains. In this thesis an approach that utilises relational model transformation technologies for systems verification, Systems MDD, is presented along with the results of a series of trials conducted with an existing relational model transformation language (QVT-Relations). These trials identified a number of problems with existing model transformation languages, including poorly or loosely defined semantics, differing interpretations of specifications across different tools and the lack of a guarantee that a model transformation would generate a model that was compliant with its associated meta-model. To address these problems, two related solvers were developed to assist with realising the Systems MDD approach. The first solver, MMCS, is concerned with partial model completion, where a partial model is defined as a model that does not fully conform with its associated meta-model. It identifies appropriate modifications to be made to a partial model in order to bring it into full compliance. The second solver, TMPT, is a relational model transformation engine that prioritises target models. It considers multiple interpretations of a relational transformation specification, chooses an interpretation that results in a compliant target model (if one exists) and, optionally, maximises some other attribute associated with the model. A series of experiments were conducted that applied this to common transformation problems in the published literature

    First European Workshop on Composition of Model Transformations - CMT 2006

    Get PDF
    • …
    corecore