15,528 research outputs found

    Automatic Active Contour Modelling and Its Potential Application for Non-Destructive Testing

    Get PDF
    Active contouring techniques are very useful in medical imaging, digital mapping, non-destructive ultrasonic evaluation, etc. Therefore, we try to explore and investigate the advanced automatic active contouring methods, which can benefit the aforementioned applications. In this thesis work, we study the automatic active contour models adopted for the object characterization, whose extensions could include the potential defect analysis in the ultrasonic non-destructive testing. The active contouring scheme (also called a snake) or an energy minimizing spline, is an algorithm which is very sensitive to the manually marked initial points, and thereby requires an expertly operation. Therefore, we make new research endeavors to handle this major problem and design a new expert-free snake technique, which can lead to the completely automatic contouring technology for the future applications. Even though this initialization problem has been addressed in the literature for quite a while, to the best of our knowledge, there exists no satisfactory solution so far. In this thesis, we propose a novel initialization algorithm for the automatic snake technique, which can possess a faster convergence than other existing automatic contouring methods and also avoid the human operational error incurred in the conventional snake schemes

    Simulation of microlensing lightcurves by combining contouring and rayshooting

    Get PDF
    The contouring methods described by Lewis et al. (1993) and Witt (1993) are very efficient and elegant for obtaining the magnification of a point source moving along a straight track in the source plane. The method is, however, not very efficient for extended sources, because the amplification needs to be computed for numerous parallel tracks and then convolved with the source profile. Rayshooting is an efficient algorithm for relatively large sources, but the computing time increases with the inverse of the source area for a given noise level. This poster presents a hybrid method, using the contouring method in order to find only those parts of the lens area that contribute to the light curve through the rayshooting. Calculations show that this method has the potential to be 1010--10510^5 times more efficient than crude rayshooting techniques.Comment: 2 pages, no figures. Uses crckapb.sty. To appear in the Proceedings of the IAU Symposium 173: ``Astrophysical Applications of Gravitational Lensing'', Kluwer Academic Publishers, Eds.: C. S. Kochanek and J. N. Hewitt. Also available, with addditional information, through http://www.uio.no/~steinhh/index.htm

    Contouring with uncertainty

    Get PDF
    As stated by Johnson [Joh04], the visualization of uncertainty remains one of the major challenges for the visualization community. To achieve this, we need to understand and develop methods that allow us not only to consider uncertainty as an extra variable within the visualization process, but to treat it as an integral part. In this paper, we take contouring, one of the most widely used visualization techniques for two dimensional data, and focus on extending the concept of contouring to uncertainty. We develop special techniques for the visualization of uncertain contours. We illustrate the work through application to a case study in oceanography

    Tuning of Parameters for Robotic Contouring Based on the Evaluation of Force Deviation

    Get PDF
    The application of industrial robots with advanced sensor systems in unstructured environments is continuously becoming wider. A widely used type of advanced sensor systems is the force-torque sensor. Force-torque sensors are typically used for applications such as robot grinding, sanding, polishing, and deburring, where a constant force is exerted upon a workpiece. In this research, control parameters for exerting a constant force along a predefined path are evaluated in laboratory conditions. The experimental setup with the contouring force feedback is composed of a Fanuc LRMate six-degree-of-freedom industrial robot with an integrated force-torque sensor. Control parameters of the Contouring function within the Fanuc robot controller are tuned in four contouring experiments. The experiments conducted in this research are: i) flat beam, ii) flat beam with a rigid support, iii) wave shaped compliant plate, and iv) compliant flat plate. During the experiments, contouring parameters were altered in order to collect the feedback on the values of the force to be used for the evaluation of the force deviation. A fitness function for the evaluation of the force deviation and the tuning of the control parameters is presented. The fitness function enables a selection of initial control parameters which minimize the force deviation during the robot contouring process

    Development of Moire machine vision

    Get PDF
    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis

    Cautious NMPC with Gaussian Process Dynamics for Autonomous Miniature Race Cars

    Full text link
    This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. We present a sparse GP approximation with dynamically adjusting inducing inputs, enabling a real-time implementable controller. The formulation is demonstrated in simulations, which show significant improvement with respect to both lap time and constraint satisfaction compared to an NMPC without model learning
    corecore