26,594 research outputs found

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Leveraging Semantic Web Service Descriptions for Validation by Automated Functional Testing

    Get PDF
    Recent years have seen the utilisation of Semantic Web Service descriptions for automating a wide range of service-related activities, with a primary focus on service discovery, composition, execution and mediation. An important area which so far has received less attention is service validation, whereby advertised services are proven to conform to required behavioural specifications. This paper proposes a method for validation of service-oriented systems through automated functional testing. The method leverages ontology-based and rule-based descriptions of service inputs, outputs, preconditions and effects (IOPE) for constructing a stateful EFSM specification. The specification is subsequently utilised for functional testing and validation using the proven Stream X-machine (SXM) testing methodology. Complete functional test sets are generated automatically at an abstract level and are then applied to concrete Web services, using test drivers created from the Web service descriptions. The testing method comes with completeness guarantees and provides a strong method for validating the behaviour of Web services

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine
    corecore