391 research outputs found

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Towards Bayesian-Based Trust Management for Insider Attacks in Healthcare Software-Defined Networks

    Get PDF
    © 2004-2012 IEEE. The medical industry is increasingly digitalized and Internet-connected (e.g., Internet of Medical Things), and when deployed in an Internet of Medical Things environment, software-defined networks (SDNs) allow the decoupling of network control from the data plane. There is no debate among security experts that the security of Internet-enabled medical devices is crucial, and an ongoing threat vector is insider attacks. In this paper, we focus on the identification of insider attacks in healthcare SDNs. Specifically, we survey stakeholders from 12 healthcare organizations (i.e., two hospitals and two clinics in Hong Kong, two hospitals and two clinics in Singapore, and two hospitals and two clinics in China). Based on the survey findings, we develop a trust-based approach based on Bayesian inference to figure out malicious devices in a healthcare environment. Experimental results in either a simulated and a real-world network environment demonstrate the feasibility and effectiveness of our proposed approach regarding the detection of malicious healthcare devices, i.e., our approach could decrease the trust values of malicious devices faster than similar approaches

    Detection of encrypted traffic generated by peer-to-peer live streaming applications using deep packet inspection

    Get PDF
    The number of applications using the peer-to-peer (P2P) networking paradigm and their popularity has substantially grown over the last decade. They evolved from the le-sharing applications to media streaming ones. Nowadays these applications commonly encrypt the communication contents or employ protocol obfuscation techniques. In this dissertation, it was conducted an investigation to identify encrypted traf c ows generated by three of the most popular P2P live streaming applications: TVUPlayer, Livestation and GoalBit. For this work, a test-bed that could simulate a near real scenario was created, and traf c was captured from a great variety of applications. The method proposed resort to Deep Packet Inspection (DPI), so we needed to analyse the payload of the packets in order to nd repeated patterns, that later were used to create a set of SNORT rules that can be used to detect key network packets generated by these applications. The method was evaluated experimentally on the test-bed created for that purpose, being shown that its accuracy is of 97% for GoalBit.A popularidade e o número de aplicações que usam o paradigma de redes par-a-par (P2P) têm crescido substancialmente na última década. Estas aplicações deixaram de serem usadas simplesmente para partilha de ficheiros e são agora usadas também para distribuir conteúdo multimédia. Hoje em dia, estas aplicações têm meios de cifrar o conteúdo da comunicação ou empregar técnicas de ofuscação directamente no protocolo. Nesta dissertação, foi realizada uma investigação para identificar fluxos de tráfego encriptados, que foram gerados por três aplicações populares de distribuição de conteúdo multimédia em redes P2P: TVUPlayer, Livestation e GoalBit. Para este trabalho, foi criada uma plataforma de testes que pretendia simular um cenário quase real, e o tráfego que foi capturado, continha uma grande variedade de aplicações. O método proposto nesta dissertação recorre à técnica de Inspecção Profunda de Pacotes (DPI), e por isso, foi necessário 21nalisar o conteúdo dos pacotes a fim de encontrar padrões que se repetissem, e que iriam mais tarde ser usados para criar um conjunto de regras SNORT para detecção de pacotes chave· na rede, gerados por estas aplicações, afim de se poder correctamente classificar os fluxos de tráfego. Após descobrir que a aplicação Livestation deixou de funcionar com P2P, apenas as duas regras criadas até esse momento foram usadas. Quanto à aplicação TVUPlayer, foram criadas várias regras a partir do tráfego gerado por ela mesma e que tiveram uma boa taxa de precisão. Várias regras foram também criadas para a aplicação GoalBit em que foram usados quatro cenários: com e sem encriptação usando a opção de transmissão tracker, e com e sem encriptação usando a opção de transmissão sem necessidade de tracker (aqui foi usado o protocolo Kademlia). O método foi avaliado experimentalmente na plataforma de testes criada para o efeito, sendo demonstrado que a precisão do conjunto de regras para a aplicação GoallBit é de 97%.Fundação para a Ciência e a Tecnologia (FCT

    Application of advanced machine learning techniques to early network traffic classification

    Get PDF
    The fast-paced evolution of the Internet is drawing a complex context which imposes demanding requirements to assure end-to-end Quality of Service. The development of advanced intelligent approaches in networking is envisioning features that include autonomous resource allocation, fast reaction against unexpected network events and so on. Internet Network Traffic Classification constitutes a crucial source of information for Network Management, being decisive in assisting the emerging network control paradigms. Monitoring traffic flowing through network devices support tasks such as: network orchestration, traffic prioritization, network arbitration and cyberthreats detection, amongst others. The traditional traffic classifiers became obsolete owing to the rapid Internet evolution. Port-based classifiers suffer from significant accuracy losses due to port masking, meanwhile Deep Packet Inspection approaches have severe user-privacy limitations. The advent of Machine Learning has propelled the application of advanced algorithms in diverse research areas, and some learning approaches have proved as an interesting alternative to the classic traffic classification approaches. Addressing Network Traffic Classification from a Machine Learning perspective implies numerous challenges demanding research efforts to achieve feasible classifiers. In this dissertation, we endeavor to formulate and solve important research questions in Machine-Learning-based Network Traffic Classification. As a result of numerous experiments, the knowledge provided in this research constitutes an engaging case of study in which network traffic data from two different environments are successfully collected, processed and modeled. Firstly, we approached the Feature Extraction and Selection processes providing our own contributions. A Feature Extractor was designed to create Machine-Learning ready datasets from real traffic data, and a Feature Selection Filter based on fast correlation is proposed and tested in several classification datasets. Then, the original Network Traffic Classification datasets are reduced using our Selection Filter to provide efficient classification models. Many classification models based on CART Decision Trees were analyzed exhibiting excellent outcomes in identifying various Internet applications. The experiments presented in this research comprise a comparison amongst ensemble learning schemes, an exploratory study on Class Imbalance and solutions; and an analysis of IP-header predictors for early traffic classification. This thesis is presented in the form of compendium of JCR-indexed scientific manuscripts and, furthermore, one conference paper is included. In the present work we study a wide number of learning approaches employing the most advance methodology in Machine Learning. As a result, we identify the strengths and weaknesses of these algorithms, providing our own solutions to overcome the observed limitations. Shortly, this thesis proves that Machine Learning offers interesting advanced techniques that open prominent prospects in Internet Network Traffic Classification.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Botnet Detection Using Graph Based Feature Clustering

    Get PDF
    Detecting botnets in a network is crucial because bot-activities impact numerous areas such as security, finance, health care, and law enforcement. Most existing rule and flow-based detection methods may not be capable of detecting bot-activities in an efficient manner. Hence, designing a robust botnet-detection method is of high significance. In this study, we propose a botnet-detection methodology based on graph-based features. Self-Organizing Map is applied to establish the clusters of nodes in the network based on these features. Our method is capable of isolating bots in small clusters while containing most normal nodes in the big-clusters. A filtering procedure is also developed to further enhance the algorithm efficiency by removing inactive nodes from bot detection. The methodology is verified using real-world CTU-13 and ISCX botnet datasets and benchmarked against classification-based detection methods. The results show that our proposed method can efficiently detect the bots despite their varying behaviors

    Detection of Spammer Based On the User Recommendation Report in Web Mining

    Get PDF
    ABSTRACT: Online video sharing systems, out of that YouTube is that the most well-liked, offer options that permit users to post a video as a response to a discussion topic. These options open opportunities for users to introduce impure content, or just pollution, into the system. Therefore we discover for example, spammers could post associate unrelated video as response to a well-liked one, aiming at increasing the chance of the response being viewed by a bigger range of users. We have a tendency to propose the users Video Recommendation (UVR) system in cloud computing atmosphere. Video attributes capture specific properties of the videos uploaded by the supplier We employing a novel rule to as ALAC (active lazy associative classifier).Content pollution could jeopardize the trust of users on the system we offer a characterization of content, individual, and social attributes that facilitate distinguish every user category. Classification approach succeeds at separating spammers and promoters video search systems is fooled by malicious attacks that depends on a good selective sampling strategy to traumatize the foremost favorite Videos. This work provides a high flexibility, high reliability, low-level transparency, security features. Proposed tag cloud recommendation approaches

    FINGERPRINTING MALICIOUS IP TRAFFIC

    Get PDF
    In the new global economy, cyber-attacks have become a central issue. The detection, mitigation and attribution of such cyber-attacks require efficient and practical techniques to fingerprint malicious IP traffic. By fingerprinting, we refer to: (1) the detection of malicious network flows and, (2) the attribution of the detected flows to malware families that generate them. In this thesis, we firstly address the detection problem and solve it by using a classification technique. The latter uses features that exploit only high-level properties of traffic flows and therefore does not rely on deep packet inspection. As such, our technique is effective even in the presence of encrypted traffic. Secondly, whenever a malicious flow is detected, we propose another technique to attribute such a flow to the malware family that generated it. The attribution technique is built upon k-means clustering, sequence mining and Pushdown Automata (PDAs) to capture the network behaviors of malware family groups. Indeed, the generated PDAs are actually network signatures for malware family groups. Our results show that the proposed malicious detection and attribution techniques achieve high accuracy with low false (positive and negative) alerts
    corecore