Information-theoretic secret-key agreement is perhaps the most practically
feasible mechanism that provides unconditional security at the physical layer
to date. In this paper, we consider the problem of secret-key agreement by
sharing randomness at low power over an orthogonal frequency division
multiplexing (OFDM) link, in the presence of an eavesdropper. The low power
assumption greatly simplifies the design of the randomness sharing scheme, even
in a fading channel scenario. We assess the performance of the proposed system
in terms of secrecy key rate and show that a practical approach to key sharing
is obtained by using low-density parity check (LDPC) codes for information
reconciliation. Numerical results confirm the merits of the proposed approach
as a feasible and practical solution. Moreover, the outage formulation allows
to implement secret-key agreement even when only statistical knowledge of the
eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper
with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot
Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19
April 201