9,467 research outputs found

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Analysing the IoT Ecosystem: the Barriers to Commercial Traction

    Get PDF
    The Internet of Things (IoT) has come to mean all things to all people. Combined with the huge amount of interest and investment into this emerging opportunity, there is a real possibility that the arising confusion will hamper adoption by the mass market. This paper proposes a phased model of the IoT ecosystem development, starting with infrastructure establishment, and culminating in exploitation through the creation of new companies and business models. It does not attempt to quantify the emerging opportunities, relying instead on the many publications dedicated to detailed market analysis. The focus is to place the opportunities in context, demonstrate the importance of sensor system technology underpinning the emerging IoT revolution, and suggests areas where Europe can establish a leadership position. Throughout the paper, examples of the likely protagonists have been used by way of illustration

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    The Case for a Factored Operating System (fos)

    Get PDF
    The next decade will afford us computer chips with 1,000 - 10,000 cores on a single piece of silicon. Contemporary operating systems have been designed to operate on a single core or small number of cores and hence are not well suited to manage and provide operating system services at such large scale. Managing 10,000 cores is so fundamentally different from managing two cores that the traditional evolutionary approach of operating system optimization will cease to work. The fundamental design of operating systems and operating system data structures must be rethought. This work begins by documenting the scalability problems of contemporary operating systems. These studies are used to motivate the design of a factored operating system (fos). fos is a new operating system targeting 1000+ core multicore systems where space sharing replaces traditional time sharing to increase scalability. fos is built as a collection of Internet inspired services. Each operating system service is factored into a fleet of communicating servers which in aggregate implement a system service. These servers are designed much in the way that distributed Internet services are designed, but instead of providing high level Internet services, these servers provide traditional kernel services and manage traditional kernel data structures in a factored, spatially distributed manner. The servers are bound to distinct processing cores and by doing so do not fight with end user applications for implicit resources such as TLBs and caches. Also, spatial distribution of these OS services facilitates locality as many operations only need to communicate with the nearest server for a given service
    • …
    corecore