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Abstract

The systematic literature review conducted in this paper explores the current techniques
employed to leverage the development of DSLs using ontologies. Similarities and differences
between ontologies and DSLs, techniques to combine DSLs with ontologies, the rationale of
these techniques and challenges in the DSL approaches addressed by the used techniques have
been investigated. Details about these topics have been provided for each relevant research
paper that we were able to investigate in the limited amount of time of one month. At the
same time, a synthesis describing the main trends in all the topics mentioned above has been
done.

1 Introduction

This work is motivated by the fact that ontologies, as knowledge representation systems, can
be used in analysing the domain of a DSL [51]. From this, the question whether ontologies
can be reused in other phases of building DSLs follows up. This further lead to a search
through the literature that we reported in this paper.

The purpose of this paper is to conduct a systematic literature review on different tech-
niques that exist on leveraging ontologies in domain-specific languages (DSL). The rationale
for using these techniques and the challenges that the usage of the ontologies address in the
DSL approach are also considered. At the same time, similarities and differences between
ontologies and DSLs are investigated as a way of offering context to the other topics.

A paragraph in Richard’s Hamming Turing award lecture refering to developing solutions
from existing ones represents a valid argument for conducting literature reviews as well:
“Indeed, one of my major complaints about the computer field is that whereas Newton could
say, ‘If I have seen a little farther than others, it is because I have stood on the shoulders of
giants,’ I am forced to say, ‘Today we stand on each other’s feet.’ Perhaps the central problem
we face in all of computer science is how we are to get to the situation where we build on top
of the work of others rather than redoing so much of it in a trivially different way. Science is
supposed to be cumulative, not almost endless duplication of the same kind of things.” [25].

Context There are initiatives, like those of the TWOMDE workshop [39], to investigate
how can ontologies and the reasoning capabilities supported by them be used in Model Driven
Engineering. One of the areas in MDE where ontologies could be valuable is the area of domain
specific languages. Our focus is on ontologies and domain specific languages.

The development of domain specific languages and ontologies has taken place separately.
Domain specific languages have been the focus of designers of applications in engineering
fields, while ontologies have been more the focus of Artificial Intelligence and Knowledge
Engineering [35]. Our goal is to identify ways to benefit from ontologies in DSLs, in spite of
their different origins.

Structure of the paper Section 2 introduces terms used in the explanation of the in-
vestigated papers and Section 3 gives an overview of the research questions, search process,
inclusion and exclusion criteria for papers and quality assessment attributes of the papers.
Then, Section 4 answers to the research questions in each paper individually. Section 5 gives
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grades to the read papers based on the way they answer the research questions. Section 6
describes papers that did not make it into the final batch of accepted papers, but that still
present interesting ideas on our subject. Then, Section 7 presents some statistics on the
selected papers. Finally, Section 8 makes a synthesis of the information obtained from the
research papers, Section 9 presents threats to the validity of the results obtained and Section
10 makes the final remarks.

2 Preliminary notes

In this section we concisely define ontologies and DSLs. Besides the definitions, there are
multiple languages, frameworks and architectures related to the subject of ontologies or DSLs.
We also give a short explanation to some notions that we encountered in the investigated
papers. We have separated the notions as being part of two different technological spaces.

A technical (technological) space, as defined by Kurtev et al. [32], is a “working context
with a set of associated concepts, body of knowledge, tools, required skills, and possibilities”.
A technological space has a user community around it that shares the knowledge, the literature
and that even organizes conferences and workshops. The two technical spaces that we are
using are the ontological technical space and the model driven architecture (MDA) technical
space. Ontologies are part of the ontological technical space, while DSLs are part of the MDA
technical space.

2.1 Ontologies

An ontology is, as defined by Gruber in 1993, an explicit specification of a shared conceptu-
alization [21]. The definition was extended in 1998 by Struder et al. [50] into: “An ontology
is a formal, explicit specification of a shared conceptualization”. The ‘shared’ part in the
definition refers to the fact that the knowledge represented by an ontology is understood and
agreed upon by most of the experts in a domain. The ‘conceptualization’ part in the defini-
tion refers to the fact that the ontology represents an abstract, simplified view of the world
described by the ontology. The formal, explicit part of the definition makes reference to the
fact that a language is needed to describe the concepts in the domain.

There are two types of ontologies: domain ontologies and upper ontologies. Domain
ontologies deal with real-world descriptors of business entities, while upper ontologies provide
“meta-level” concepts for the domain ontologies.

Ontologies are expressed in formal languages based on logic, so semantic reasoners behind
ontologies can also reason about the data besides representing it. Between the reasoning
capabilities of a semantic reasoner, we mention consistency checking, transitive relations,
value partitions, automated classification, inheritance or constraint checking [16].

Ontological technical space OWL [36] stands for Web Ontology Language and it is
part of the ontological technical space. One can represent terms in an ontology and make
interrelations between them. There are three increasingly expressive sublanguages within
OWL: OWL Lite, OWL DL and OWL Full. OWL is used for information that not only needs
to be presented to humans, but that also needs to be processed by applications. OWL is
based on description logics, a formal language used to represent knowledge and reason about
it. A knowledge representation system based on description logic is made of two components:
the TBox and the ABox. The TBox introduces the terminology of an application domain and
the ABox contains assertions about named individuals using terms of the vocabulary [7].

The Semantic Web Rule Language (SWRL) is a World Wide Web Consortium (W3C)
proposed language that combines OWL DL or OWL Lite sublanguages with the Unary/Binary
Datalog sublanguage of Rule Markup Language [27]. The combination is provided such that,
besides logic, rules can also be expressed in the language.

Finally, SPARQL [43] is a query language for RDF [12] recommended by W3C.

2.2 DSLs

Domain specific languages do not have a clear definition in the literature. They are defined as
“a computer programming language of limited expressiveness focused on a particular domain”
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by Martin Fowler [19]. As examples of DSLs, we mention regular expression languages and
SQL. To illustrate the difficulty in determining the fact that a certain programming language
or not, we mention that there are SQL variants nowadays that are Turing complete [34]. That
means that the limited expressiveness character does not apply to SQL anymore. But SQL
still remains focused on a particular domain, that of relational databases, and we can write
code in SQL in terms of database concepts and that makes it a DSL in out opinion.

There are multiple factors involved in the design of a good DSL: a syntax definition, a
proper semantics, tooling and eventually methodology and documentation [4]. These factors
have a different importance depending on the executability level of the DSL [37] and the type
of the DSL (internal or external) [19].

Mernik et al. [37] give detailed information on when and how to develop domain-specific
languages. They identified five stages in the DSL development process: decision, analysis,
design, implementation and deployment. They also identified patterns for the first four stages
of the DSL development process. For example, patterns that occur in the decision stage are the
need for: a new notation, a domain-specific analysis, verification, optimization, parallelization
and transformation, an automation task, a product line, a data structure representation, a
data structure traversal, etc. The DSL development process is seen as a hard endeavour
because of the domain and language development knowledge that it requires. The decision
to develop a new domain specific language is thus not easy. On the other hand, the language
workbenches are becoming more and more powerful and therefore, they decrease more and
more the effort put into the creation of a new DSL. Language workbenches are tools that help
developers in more efficiently defining and using DSLs [53]. They offer productive DSLs and
APIs for the definition of languages and their IDEs.

There are open issues in the DSL community [20, 55], issues that make it difficult for the
DSLs to be accepted and used in industry. The challenges that current DSL approaches face
are:

• tooling related: debuggers, testing engines;

• interoperability with other languages;

• formal semantics;

• learning curve;

• domain analysis;

• integration of graphical and textual editing;

• scalability;

• DSL evolution.

There is, in general, a strong relation between DSLs and model-based engineering. Kurtev
et al. [33] define DSLs as a set of coordinated models. That is why, even though some of the
studies selected for the systematic literature review do not mention DSLs, but only discuss
on the relation between DSLs and metamodeling, we took them into consideration.

MDA technical space In the MDA technical space, EMF (Eclipse Modelling Frame-
work) is a modelling framework and code generation facility for building Java applications
from model definitions [49]. EMF tries to bridge the gap between Java programmers and
modellers. The model used to represent models in EMF is Ecore [49].

OCL (Object Constraint Language) is a formal language used to specify invariant condi-
tions that must hold for the modelled system or queries over objects in the model [3]. OCL
is aligned with UML [47] and MOF [1] (thus with Ecore).

The architecture in metamodeling proposed by the Object Management Group (OMG)
has four layers. The M0 layer is the data layer, the M1 layer is the model layer, the M2 layer
is the metamodel layer and the M3 layer is the metametamodeling layer (MOF). An object
in M0 is an instance of a class in the M1 level, a class in M1 is said to be an instance of a
meta-class in the M2 layer and so on [26]. In the document of MOF 2.0 [1], it is emphasized
that the four-layered architecture is not rigid, one being able to have as many layers as it
wishes as long as their number is greater or equal to two. The fundamental concept is to
be able to navigate from an instance to its metaobject. The architectures with the leveled
meta-layers are also named meta-pyramids.
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One other notion, the Ontology Definition Metamodel (ODM) [2], is a specification for
enabling the formal grounding for representation, management, interoperability and appli-
cation of business semantics to the capabilities of MDA based software engineering. ODM
permits the modelling of an ontology and the interoperability with other modeling languages
(like UML). This is also part of the ontological technical space.

Finally, IQPL [8] is a graph query language for EMF models.

3 Method

The systematic literature review has been done according to the method proposed by Kitchen-
ham et al. [31]. The article suggests guidelines on how to evaluate and interpret all available
research related to particular research questions or topic areas. There are three phases in-
volved in a systematic literature review: planning the review, conducting the review and
reporting it.

3.1 Research questions

The research questions whose answers we look for in the read papers are listed next.

RQ1
What are the similarities and differences between ontologies and DSLs?

RQ2
What technique is used to apply ontology technologies in DSLs?

RQ3
Why did the authors choose to use ontologies in DSLs?

RQ4
What challenges faced by DSLs are solved/addressed by using ontologies?

3.2 Search process

We first searched for papers on ontologies and DSLs that answered all of the above questions
on the SpringerLink digital libraries. The limited amount of time of one month that we
had to perform the literature study was not enough to go through all the search results on
SpringerLink. We have also examined all the references in the selected papers so that we have
a greater chance of finding more relevant papers.

We have used the following strings to search the digital library: “ontology domain specific
language”, “ontology metamodeling” and “ontology model driven engineering”. We did not
use quotes in the search strings because we did not want the search to be too restrictive. Then,
we have also looked at the references of the selected papers to find more relevant papers.

3.3 Inclusion and exclusion criteria

Articles that answer in detail research question number two were considered for the study.
Research question number one is there to offer context to our investigation, while research
questions number three and four are natural follow-up question for the second research ques-
tion.

The articles’ fitness was judged based on their title’s, keywords’, abstract’s and conclusion’s
connection to research question number two. The first phase in selecting an article was to look
at the title and keywords. The next step for the articles selected in phase one, was to read their
abstract and their conclusions section. Then, finally, the entire article was read. Proceeding
from one phase to the other was done by judging the content based on research question
number two. The phases were conducted on one article per turn and we would proceed to a
following article in the search results of SpringerLink only after completely finishing with the
preceding article.

We considered papers that directly tackled the subject of using ontologies in DSLs ap-
proaches, but also those that tackle the subject of metamodeling and ontologies, metamod-
eling being strongly related to DSLs. SpringerLink includes both conference proceedings and
journal papers.
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We did not take into account papers that only tackle ontologies or only tackle DSLs. We
also did not consider papers that tackle the subject of developing ontologies using model
driven approaches.

3.4 Quality assessment

The quality assessment scores are giving the quality of the paper in what regards the level
of details on which research questions are described in the paper. Because of the correlated
research questions, the papers were expected to have high scores in general and that was
indeed the case.

The criteria are based on six quality assessment questions:

QA1
Does the paper address RQ1 with sufficient level of detail?

QA2
Does the paper address RQ2 with sufficient level of detail?

QA3
Does the paper address RQ3 with sufficient level of detail?

QA4
Does the paper address RQ4 with sufficient level of detail?

The questions were scored as follows:

• QA1: Y(Yes), the authors explicitly give both similarities and differences between on-
tologies and DSLs (at least one of each); P(Partly), the authors explicitly give only
similarities or only differences between ontologies and DSLs (at least one); N(No), the
authors don’t explicitly mention any of the similarities or differences between ontologies
and DSLs.

• QA2: Y(Yes), the technique for applying ontology technologies in DSLs is clearly de-
scribed; P(Partly), the technique is not described sufficiently; N(No), there is no mention
of any technique of applying ontology technologies in DSLs.

• QA3: Y(Yes), the reason for using the ontologies is clearly stated; P(Partly), the reason
is implicit; N(No), the reason cannot be deduced clearly.

• QA4: Y(Yes), the authors mention at least one addressed challenge; P(Partly), the
challenge addressed is implicit; N(No), there is no challenge addressed.

A “yes” scores one point, a “partly” scores half a point and a “no” scores a zero. This
scoring model is taken from an example of Kitchenham et al. [31].

4 Results

At times, there were several papers published on the same technique and by the same authors
(or partly the same authors). We have chosen a representative for that group and assessed
that representative.

4.1 Search results

In this subsection we assign an id to the investigated papers and we also mention the papers
that reside in the same group as the investigated papers. Papers in the same group describe
the same subject at different level of details. The group of papers is not exhaustive because
we did not do a systematic search for papers in the same group. Papers residing in a group
were discovered during the normal search process of papers on ontologies used in DSLs. The
results can be seen in Table 1.

4.2 Data collection

This subsection gives a small abstract of the studied research papers and answers to our
research questions.
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Paper Author and citation Papers describing the
same technique

P1 Walter et al. [55] [57], [42], [56], [48]
P2 Lortal et al. [35] -
P3 Tairas et al. [51] -
P4 Walter et al. [54] [48]
P5 Bräuer et al. [11] [10]
P6 Curé et al. [17] -
P7 Guizzardi et el. [23] [24], [22]
P8 Čeh et al. [13] [15], [14]
P9 Roser et al. [46] [45]
P10 Rahmani et al. [44] -
P11 Izsó et al. [28] -
P12 Parreiras et al. [40] -
P13 Erofeev et al. [18] -
P14 Kappel et al. [30] -

Table 1: Groups of papers touching the same technique.

4.2.1 P1

Walter et al. [55] describe an ontology-based framework for domain-specific languages, frame-
work that permits the definition of DSLs enriched with formal descriptions of classes. The
main idea of the paper is that ontologies and the automated reasoning that they provide help
in addressing major challenges faced by current DSL approaches.

RQ1 The authors point out that there is a mismatch on the underlying semantics of modelling
between UML-based class modelling and OWL because the former one adopts the closed
world assumption and OWL adopts the open world assumption by default.

RQ2 They integrate ontologies with DSLs at the metametalevel. They use KM3 [29] to
define the general structure of the language, OWL2 [38] to define the semantics and
OCL to define operations for calling the reasoning services. Reasoning services provide
means to derive facts that are not explicitly stated in the model. To provide ontology
reasoning, the DSL metamodel and domain model are transformed into a Description
Logics knowledge base (TBox and ABox).

By using this technique, they provided a new technical space which allows implementing
DSL metamodels with formal semantics, constraints and queries.

RQ3 Walter et al. [55] use ontologies in the development of a domain-specific languages’
framework because some of the main challenges of developing DSLs were motivation
for developing ontologies, like interoperability and formal semantics. This comes to the
benefit of the DSL designers and DSL users. The DSL designers profit from constraint
definition, formal representations and expressive languages. The DSL users profit from
progressive verification (verification of incomplete models), reasoning explanation, as-
sisted programming (suggesting concepts to the user and explaining inferences) and
different ways of describing constructs.

RQ4 The challenges that are partially solved by Walter et al.’s approach are those related to
formal semantics (by constraint definition), learning curve (by progressive verification,
suggestions of suitable domain concepts to be used, reasoning explanation and syntactic
sugar) and tooling (by progressive verfication and reasoning explanation).

4.2.2 P2

Lortal et al. [35] use robotic ontologies to develop robotic DSLs. The main idea of the paper
is to reuse ready-made information from an ontology to ease the building of DSLs.

RQ1 The authors note that ontologies and DSLs have the same building phases (except for
the fact that the implementation phase is not as emphasized for ontologies as much as
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for DSLs). Moreover, their development faces the same problems. At the same time,
ontologies and DSLs both structure data and information for application use.

On the other hand, models in ontologies are used for different applications than models
in DSLs (former ones are used in artificial intelligence and web application mostly and
the later ones are used in code generation, systems modelling, verification, simulation
etc.). At the same time, different technologies and tools are used for each.

RQ2 Ontologies were used during the requirements specification phase of the DSL by gath-
ering requirements when inspecting the ontologies and during the design of the domain
models of the DSL by using specific mappings between ontologies (OWL) and domain
models (UML class diagrams). For example, concepts in ontologies are mapped to classes
in domain models.

Thus, by extracting concepts that are specific to the domain from an ontology, the DSL
corresponds to domain concepts defined in the ontology.

RQ3 The rationale of using ontologies in DSLs consists in knowledge reuse. Lortal et al. [35]
represent the domain by inferring information from a knowledge base and capturing the
experts’ knowledge.

RQ4 The challenges in the DSL development process solved by this technique are those
related to easing domain analysis.

4.2.3 P3

Tairas et al. [51] use ontologies for the phase of domain analysis in a DSL.

RQ1 The authors note that both ontologies and DSLs contain the domain model vocabulary
and the interdependencies between the concepts in the domain.

RQ2 Starting from an existing ontology and based on its structure, a conceptual class di-
agram can be designed manually in an informal way. Thus, the information in the
ontology assists in designing the conceptual class diagram. Afterwards, the concep-
tual class diagram is being manually transformed into an initial context-free grammar
following a predefined collection of transformation rules.

At the same time, the instances of the ontology can be used to capture the commonalities
and variabilities in a DSL.

RQ3 Tairas et al. [51] used ontologies in the development of DSLs because the domain
analysis part in a DSL is not researched enough and ontologies can provide a structured
mechanism for domain analysis.

RQ4 The challenges in the DSL development process solved by this technique are those
related to domain analysis.

4.2.4 P4

Walter et al. [54] combine ontologies with two other DSLs at the metamodel level in order to
be able to express semantical constraints.

RQ1 The authors report on the equivalences that exist in the ontological technology space
and metamodeling technology space. For example, ‘cardinality’ in the ontological tech-
nological space is equivalent to ‘multiplicity’ in the metamodeling technological space.

RQ2 The technique used by the authors in this study to combine ontologies and DSLs is to
unify them at the metamodel level. In their case study, they do manual transformations
to create an integrated metamodel consisting of two DSLs and OWL. The integration
is done without any loss of information from any of the three metamodels. Then, they
project the integrated domain metamodel to a complete ontology for reasoning. This
step is also performed manually.

RQ3 They have done the integration at the metamodel level in order to be able to de-
fine domain models and semantics for model elements simultaneously. Ontologies are
also attractive because they provides the means for reasoning, querying and constraint
checking.

RQ4 The challenges in the DSL approaches addressed by this technique are the specifications
of formal semantics for the DSLs.
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4.2.5 P5

Bräuer et al. [11] create an upper ontology (see Section 1) software for software models
that permits integrity and consistency checking across the boundaries of individual models.
Integrity refers to conditions that need to hold in order for the software models to be in a
valid state.

RQ1 The authors emphasize, as a difference, the closed-world assumption of models in
MDA and the open-world assumption of ontologies. At the same time, the closed-world
assumption in models is closely related to nonmonotonic reasoning, while ontologies are
built on monotonic formalisms.

RQ2 The authors created an upper ontology so that they can integrate different domain-
specific modelling languages based on the upper ontology. For this, one needs to establish
a binding between the domain-specific modelling language and the concepts and rela-
tionships in the upper ontology. The upper ontology behaves like a semantic connector.

The presented method permits integrity and consistency checking for domain models.

RQ3 Ontologies were used in the development of DSLs because the model-driven engineering
approach advocates the modelling of a system from different viewpoints, that raising the
problem of interoperability between the DSLs used to express these views. That also
implies consistency checking between individual models and automatic generation of
model transformations. All these reasons lead to the decision to use ontologies in the
development of DSLs.

RQ4 The technique addresses the challenge of semantic relationships and interoperability
between DSLs.

4.2.6 P6

Curé et al. [17] focus on a domain specific language based on an ontology. The language is
called Ocelet and it is used to model dynamic landscaping.

RQ1 The authors note that the steps needed to describe an ontology are the same ones
involved in the development of a DSL: identify the domain problem, collect domain
knowledge and establish domain vocabulary and semantics. This leads to the possibility
of establishing relations between ontology concepts and DSL concepts. This point has
been tackled also in paper P2.

RQ2 The usage of ontologies in the DSL development process takes place in the first step.
The process starts with the development of OWL ontologies that are being verified for
consistency with reasoners. Then, the ontologies are automatically transformed into
Ocelet models. The transformation process can occur in the other direction too, as the
transformations are bijections. The Ocelet models are then merged into a global Ocelet
model in a manual fashion. This model is transformed into the structures of a reasoner
and a consistency checking is done on the global model. The inconsistencies discovered
need to be solved by hand as there is usually more than one solution possible.

RQ3 The ontologies were used in order to do local and global consistency checking on the
Ocelet models. All started from the fact that models in the Ocelet framework would be
developed by different persons. Reasoning is thus a prerequisite for the framework.

RQ4 The technique used in this study addresses the challenges of formal semantics in DSLs.

4.2.7 P7

Guizzardi et al. [23] present how can ontologies be used to evaluate and design a domain
specific visual modelling language.

RQ1 This question has not been approached in the article.

RQ2 The quality of a domain-specific modelling language with respect to a domain ontology
is guaranteed if an isomorphism between the ontology and the domain-specific modelling
language can be established. This isomorphism is guaranteed if the mapping between
a domain ontology and the domain language’s metamodel has a number of properties:
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soundness, completeness, laconicity and lucidity [24]. These properties are verified man-
ually in order to establish the quality of the domain language’s metamodel regarding
the ontology.

Using the domain ontology, one can, besides evaluating the quality of the domain-specific
modelling language with respect to the domain ontology, also see it as a starting point
for the design of a new modeling language in the given domain that is isomorphic to the
ontology.

RQ3 Using the domain ontology and keeping some mapping properties between the ontology
and the domain modelling language, the quality of the domain specific modelling lan-
guage can be guaranteed with respect to the ontology. The quality of the domain specific
modeling language represents the degree to which it ensures the proper representation
of the subject domain.

RQ4 The technique addresses the challenge of formal semantics in DSLs.

4.2.8 P8

Čeh et al. present a framework (Ontology2DSL) where a DSL grammar is automatically
created from an ontology and some transformation patterns.

RQ1 This question has not been approached in the article.

RQ2 The technique described in this paper starts from an ontology that is transformed
into an appropriate internal data structure of Ontology2DSL. On the data structure,
a series of transformation patterns are applied and a grammar for a DSL is obtained.
The irregularities found in the resulted grammar are solved either in the ontology, or
in the transformation patterns. The transformation patterns applied on the data struc-
ture include basic concept transformations (class hierarchy transformed into production
alternatives), generalization abstraction and so on.

In this technique, the ontology based domain analysis replaces classic domain analysis.

RQ3 The reason for choosing this technique is the fact that ontologies come with reasoning
and querying, which allows the validation of the ontology. A valid ontology reduces
errors during DSL development. The semantics in an ontology also help in establishing
the semantics of the DSL.

RQ4 The challenges in the DSL development process that this technique addresses are do-
main analysis and formal semantics.

4.2.9 P9

Using an upper ontology, Roser et al. [46] describe a framework for the automatic generation
and evolution of model transformations.

RQ1 This question has not been approached in the article.

RQ2 The technique starts from an upper ontology. Bindings to the required metamodels
are established with the upper ontology. The binding represents a semantic mapping of
the metamodels to their semantic concepts in the ontology. In order to perform model
transformations, an initial model transformation needs to be provided (or it can also be
automatically generated). The level of automation depends on the differences between
the employed metamodels. The automated process of model transformation generation
is based on the framework establishing several substitution proposals and choosing the
one that scores best (based on some heuristics). The framework supports the evolution
and reuse of existing mappings too.

RQ3 The reason for choosing to integrate ontologies in model transformations is because of
their reasoning capabilities that can help in automating the process of model transfor-
mation. This is in relation to the need to exchange information between organizations,
that boils down to interoperability support in modeling applications.

RQ4 The technique presented in this research paper addresses the challenges of formal se-
mantics and language interoperability in DSLs.
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4.2.10 P10

Rahmani et al. [44] describe a transformation from OWL to Ecore and OCL that can be
adjusted depending on the level on which we want the ontology to be reflected in the Ecore
model.

RQ1 The comparison is made between Ecore and OWL, so the comparison is more specific
then the comparison between ontologies and DSLs in general, but it is still relevant.
The differences between the two are the following:

• The open world assumption of OWL and the closed world assumption of Ecore.
This point has been tackled in other papers too.

• The high web compliance of OWL and the low web compliance of Ecore. Web
compliance refers to the degree to which a system is suitable to publish and exchange
knowledge on the web. This leads to different identification mechanisms in OWL
and Ecore.

• The unique name assumption in Ecore, that does not hold in OWL.

• Properties in OWL are first-class citizens, in contrast to their counterparts in Ecore,
the references. This means that properties in OWL can be applied between sev-
eral different pairs of classes, can be put in hierarchies and can be constrained, in
contrast with references in Ecore.

• The expressiveness of OWL and Ecore does not overlap. This means that there are
modeling constructs that can appear in OWL or Ecore, but not in the other.

• Ecore is built on four layers of modeling, while OWL is built only on two layers of
modeling, the TBox and the ABox.

• The intuition of cardinality is different for OWL and Ecore: 0..* can implicitly
mean 0..1 for ontologists.

• OWL benefits from an inference engine, while Ecore does not.

RQ2 The authors give transformations for every OWL modeling primitive to Ecore and OCL.
Some transformations are straightforward, like the OWL classes that can be generally
transformed directly to Ecore classes. Other transformations are more complex, like the
transformation of the property hierarchy of OWL into Ecore. The materialization of all
inferred implicit knowledge of the reasoner on property relations needs to be added in
Ecore. This is done using OCL constraints on the corresponding classes.

The transformation to Ecore and OCL can be done in a way that preserves the entire
ontology or only partly, depending on the types of transformations that the user chooses
to perform and their number. For example, a user may choose to skip the transformation
of property hierarchy. The transformations are adjustable at both meta and instance
level.

RQ3 The rationale behind the technique was to leverage existing knowledge captured in
ontologies to Ecore models. Thus, software engineers do not have to manually remodel
models written in OWL.

RQ4 The implied challenges in DSL development that the technique addresses are domain
analysis challenges.

4.2.11 P11

Izsó et al.[28] are describing the creation of domain specific modeling environments starting
from ontologies. As a result, a validation of both metamodel-level and instance level models
is done.

RQ1 The differences between ontologies and DSLs start from their different purposes. The
ontologies are used to capture the knowledge and the requirements in a domain in
very early phases of the design and the ontology reasoners are made for meta-level
validation. On the other hand, domain-specific language tools are made for increasing
the productivity of the developers and they use instance level validators like, for example,
OCL.
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RQ2 The technique consists in transforming OWL2 enriched with SWRL into EMF enriched
with IQPL (see Section 2). The process starts with an ontology where formal textual
requirements are captured and the meta-level consistency is checked. Then, a first
transformation is done between the OWL2 ontology to the EMF metamodel, followed
by a transformation of more complex OWL2 axioms into graph patterns. Finally, the
SWRL rules are mapped into graph patterns. The transformations occur only at the
meta-level (from TBox). EMF instances can be validated using EMF-IncQuery.

RQ3 The reason for the entire process was to be able to combine the benefits from both the
ontology world and the domain specific modelling world. Domain requirements captured
in the ontologies drive the development of domain specific modeling environments. At
the same time, ontologies are used for the consistency checking at the meta-level, while
EMF and IncQuery are used to validate instances.

RQ4 The challenges in DSL development that are addressed are those related to domain
analysis, and implicitly those related to formal semantics.

4.2.12 P12

Parreiras et al. [40] describe a method to integrate OWL and UML at the metamodel level.
The strengths and weaknesses of the two modelling approaches complement each other and
they are appropriate for specifying different aspects of the software systems. The approach is
implemented in a tool called TwoUse.

RQ1 The similarities and differences are not made in general for DSLs and ontologies, but
they are still relevant.

OWL ontologies and UML class-based modelling are similar with respect to classes,
associations, properties, packages, types, generalization and instances.

On the other hand, there are also differences between the two modelling approaches.
UML class-based modelling is able to capture only static specification of specialization
and generalization of classes and relationships, while OWL can do this dynamically as
well. At the same time, UML provides mechanisms to define dynamic behaviour, while
OWL does not.

RQ2 TwoUse uses UML profiles as concrete syntax and the profiles offer the possibility to
design both UML models and OWL ontologies. These UML profiles are then transformed
to TwoUse models, conforming to TwoUse metamodels, that represent the abstract
syntax. The TwoUse metamodel contains the OWL metamodel and some packages from
the UML2 metamodel. The OWL metamodel allows describing semantically expressive
classes and the UML2 metamodel allows describing behavioral and structural features
of classes. Further transformations take TwoUse models and produce OWL ontologies
and Java code.

The advantage of the TwoUse metamodel is the fact that it offers SPARQL-like expres-
sions for reasoning over OWL models.

RQ3 The reason for doing the integration between OWL and UML-class based modeling was
the complementary benefits that the two approaches bring. The result provides more
modeling power to the developers. The semantic of the models is also better expressed
with ontologies.

RQ4 The challenges addressed are related to formal semantics in DSLs.

4.2.13 P13

Erofeev et al. [18] describe a method to achieve semantic interoperability between different
technologies used in Ambient Intelligence.

RQ1 This question has not been approached in the article.

RQ2 They start with a core ontology of a reference technology. When an integration is
needed with other technologies conforming to different metamodels, they transform the
other metamodels into the core ontology metamodel. Subsequently, the models of the
other technologies will be automatically transformed into models corresponding to the
core ontology.
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RQ3 They have chosen to use ontologies in order to obtain semantic interoperability between
different technologies.

RQ4 The challenges addressed are those of interoperability.

4.2.14 P14

Kappel et al. [30] describe a method of lifting metamodels to ontologies as a way of integrating
modeling languages. The work is part of a bigger project, ModelCVS, whose purpose is to
create a framework for semi-automatic generation of transformation programs.

RQ1 Ontologies and metamodeling are created with different goals in mind, but they share
common ground in conceptual modeling in general. At the same time, metamodeling
is more implementation oriented, while ontologies are more knowledge representation
oriented.

RQ2 The technique employed in this paper has been coined as lifting. The approach is di-
vided into three steps. The first step is called conversion, during which, Ecore metamod-
els are transformed into ODM metamodels. This step introduces a change of formalism
and it takes care of the subtle semantic nuances that occur between Ecore and ODM
in the transformation. The result of this step is called a pseudo-ontology. In the next
step, this pseudo-ontology is refactored, the result being a semantically richer view of
the pseudo-ontology. Refactoring is needed to make explicit the concepts that are hid-
den in attributes or in association ends, as not all concepts are represented as first-class
citizens in metamodels. The third step consists in semantically enriching the ontology
with axioms with the purpose of integrating it with other ontologies.

The resulting ontologies are the main artifacts of semantic integration. The matching
between ontologies and a code generation step are the ingredients for obtaining model
transformations between the original metamodels.

RQ3 The starting point is again the need to use tools in combination. The approach was
chosen in order to do a conceptual integration between the metamodels via the creation
of ontologies. The ontologies created from the metamodels are able to capture more
concisely the mapping between them and the mapping between ontologies can further
be used to give rise to a bridging between the initial metamodels.

RQ4 The implicit challenge that the technique addresses is that of language/tool interoper-
ability.

5 Quality evaluation

In this section we present the scores of each of the investigated papers. As it was expected,
there is no “N” answer to question two in Table 2, because an answer of “Y” or “P” was
the inclusion criteria of the papers to be investigated. As can be seen from Table 2, all of
the papers explain the rationale of using the chosen technique (answer to question three) and
almost all explain explicitly what challenge in the development of DSLs they tackle. This is
to be expected, as questions three and four come as natural follow-ups of question two. At
the same time, there is only one paper discussing both differences and similarities between
ontologies and DSLs. This question being a question offering context to the subject, no answer
to this question was not an exclusion criteria. Given these explanations, it was to be expected
that the total scores of the papers would be similar.

6 Other relevant papers

The papers we are briefly discussing next offer small overviews on the usage of ontologies in
metamodeling or DSLs, or present an idea (without sufficient level of detail and experimen-
tation) on how the integration could take place. These papers are papers that were discarded
only in the last phase, after reading their content. So, as with the papers selected for the
systematic literature review, we do not claim that this list is exhaustive.

Bézivin et al. [9] propose building bridges between the software engineering and ontology
engineering technical spaces at the M3 level. To illustrate the concept, the authors suggested
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ID QA1 QA2 QA3 QA4 Total score
P1 P Y Y Y 3.5
P2 Y P Y Y 3.5
P3 P Y Y Y 3.5
P4 P Y Y Y 3.5
P5 P Y Y Y 3.5
P6 P P Y P 2.5
P7 N Y Y Y 3
P8 N Y Y Y 3
P9 N Y Y Y 3
P10 P Y Y P 3
P11 P Y Y Y 3.5
P12 P Y Y Y 3.5
P13 N P Y Y 2.5
P14 P Y Y Y 3.5

Table 2: Scores of investigated papers.

bridging the MOF-based ontology language ODM with OWL. The two of them being con-
ceptual technical spaces, they are bridged through a concrete technical space (spaces that
have techniques with more material representations of conceptual elements), the EBNF tech-
nical space. The transformations occurring at the M3 level between different technical spaces
(MOF to EBNF, and Metametaontology to EBNF, and vice versa in both cases) are called
projectors. The transformations occurring at the M3 level can then be pushed down to the
M2 level. This method then saves one from doing 2N different mappings for N metamodels
at the M2 level instead of one mapping at the M3 level. The problem is that the method is
only mentioned in the paper and not detailed and exemplified.

Atkinson [6] argues the case for core level unification for MDA and ontology representation
languages. This comes from the observation that MDA and ontology description languages
are not inherently distinct technologies, UML being able to capture the knowledge captured
in ontology representation languages by “programming around” features that are not directly
supported. The conclusion he draws is that MDA should not be extended to add ontology
features to the infrastructure through ODM, but a unified language should be developed as
the core of MDA.

Henderson-Sellers [26] is identifying a couple of similarities and differences between on-
tologies and metamodels in order to provide a bridge between the two. Henderson-Sellers
also emphasizes two kinds of ontologies: the domain ontologies and the meta-ontologies or
foundational ontologies. The author discusses on the different meta-levels where ontology
concepts are used in literature. In some publications cited in the paper, the authors regard
an ontology as a M1 model, while others regard it as a M2 model.

Aßmann et al. [5] try to clarify the role of ontologies in MDE. They start from the
observation that models in MDA are mostly prescriptive, while ontologies are descriptive
models. They then describe an ontology-aware meta-pyramid, where upper-ontologies live at
the M2 metamodel level, and domain ontologies live at the M1 model level. This meta-pyramid
brings a series of conceptual benefits, like a common vocabulary for the software architect,
customer and domain expert or a more concrete model-driven software development with
ontologies as analysis models.

Parreiras et al. [41] conduct a domain analysis on the combination of metamodeling
technical space and ontology technical space. The result of the domain analysis is a feature
model of the existing approaches in literature. The discussed features consist of language,
formalism, data model, reasoning, querying, rules, transformation, mediation and modeling
level. The mediation process (reconciling different models) is classified in mapping, integra-
tion and composition. Another feature we are more interested in is the transformation feature
with its three aspects: semantical, syntactical and directionality. Furthermore, the authors
classify the approaches that transform the metamodeling technical space into the ontological
technical space. These transformations take place for model checking (the ontology resulted
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from the transformation is checked for consistency, class hierarchy etc.), model enrichment
(transform model to ontology, derive new facts and transform back to model), ontology mod-
eling (from model to ontology via transformation rules) and hybrid approaches (the TwoUse
approach with composition between source metamodel and target ontology and bidirectional
transformation with querying).

Staab et al. [48] classify methods of model driven engineering with ontology technologies.
They distinguish between language bridges and model bridges among software languages
and ontologies. The language bridges occur at the M3 level in the form of integrations or
transformations. The model bridges occur at the M2 level also in the form of integrations
and transformations. These methods appear also in our literature research.

7 Observations

In this section we present some statistics on the 14 investigated papers. The oldest paper
we have found is from 2002, while the newest ones are from 2012. Most of the papers were
published in 2006 (5 papers), 2009 (4 papers), 2010 (8 papers) and 2011 (4 papers). This
shows quite some interest in the subject in the last years. In what regards the journals
these papers were published in, there is no major trend. The journals where these papers
were published include “Software and Systems Modelling”, “Computer Science and Informa-
tion Systems”, “Data and Knowledge Engineering” and “Journal of Systems and Software”.
There was also a workshop organized between 2008 and 2010 on the subject (workshop on
transforming and weaving ontologies in model driven engineering). Then, the conferences
were the papers were published include conferences on Semantic Web subjects (“Reasoning
Web Semantic Technologies for Software Engineering”, “Workshop on Semantic Web Enabled
Software Engineering” etc.) and Model Driven Engineering subjects (“Ontologies for Software
Engineering and Software Technology”, “Models in Software Engineering”, etc.).

Most of the research done on ontologies used in the development of DSLs is conducted in
Europe in countries such as Germany, Slovenia, France, Austria, the Netherlands, Hungary
and Spain. On the other hand, Springer is more Europe-based, so it might partially explain
this outcome.

8 Discussion

In this section we emphasize the main trends in the methods of utilizing ontologies in DSLs.
As an introduction to our main research question, the techniques of introducing ontologies

to DSLs, we first look at the identified similarities and differences between ontologies and
DSLs. This comparison can give us an impression on what the benefits of a combined scheme
could be and how hard could be to combine the two.

The similarities between ontologies and DSLs consist of the fact that they both have
the same building phases (with different focuses) (P2, P6), they both structure data for
application use (P2), they present a domain model vocabulary and the relations between the
concepts in the domain (P3, P14) and they exhibit equivalence relationships between their
main concepts (P4, P6, P12).

The differences that exist between the ontologies and the DSLs consist of different applica-
tion domains (P2, P10, P11, P14), the closed world assumption and nonmonotonic reasoning
associated with models and the open-world assumption and monotonic reasoning associated
to ontologies (P1, P5, P10) and the different technologies and tools used by each (P2, P10,
P12).

The techniques employed to leverage DSLs by the usage of ontologies are:

• integration at the M3 model (P1)

• integration at the M2 model (P4)

• mapping from ontology to M2 model (P2, P3, P6, P8, P10, P11)

• mapping from M2 model to ontology (P5, P7, P9, P12, P13, P14)

• ontology inspection to gather requirements for DSLs (P2)
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The reasons for which ontologies were considered to be used in DSLs in the first place are
the need of interoperability between tools / DSL views / technologies, the knowledge reuse,
the reasoning and querying capabilities behind ontologies, the complementary benefits of the
two approaches and the need for consistency checking at the metamodel level.

The challenges in the DSL approaches that appear to be addressed and partially solved by
using ontologies in DSLs are those related to formal semantics, interoperability between tools,
domain analysis, learning curve of the DSL and tooling (through progressive verification and
reasoning explanations).

As a possible direction to explore, we suggest that an in-depth study of the productivity
gains of using ontologies in the development of DSLs should be made. None of the papers
considered treats this subject. As a result of this sort of studies, engineers could decide
whether it is profitable to start with an ontology when building a DSL.

One point that was not clear was how easily can interoperability between tools / DSLs be
achieved using ontologies. There were no examples of considerable sized tools that would be
made interoperable using ontologies. Such an example and a report on the amount of work
to make it work would make clear the feasibility of such an approach.

9 Threats to validity

There are also some threats to the validity of the conclusions drawn. The first threat is the fact
that not all search results on SpringerLink were examined. This was due to time limitation.
On the other hand, taking into account that all the references of the selected studies found
during the one month period were covered, we can conclude that we covered a good part of
the literature. Other threat to the validity could be the fact that we only looked at search
results on SpringerLink. This should not be a problem, because a quick search and glance on
the first results given on the ACM and IEEE websites did not bring anything new.

10 Conclusions

The complementary benefits of DSLs and ontology technologies seem to make them suitable
for combination. DSLs’ development could mostly profit from the reasoning capabilities sup-
ported by the ontologies and the concepts that are captured and related in an ontology. On
the other hand, the question is whether the benefits brought justify the effort put in the com-
bination of ontologies and DSLs. That is because transformations or integrations between
ontologies and DSL metamodels/models seems not to be trivial in most of the techniques
described. Although some techniques involve a certain amount of automation, manual work
cannot be removed completely from these processes in most of the cases. That is also due to
the semantic gap between DSL metamodels and ontologies [52].

Although the research of this subject only took one month, we consider that we managed
to cover a good part of the literature. That is because at the end of this month we did not
have any paper that seemed to be suitable to our investigation (from the references of the
selected studies and the other papers in their group).
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