337,182 research outputs found

    XinuPi3: Teaching Multicore Concepts Using Embedded Xinu

    Get PDF
    As computer platforms become more advanced, the need to teach advanced computing concepts grows accordingly. This paper addresses one such need by presenting XinuPi3, a port of the lightweight instructional operating system Embedded Xinu to the Raspberry Pi 3. The Raspberry Pi 3 improves upon previous generations of inexpensive, credit card-sized computers by including a quad-core, ARM-based processor, opening the door for educators to demonstrate essential aspects of modern computing like inter-core communication and genuine concurrency. Embedded Xinu has proven to be an effective teaching tool for demonstrating low-level concepts on single-core platforms, and it is currently used to teach a range of systems courses at multiple universities. As of this writing, no other bare metal educational operating system supports multicore computing. XinuPi3 provides a suitable learning environment for beginners on genuinely concurrent hardware. This paper provides an overview of the key features of the XinuPi3 system, as well as the novel embedded system education experiences it makes possible

    AN ANALYSIS OF ALTERNATIVE NET PRESENT VALUE CAPITAL INVESTMENT DECISION MODELS

    Get PDF
    We have found that the disagreement between Returns-to-Assets (RTA) and Returns-to-Equity (RTE) proponents is not confined to agricultural economics. Depending on the course they are taking and the accompanying text, students are likely to learn that there is a "right" way to calculate Net Present Values (NPVs), either by the RTA method or the RTE method. In most cases, only one of the two methods is discussed and illustrated with numerical examples. Less common are texts that compare the two methods, discuss their underlying assumptions, or show how the NPVs from the two methods can be reconciled. The paper is organized as follows. The first section of the main body of the paper provides a comparative overview of the RTA and RTE methods; the second section discusses our textbook survey; the final section offers our conclusions. Appendix A contains a brief history of the theoretical development of discounted cash flow (DCF) concepts. Appendix B contains additional details on defining components of NPV models. Finally, Appendix C is a listing of some additional references.Research Methods/ Statistical Methods,

    Development of an ontology supporting failure analysis of surface safety valves used in Oil & Gas applications

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.The project describes how to apply Root Cause Analysis (RCA) in the form of a Failure Mode Effect and Criticality Analysis (FMECA) on hydraulically actuated Surface Safety Valves (SSVs) of Xmas trees in oil and gas applications, in order to be able to predict the occurrence of failures and implement preventive measures such as Condition and Performance Monitoring (CPM) to improve the life-span of a valve and decrease maintenance downtime. In the oil and gas industry, valves account for 52% of failures in the system. If these failures happen unexpectedly it can cause a lot of problems. Downtime of the oil well quickly becomes an expensive problem, unscheduled maintenance takes a lot of extra time and the lead-time for replacement parts can be up to 6 months. This is why being able to predict these failures beforehand is something that can bring a lot of benefits to a company. To determine the best course of action to take in order to be able to predict failures, a FMECA report is created. This is an analysis where all possible failures of all components are catalogued and given a Risk Priority Number (RPN), which has three variables: severity, detectability and occurrence. Each of these is given a rating between 0 and 10 and then the variables are multiplied with each other, resulting in the RPN. The components with an RPN above an acceptable risk level are then further investigated to see how to be able to detect them beforehand and how to mitigate the risk that they pose. Applying FMECA to the SSV mean breaking the system down into its components and determining the function, dependency and possible failures. To this end, the SSV is broken up into three sub-systems: the valve, the actuator and the hydraulic system. The hydraulic system is the sub-system of the SSV responsible for containing, transporting and pressurizing of the hydraulic fluid and in turn, the actuator. It also contains all the safety features, such as pressure pilots, and a trip system in case a problem is detected in the oil line. The actuator is, as the name implies, the sub-system which opens and closes the valve. It is made up of a number of parts such as a cylinder, a piston and a spring. These parts are interconnected in a number of ways to allow the actuator to successfully perform its function. The valve is the actual part of the system which interacts with the oil line by opening and closing. Like the actuator, this sub-system is broken down into a number of parts which work together to perform its function. After breaking down and defining each subsystem on a functional level, a model was created using a functional block diagram. Each component also allows for the defining of dependencies and interactions between the different components and a failure diagram for each component. This model integrates the three sub-systems back into one, creating a complete picture of the entire system which can then be used to determine the effects of different failures in components to the rest of the system. With this model completed we created a comprehensive FMECA report and test the different possible CPM solutions to mitigate the largest risks

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes

    Development and Validation of Functional Model of a Cruise Control System

    Full text link
    Modern automobiles can be considered as a collection of many subsystems working with each other to realize safe transportation of the occupants. Innovative technologies that make transportation easier are increasingly incorporated into the automobile in the form of functionalities. These new functionalities in turn increase the complexity of the system framework present and traceability is lost or becomes very tricky in the process. This hugely impacts the development phase of an automobile, in which, the safety and reliability of the automobile design should be ensured. Hence, there is a need to ensure operational safety of the vehicles while adding new functionalities to the vehicle. To address this issue, functional models of such systems are created and analysed. The main purpose of developing a functional model is to improve the traceability and reusability of a system which reduces development time and cost. Operational safety of the system is ensured by analysing the system with respect to random and systematic failures and including safety mechanism to prevent such failures. This paper discusses the development and validation of a functional model of a conventional cruise control system in a passenger vehicle based on the ISO 26262 Road Vehicles - Functional Safety standard. A methodology for creating functional architectures and an architecture of a cruise control system developed using the methodology are presented.Comment: In Proceedings FESCA 2016, arXiv:1603.0837

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table
    • …
    corecore