5 research outputs found

    Validation of production system throughput potential and simulation experiment design

    Full text link
    [EN] The throughput potential of a production system must be designed and validated before implementation.  Design includes creating product flow by setting the takt time consistent with meeting customer demand per time period and the average cycle time at each workstation being less than the takt time.  Creating product flow implies that the average waiting time preceding each workstation is no greater than the takt time.  Kingman’s equation for the average waiting time can be solved for the variation component given the utilization, and the cycle time.  The variation component consists of the variation in the demand and the variation in cycle time.  Given the variation in demand, the maximum allowable variation in cycle time to create flow can be determined.  Throughput potential validation is often performed using discrete event simulation modeling and experimentation.  If the variation in cycle time at every workstation is small enough to create flow, then a deterministic simulation experiment can be used.  An industrial example concerning a tier-1 automotive supplier with two possible production systems designs and various levels of variation in demand assumed is used to demonstrate the effectiveness of throughput validation using deterministic discrete event simulation modeling and experimentation.Standridge, C.; Wynne, M. (2021). Validation of production system throughput potential and simulation experiment design. International Journal of Production Management and Engineering. 9(1):15-23. https://doi.org/10.4995/ijpme.2021.14483OJS152391Atalan, A., Dönmez, C.C. (2020). Optimizing experimental simulation design for the emergency departments. Brazilian Journal of Operations & Production Management, 17(4), e2020854. https://doi.org/10.14488/BJOPM.2020.026Askin, R.G., Standridge, C.R. (1993). Modeling and analysis of manufacturing systems. New York: John Wiley and Sons.Dagkakis, G., Rotondo, A., Heavey, C. (2019). Embedding optimization with deterministic discrete event simulation for assignment of cross-trained operators: an assembly line case study. Computers and Operations Research, 111, 99-115. https://doi.org/10.1016/j.cor.2019.06.008Ferrin, D.M., Miller M.J., Muthler D. (2005). Lean sigma and simulation, so what's the correlation?, in Proceedings of the 2005 Winter Simulation Conference, IEEE, USA. Retrieved July 22, 2020 from: https://informs-sim.org/wsc05papers/249.pdfHopp, W.J., Spearman, M.L. (2011). Factory Physics: Foundations of manufacturing management, 3rd ed. Long Grove, IL: Waveland Press.Jayaraman, A., Gunal, A.K. (1997). Applications of discrete event simulation in the design of automotive powertrain manufacturing systems". In Proceedings of the 1997 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1145/268437.268620Khan, S., Standridge, C.R. (2019). Aggregate simulation modeling with application to setting the CONWIP limit in an HMLV cell. International Journal of Industrial Engineering Computation, 10(2), 149-160. https://doi.org/10.5267/j.ijiec.2018.10.002Kingman, J.F.C. (1961). The single server queue in heavy traffic. Mathematical Proceedings of the Cambridge Philosophical Society, 57(4), 902. https://doi.org/10.1017/S0305004100036094Kleijnen, J.P.C. (2015). Design and analysis of simulation experiments. New York: Springer. https://doi.org/10.1007/978-3-319-18087-8Kleijnen, J.P.C., Standridge, C.R. (1988). Experimental design and regression analysis in simulation: an FMS case study. European Journal of Operations Research, 33, 257-261. https://doi.org/10.1016/0377-2217(88)90168-3Law, A.M. (2014). Simulation modeling and analysis, 5th ed. New York: McGraw-Hill.Little, J.D.C. (1961). A proof for the queuing formula: L = λW. Operations Research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383Marvel, J.H., Standridge, C.R. (2009). A simulation enhanced lean design process. Journal of Industrial Engineering and Management, 2(1), 90-113. https://doi.org/10.3926/jiem.2009.v2n1.p90-113Mourtzis, D. (2019) Simulation in the design and operation of manufacturing systems: state of the art and new trends. International Journal of Production Research, 58(7), 1927-1949. https://doi.org/10.1080/00207543.2019.1636321Pinheiro, N.M.G, Cleto, M.G., Zattar, I.C., Muller, S.I.M.G. (2019). Performance evaluation of pulled, pushed and hybrid production through simulation: a case study. Brazilian Journal of Operations & Production Management, 16, 685-697. https://doi.org/10.14488/BJOPM.2019.v16.n4.a13Pritsker, A.A.B. (1989). Why simulation works. In Proceedings of the 1989 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1145/76738.76739Puvanasvaran, P., Teoh, Y.S., Ito, K. (2020). Novel availability and performance ratio for internal transportation and manufacturing processes in job shop company. Journal of Industrial Engineering and Management, 13(1), 1-17. https://doi.org/10.3926/jiem.2755Sanchez, S.M., Sanchez, P.J., Wan, H. (2020). Work smarter, not harder: a tutorial on designing and conducting simulation experiments. In Proceedings of the 2020 Winter Simulation Conference, IEEE, USA. Retrieved December 23, 2020 from https://informs-sim.org/ wsc20papers/135.pdfSchruben, L. (1983). Simulation modeling with event graphs. Communications of the A.C.M., 26(11). https://doi.org/10.1145/182.358460Spearman, M.L., Woodruff, D.L., Hopp, W.J. (1990). CONWIP: A pull alternative to Kanban, International Journal of Production Research, 28(5), 879-894. https://doi.org/10.1080/00207549008942761Standridge, C.R. (2019). Introduction to production: philosophies, flow, and analysis. Allendale Michigan: Grand Valley State University Libraries. Retrieved July 22, 2020 from: https://scholarworks.gvsu.edu/books/22/Tapping, D., Luyster, T., Shuker, T. (2002). Value stream management. Boca Raton: CRC Press. https://doi.org/10.4324/9781482278163Tribastone, M., Vandin, A. (2018). Speeding up stochastic and deterministic simulation by aggregation: an advanced tutorial. . In Proceedings of the 2018 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1109/WSC.2018.8632364Uriarte, A.G., Ng, A.H.C., Moris, M.U. (2020). Bringing together Lean and simulation: a comprehensive review, International Journal of Production Research, 58(1), 87-117. https://doi.org/10.1080/00207543.2019.1643512Zupan, H., Herakovic. N. (2015). Production line balancing with discrete event simulation: a case study", IFAC-PapersOnLine, 48(3), 2305- 2311. https://doi.org/10.1016/j.ifacol.2015.06.43

    Data quality problems in discrete event simulation of manufacturing operations

    Get PDF
    High-quality input data are a necessity for successful discrete event simulation (DES) applications, and there are available methodologies for data collection in DES projects. However, in contrast to standalone projects, using DES as a daily manufacturing engineering tool requires high-quality production data to be constantly available. In fact, there has been a major shift in the application of DES in manufacturing from production system design to daily operations, accompanied by a stream of research on automation of input data management and interoperability between data sources and simulation models. Unfortunately, this research stream rests on the assumption that the collected data are already of high quality,and there is a lack of in-depth understanding of simulation data quality problems from a practitioners’ perspective.Therefore, a multiple-case study within the automotive industry was used to provide empirical descriptions of simulation data quality problems, data production processes, and relations between these processes and simulation data quality problems. These empirical descriptions are necessary to extend the present knowledge on data quality in DES in a practical real-world manufacturing context, which is a prerequisite for developing practical solutions for solving data quality problems such as limited accessibility, lack of data on minor stoppages, and data sources not being designed for simulation. Further, the empirical and theoretical knowledge gained throughout the study was used to propose a set of practical guidelines that can support manufacturing companies in improving data quality in DES

    Modelagem e simulação do sistema de inspeção de torques de uma montadora de veículos

    Get PDF
    Trabalho de conclusão de curso (graduação)—Universidade de Brasília, Faculdade UnB Gama, Curso de Engenharia Automotiva, 2013.Este trabalho consiste na modelagem e simulação do sistema de inspeção de torques de uma montadora de veículos. Um modelo de simulação foi desenvolvido a partir de dados reais do sistema. Após a criação do modelo, foram realizados estudos de caso em que parâmetros do sistema relacionados aos níveis de estoque e calibração das ferramentas foram modificados e seus efeitos sobre o sistema analisados. Estes parâmetros foram ajustados com o intuito de garantir disponibilidade das estações de inspeção em todo o período de simulação. Além disso, é proposto um melhor planejamento da calibração das ferramentas, de modo a favorecer a durabilidade das mesmas bem como a confiabilidade das medições. Cada cenário proposto é analisado a partir de seu desempenho. A modelagem e simulação, auxiliaram desta forma, a identificação de oportunidades de melhoria do sistema através da geração de cenários alternativos com desempenho superior. Ao final de cada estudo foram descritas sugestões de arranjo para o sistema. _______________________________________________________________________________ ABSTRACTThis work consists in modeling and simulation of the torques inspection at an automotive manufacturing plant. A simulation model was developed from the real system data. After the creation of the model, some case studies were performed in which parameters related to inventory levels and calibration of the tools were modified and the effects on the system were analyzed. These parameters were adjusted in order to ensure availability of the inspection stations during the simulation period. Furthermore, it is proposed a better calibration plan for the inspection tools, in order to promote their durability and the reliability of the measurements. Each performance of the proposed scenario was analyzed. Modeling and simulation assist the identification of opportunities to improve the real system by generating alternative scenarios with superior performance. At the end of each case study, the suggested arrangement for the system are described
    corecore