7 research outputs found

    Rapid Transfer Alignment of SINS with Measurement Packet Dropping based on a Novel Suboptimal Estimator

    Get PDF
    Transfer alignment (TA) is an important step for strapdown inertial navigation system (SINS) starting from a moving base, which utilises the information proposed from the higher accurate and well performed master inertial navigation system. But the information is often delayed or even lost in real application, which will seriously affect the accuracy of TA. This paper models the stochastic measurement packet dropping as an independent identically distributed (IID) Bernoulli random process, and introduces it into the measurement equation of rapid TA, and the influence of measurement packet dropping is analysed. Then, it presents a suboptimal estimator for the estimation of the misalignment in TA considering the random arrival of the measurement packet. Simulation has been done for the performance comparison about the suboptimal estimator, standard Kalman filter and minimum mean squared estimator. The results show that the suboptimal estimator has better performance, which can achieve the best TA accuracy

    Navigation System Design with Application to the Ares I Crew Launch Vehicle and Space Launch Systems

    Get PDF
    For a launch vehicle, the Navigation System is responsible for determining the vehicle state and providing state and state derived information for Guidance and Controls. The accuracy required of the Navigation System by the vehicle is dependent upon the vehicle, vehicle mission, and other consideration, such as impact foot print. NASAs Ares I launch vehicle and SLS are examples of launch vehicles with are/where to employ inertial navigation systems. For an inertial navigation system, the navigation system accuracy is defined by the inertial instrument errors to a degree determined by the method of estimating the initial navigation state. Utilization of GPS aiding greatly reduces the accuracy required in inertial hardware to meet the same accuracy at orbit insertion. For a launch vehicle with lunar bound payload, the navigation accuracy can have large implications on propellant required to correct for state errors during trans-lunar injection

    Biologically Inspired Vision and Control for an Autonomous Flying Vehicle

    Get PDF
    This thesis makes a number of new contributions to control and sensing for unmanned vehicles. I begin by developing a non-linear simulation of a small unmanned helicopter and then proceed to develop new algorithms for control and sensing using the simulation. The work is field-tested in successful flight trials of biologically inspired vision and neural network control for an unstable rotorcraft. The techniques are more robust and more easily implemented on a small flying vehicle than previously attempted methods. ¶ ..

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Evolutionary robotics in high altitude wind energy applications

    Get PDF
    Recent years have seen the development of wind energy conversion systems that can exploit the superior wind resource that exists at altitudes above current wind turbine technology. One class of these systems incorporates a flying wing tethered to the ground which drives a winch at ground level. The wings often resemble sports kites, being composed of a combination of fabric and stiffening elements. Such wings are subject to load dependent deformation which makes them particularly difficult to model and control. Here we apply the techniques of evolutionary robotics i.e. evolution of neural network controllers using genetic algorithms, to the task of controlling a steerable kite. We introduce a multibody kite simulation that is used in an evolutionary process in which the kite is subject to deformation. We demonstrate how discrete time recurrent neural networks that are evolved to maximise line tension fly the kite in repeated looping trajectories similar to those seen using other methods. We show that these controllers are robust to limited environmental variation but show poor generalisation and occasional failure even after extended evolution. We show that continuous time recurrent neural networks (CTRNNs) can be evolved that are capable of flying appropriate repeated trajectories even when the length of the flying lines are changing. We also show that CTRNNs can be evolved that stabilise kites with a wide range of physical attributes at a given position in the sky, and systematically add noise to the simulated task in order to maximise the transferability of the behaviour to a real world system. We demonstrate how the difficulty of the task must be increased during the evolutionary process to deal with this extreme variability in small increments. We describe the development of a real world testing platform on which the evolved neurocontrollers can be tested

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number
    corecore