4 research outputs found

    Real-time wireless, contactless and coreless monitoring of the current distribution in substation conductors for fault diagnosis

    Get PDF
    Parallel conductors are found in electrical transmission and distribution systems including large ampacity feeders or loads. However, current unbalance often occurs, especially in alternating current systems. This non-regular current distribution causes overheating and premature ageing, facilitating the occurrence of failures. Therefore, a fault diagnosis system is a must, which can be performed by monitoring in real-time the individual currents flowing through the conductors. In this paper a setup including three parallel aluminum conductors of large cross section, a spacer and two terminal substation connectors is analyzed. A real-time, wireless, coreless and contactless system based on three low cost Hall effect sensors is proposed, which is also easy to install. Experimental results, which include fourteen cases, comprising thirteen fault modes and a well installed set, prove the suitability and potential of the proposed approach, since it allows a correct real-time detection of all analyzed faulty conditions as well as the detection of currents exceeding the thermal rating of the conductors.Peer ReviewedPostprint (author's final draft

    Development of the future generation of smart high voltage connectors and related components for substations, with energy autonomy and wireless data transmission capability

    Get PDF
    The increased dependency on electricity of modern society, makes reliability of power transmission systems a key point. This goal can be achieved by continuously monitoring power grid parameters, so possible failure modes can be predicted beforehand. It can be done using existing Information and Communication Technologies (ICT) and Internet of Things (10T) technologies that include instrumentation and wireless communication systems, thus forming a wireless sensor network (WSN). Electrical connectors are among the most critical parts of any electrical system and hence, they can act as nodes of such WSN. Therefore, the fundamental objective of this thesis is the design, development and experimental validation of a self-powered IOT solution for real-time monitoring of the health status of a high-voltage substation connector and related components of the electrical substation. This new family of power connectors is called SmartConnector and incorporates a thermal energy harvesting system powering a microcontroller that controls a transmitter and several electronic sensors to measure the temperature, current and the electrical contact resistance (ECR) of the connector. These measurements are sent remotely via a Bluetooth 5 wireless communication module to a local gateway, which further transfers the measured data to a database server for storage as well as further analysis and visualization. By this way, after suitable data processing, the health status of the connector can be available in real-time, allowing different appealing functions, such as assessing the correct installation of the connector, the current health status or its remaining useful life (RUL) in real-time. The same principal can also be used for other components of substation like spacers, insulators, conductors, etc. Hence, to prove universality of this novel approach, a similar strategy is applied to a spacer which is capable of measuring uneven current distribution in three closely placed conductors. This novel IOT device is called as SmartSpacer. Care has to be taken that this technical and scientific development has to be compatible with existing substation bus bars and conductors, and especially to be compatible with the high operating voltages, i.e., from tens to hundreds of kilo-Volts (kV), and with currents in the order of some kilo-pm peres (kA). Although some electrical utilities and manufacturers have progressed in the development of such technologies, including smart meters and smart sensors, electrical device manufacturers such as of substation connectors manufacturers have not yet undertaken the technological advancement required for the development of such a new family of smart components involved in power transmission, which are designed to meet the future needs.La mayor dependencia de la electricidad de la sociedad moderna hace que la fiabilidad de los sistemas de transmisión de energía sea un punto clave. Este objetivo se puede lograr mediante la supervisión continua de los parámetros de la red eléctrica, por lo que los posibles modos de fallo se pueden predecir de antemano. Se puede hacer utilizando las tecnologías existentes de Tecnologías de la Información y la Comunicación (1CT) e Internet de las cosas (lo T) que incluyen sistemas de instrumentación y comunicación inalámbrica, formando así una red de sensores inalámbricos (WSN). Los conectores eléctricos se encuentran entre las partes más críticas de cualquier sistema eléctrico y, por lo tanto, pueden actuar como nodos de dicho VVSN. Por lo tanto, el objetivo fundamental de esta tesis es el diseño, desarrollo y validación experimental de una solución IOT autoalimentada para la supervisión en tiempo real del estado de salud de un conector de subestación de alta tensión y componentes relacionados de la subestación eléctrica. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia del contacto eléctrico (ECR) del conector. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia al contacto eléctrico (ECR) del conector. De esta manera, después del procesamiento de datos adecuado, el estado de salud del conector puede estar disponible en tiempo real, permitiendo diferentes funciones atractivas, como evaluar la correcta instalación del conector, el estado de salud actual o su vida útil restante (RUL) en tiempo real. El mismo principio también se puede utilizar para otros componentes de la subestación como espaciadores, aislantes, conductores, etc. Por lo tanto, para demostrar la universalidad de este enfoque novedoso, se aplica una estrategia similar a un espaciador, que es capaz de medir la distribución de corriente desigual en tres conductores estrechamente situados. Hay que tener cuidado de que este desarrollo técnico y científico tenga que sea compatible con las barras y "busbars" de subestación existentes, y sobre todo para ser compatible con las altas tensiones de funcionamiento, es decir, de decenas a cientos de kilovoltios (kV), y con corrientes en el orden de algunos kilo-Amperes (kA). Aunque algunas empresas eléctricas y fabricantes han progresado en el desarrollo de este tipo de tecnologías, incluidos medidores inteligentes y sensores inteligentes, los fabricantes de dispositivos eléctricos, como los fabricantes de conectores de subestación, aún no han emprendido el avance tecnológico necesario para el desarrollo de una nueva familia de componentes intel

    Reliability in a smart power system with cyber-physical interactive operation of photovoltaic systems and heat pumps

    Get PDF
    The connectivity of the power grid is increasing with the internet of things, and low carbon technologies being deployed to help enhance smart grid performance and reliability. Meanwhile, they also increase the digital complexity and dependency of cyber assets, which might be vulnerable to cyber-physical threats, and hence may impact the reliability of power systems. Due to cyber-threats’ unpredictable nature, the interactive operation of low carbon technologies with cyber-physical systems is becoming a challenging task for smart grids. This thesis proposes novel mathematical frameworks to estimate the availability of photovoltaics and heat pumps with cyber-physical components. These frameworks are developed to quantify the level of risk posed by cyber-threats to the interactive operation of photovoltaics and heat pumps, using Markov-Chains. The availability framework considers the severity of random cyber-attacks on photovoltaics and the probability of cyber-threats with mean time to detection-time on heat pump operation. Sensitivities of the repair times of cyber-physical component for photovoltaics and sensitivities of cyber-attack-detection time for heat pumps are also evaluated. The impact of cyber threats on the interactive operation of photovoltaics and heat pumps are considerable and inconsistent, however the propagation of cyber-threats can be restricted by appropriate means of photovoltaics. For heat pumps, operational reliability substantially decreases due to the unavailability of their control panel. Contributions of this thesis include an availability model for photovoltaic configurations, an innovative approach to assess the reliability of a photovoltaic integrated power system with cyber-physical interactions, the availability estimation of heat pump with variable detection time, and an enhanced cyber-intrusion process model for reliability analysis of heat pumps. The findings offer insight into the impact of cyber-physical system availability and its importance on power system reliability

    Applications of Wireless Sensor Networks for Area Coverage in Microgrids

    No full text
    corecore