313 research outputs found

    Rate-Equivocation Optimal Spatially Coupled LDPC Codes for the BEC Wiretap Channel

    Full text link
    We consider transmission over a wiretap channel where both the main channel and the wiretapper's channel are Binary Erasure Channels (BEC). We use convolutional LDPC ensembles based on the coset encoding scheme. More precisely, we consider regular two edge type convolutional LDPC ensembles. We show that such a construction achieves the whole rate-equivocation region of the BEC wiretap channel. Convolutional LDPC ensemble were introduced by Felstr\"om and Zigangirov and are known to have excellent thresholds. Recently, Kudekar, Richardson, and Urbanke proved that the phenomenon of "Spatial Coupling" converts MAP threshold into BP threshold for transmission over the BEC. The phenomenon of spatial coupling has been observed to hold for general binary memoryless symmetric channels. Hence, we conjecture that our construction is a universal rate-equivocation achieving construction when the main channel and wiretapper's channel are binary memoryless symmetric channels, and the wiretapper's channel is degraded with respect to the main channel.Comment: Working pape

    LDPC Code Design for the BPSK-constrained Gaussian Wiretap Channel

    Full text link
    A coding scheme based on irregular low-density parity-check (LDPC) codes is proposed to send secret messages from a source over the Gaussian wiretap channel to a destination in the presence of a wiretapper, with the restriction that the source can send only binary phase-shift keyed (BPSK) symbols. The secrecy performance of the proposed coding scheme is measured by the secret message rate through the wiretap channel as well as the equivocation rate about the message at the wiretapper. A code search procedure is suggested to obtain irregular LDPC codes that achieve good secrecy performance in such context.Comment: submitted to IEEE GLOBECOM 2011 - Communication Theory Symposiu

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Deterministic Constructions for Large Girth Protograph LDPC Codes

    Full text link
    The bit-error threshold of the standard ensemble of Low Density Parity Check (LDPC) codes is known to be close to capacity, if there is a non-zero fraction of degree-two bit nodes. However, the degree-two bit nodes preclude the possibility of a block-error threshold. Interestingly, LDPC codes constructed using protographs allow the possibility of having both degree-two bit nodes and a block-error threshold. In this paper, we analyze density evolution for protograph LDPC codes over the binary erasure channel and show that their bit-error probability decreases double exponentially with the number of iterations when the erasure probability is below the bit-error threshold and long chain of degree-two variable nodes are avoided in the protograph. We present deterministic constructions of such protograph LDPC codes with girth logarithmic in blocklength, resulting in an exponential fall in bit-error probability below the threshold. We provide optimized protographs, whose block-error thresholds are better than that of the standard ensemble with minimum bit-node degree three. These protograph LDPC codes are theoretically of great interest, and have applications, for instance, in coding with strong secrecy over wiretap channels.Comment: 5 pages, 2 figures; To appear in ISIT 2013; Minor changes in presentatio

    Strong Secrecy for Erasure Wiretap Channels

    Full text link
    We show that duals of certain low-density parity-check (LDPC) codes, when used in a standard coset coding scheme, provide strong secrecy over the binary erasure wiretap channel (BEWC). This result hinges on a stopping set analysis of ensembles of LDPC codes with block length nn and girth ≥2k\geq 2k, for some k≥2k \geq 2. We show that if the minimum left degree of the ensemble is lminl_\mathrm{min}, the expected probability of block error is \calO(\frac{1}{n^{\lceil l_\mathrm{min} k /2 \rceil - k}}) when the erasure probability ϵ<ϵef\epsilon < \epsilon_\mathrm{ef}, where ϵef\epsilon_\mathrm{ef} depends on the degree distribution of the ensemble. As long as lmin>2l_\mathrm{min} > 2 and k>2k > 2, the dual of this LDPC code provides strong secrecy over a BEWC of erasure probability greater than 1−ϵef1 - \epsilon_\mathrm{ef}.Comment: Submitted to the Information Theory Workship (ITW) 2010, Dubli

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201
    • …
    corecore