20,817 research outputs found

    Information-theoretic measures as a generic approach to human-robot interaction : Application in CORBYS project

    Get PDF
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/AuthorThe objective of the CORBYS project is to design and implement a robot control architecture that allows the integration of high-level cognitive control modules, such as a semantically-driven self-awareness module and a cognitive framework for anticipation of, and synergy with, human behaviour based on biologically-inspired information-theoretic principles. CORBYS aims to provide a generic control architecture to benefit a wide range of applications where robots work in synergy with humans, ranging from mobile robots such as robotic followers to gait rehabilitation robots. The behaviour of the two demonstrators, used for validating this architecture, will each be driven by a combination of task specific algorithms and generic cognitive algorithms. In this paper we focus on the generic algorithms based on information theoryFinal Accepted Versio

    N<i>e</i>XOS – the design, development and evaluation of a rehabilitation system for the lower limbs

    Get PDF
    Recent years have seen the development of a number of automated and semi-automated systems to support for physiotherapy and rehabilitation. These deploy a range of technologies from highly complex purpose built systems to approaches based around the use of industrial robots operating either individually or in combination for applications ranging from stroke to mobility enhancement. The NeXOS project set out to investigate an approach to the rehabilitation of the lower limbs in a way which brought together expertise in engineering design and mechatronics with specilists in rehabilitation and physiotherapy. The resulting system has resulted in a prototype of a system which is capable in operating in a number of modes from fully independent to providing direct support to a physiotherapist during manipulation of the limb. Designed around a low cost approach for an implementation ultimately capable of use in a patients home using web-baased strategies for communication with their support team, the prototype NeXOS system has validated the adoption of an integrated approach to its development. The paper considers this design and development process and provides the results from the initial tests with physiotherapists to establish the operational basis for clinical implementation

    Developing rehabilitation robots for the brain injured

    Get PDF

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    An Industrial Robot-Based Rehabilitation System for Bilateral Exercises

    Get PDF
    Robot-assisted rehabilitation devices can provide intensive and precise task-based training that differs from clinician-facilitated manual therapy. However, industrial robots are still rarely used in rehabilitation, especially in bilateral exercises. The main purpose of this research is to develop and evaluate the functionality of a bilateral upper-limb rehabilitation system based on two modern industrial robots. A `patient-cooperative' control strategy is developed based on an adaptive admittance controller, which can take into account patients' voluntary efforts. Three bilateral training protocols (passive, active, and self) are also proposed based on the system and the control strategy. Experimental results from 10 healthy subjects show that the proposed system can provide reliable bilateral exercises: the mean RMS values for the master error and the master-slave error are all less than 1.00 mm and 1.15 mm respectively, and the mean max absolute values for the master error and the master-slave error are no greater than 6.11 mm and 6.73 mm respectively. Meanwhile, the experimental results also confirm that the recalculated desired trajectory can present the voluntary efforts of subjects. These experimental findings suggest that industrial robots can be used in bilateral rehabilitation training, and also highlight the potential applications of the proposed system in further clinical practices

    Designing rehabilitation robots for the brain injured

    Get PDF

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201
    • …
    corecore