6,362 research outputs found

    Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks

    Full text link
    Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) and Roadside-to- Vehicle (R2V) communications. This emerging field of technology aims to improve safety of passengers and traffic flow, reduces pollution to the environment and enables in-vehicle entertainment applications. The safety-related applications could reduce accidents by providing drivers with traffic information such as collision avoidances, traffic flow alarms and road surface conditions. Moreover, the passengers could exploit an available infrastructure in order to connect to the internet for infomobility and entertainment applications.Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Xia, F. (2013). Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks. Mobile Networks and Applications. 18(6):749-754. doi:10.1007/s11036-013-0490-7S749754186Lloret J, Canovas A, Catalá A, Garcia M (2013) Group-based protocol and mobility model for VANETs to offer internet access. J Netw Comput Appl 36(3):1027–1038. doi: 10.1016/j.jnca.2012.02.009Khokhar RH, Zia T, Ghafoor KZ, Lloret J, Shiraz M (2013) Realistic and efficient radio propagation model for V2X communications. KSII Trans Internet Inform Syst 7(8):1933–1953. doi: 10.3837/tiis.2013.08.011Ghafoor KZ (2013) Routing protocols in vehicular ad hoc networks: survey and research challenges, Netw Protocol Algorithm 5(4). doi: 10.5296/npa.v5i4.4134Ghafoor KZ, Bakar KA, Lloret J, Ke C-H, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zGhafoor KZ, Bakar KA, Lee K, AL-Hashimi H (2010) A novel delay- and reliability- aware inter-vehicle routing protocol. Netw Protocol Algorithms 2(2):66–88. doi: 10.5296/npa.v2i2.427Dias JAFF, Rodrigues JJPC, Isento JN, Pereira PRBA, Lloret J (2011) Performance assessment of fragmentation mechanisms for vehicular delay-tolerant networks. EURASIP J Wirel Commun Netw 2011(195):1–14. doi: 10.1186/1687-1499-2011-195Zhang D, Yang Z, Raychoudhury V, Chen Z, Lloret J (2013) An energy-efficient routing protocol using movement trend in vehicular Ad-hoc networks. Comput J 58(8):938–946. doi: 10.1093/comjnl/bxt028Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular Ad Hoc networks: a survey. Wirel Pers Commun. doi: 10.1007/s11277-013-1222-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Khamayseh YM (2013) Network size estimation in VANETs. Netw Protocol Algorithm 5(3):136–152. doi: 10.5296/npa.v5i6.3838Rawat DB, Popescu DC, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22(9):1528–1535Yan G, Rawat DB, Bista BB. Provisioning vehicular ad hoc networks with quality of services. Int J Space-Based Situated Comput 2(2):104–111Rawat DB, Bista BB, Yan G, Weigle MC (2011) Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach, International Conference on Complex, Intelligent, and Software Intensive Systems Pp. 146–151. June 30, 2011Sun W, Xia F, Ma J, Fu T, Sun Y. An optimal ODAM-based broadcast algorithm for vehicular Ad-Hoc Networks. KSII Trans Internet Inform Syst 6(12): 3257–3274Vinel AV, Dudin AN, Andreev SD, Xia F (2010) Performance modeling methodology of emergency dissemination algorithms for vehicular ad-hoc networks, 6th Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Pp. 397–400AL-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protocol Algorithm 2(4):1–15. doi: 10.5296/npa.v2i4.488Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges, in the book “mobile computing over cloud: technologies, services, and applications”. IGI GlobalYan G, Rawat DB, Bista BB (2012) Towards secure vehicular clouds, Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2012), Pp. 370–375Fernández H, Rubio L, Reig J, Rodrigo-Peñarrocha VM, Valero A (2013) Path loss modeling for vehicular system performance and communication protocols evaluation. Mobile Netw Appl. doi: 10.1007/s11036-013-0463-xAllouche Y, Segal M (2013) A cluster-based beaconing approach in VANETs: near optimal topology via proximity information. Mobile Netw Appl. doi: 10.1007/s11036-013-0468-5Merah AF, Samarah S, Boukerche A, Mammeri A (2013) A sequential patterns data mining approach towards vehicular route prediction in VANETs. Mobile Netw Appl. doi: 10.1007/s11036-013-0459-6Zhang D, Huang H, Zhou J, Xia F, Chen Z (2013) Detecting hot road mobility of vehicular Ad Hoc Networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0467-6El Ajaltouni H, Boukerche A, Mammeri A (2013) A multichannel QoS MAC with dynamic transmit opportunity for. Mobile Netw Appl. doi: 10.1007/s11036-013-0475-6Reñé S, Esparza O, Alins J, Mata-Díaz J, Muñoz JL (2013) VSPLIT: a cross-layer architecture for V2I TCP services over. Mobile Netw Appl. doi: 10.1007/s11036-013-0473-8Blanco B, Liberal F (2013) Amaia Aguirregoitia, application of cognitive techniques to adaptive routing for VANETs in city environments. Mobile Netw Appl. doi: 10.1007/s11036-013-0466-7Kim J, Krunz M (2013) Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0476-5Dias JAFF, Rodrigues JJPC, Isento JNG, Niu J (2013) The impact of cooperative nodes on the performance of vehicular delay-tolerant networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0464-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Machado S, Ozón J, González AJ, Ghafoor KZ (2013) Structured peer-to-peer real time video transmission over vehicular Ad Hoc networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0461-zLin C, Wu G, Xia F, Yao L (2013) Enhance the attacking efficiency of the node compromise attack in vehicular Ad-hoc network using connected dominating set. Mobile Netw Appl. doi: 10.1007/s11036-013-0469-

    A Contribution to Secure the Routing Protocol "Greedy Perimeter Stateless Routing" Using a Symmetric Signature-Based AES and MD5 Hash

    Full text link
    This work presents a contribution to secure the routing protocol GPSR (Greedy Perimeter Stateless Routing) for vehicular ad hoc networks, we examine the possible attacks against GPSR and security solutions proposed by different research teams working on ad hoc network security. Then, we propose a solution to secure GPSR packet by adding a digital signature based on symmetric cryptography generated using the AES algorithm and the MD5 hash function more suited to a mobile environment

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    • …
    corecore