5 research outputs found

    Le support de VoIP dans les réseaux maillés sans fil WiMAX en utilisant une approche de contrÎle et d'assistance au niveau MAC

    Full text link
    Les rĂ©seaux maillĂ©s sans fil (RMSF), grĂące Ă  leurs caractĂ©ristiques avantageuses, sont considĂ©rĂ©s comme une solution efficace pour le support des services de voix, vidĂ©o et de donnĂ©es dans les rĂ©seaux de prochaine gĂ©nĂ©ration. Le standard IEEE 802.16-d a spĂ©cifiĂ© pour les RMSF, Ă  travers son mode maillĂ©, deux mĂ©canismes de planifications de transmission de donnĂ©es; Ă  savoir la planification centralisĂ©e et la planification distribuĂ©e. Dans ce travail, on a Ă©valuĂ© le support de la qualitĂ© de service (QdS) du standard en se focalisant sur la planification distribuĂ©e. Les problĂšmes du systĂšme dans le support du trafic de voix ont Ă©tĂ© identifiĂ©s. Pour rĂ©soudre ces problĂšmes, on a proposĂ© un protocole pour le support de VoIP (AVSP) en tant qu’extension au standard original pour permettre le support de QdS au VoIP. Nos rĂ©sultats prĂ©liminaires de simulation montrent qu’AVSP offre une bonne amĂ©lioration au support de VoIP.Wireless mesh networks (WMNs), because of their advantageous characteristics, are considered as an effective solution to support voice services, video and data in next generation networks. The IEEE 802.16-d specified for WMNs, through its mesh mode, two mechanisms of scheduling data transmissions; namely centralized scheduling and distributed scheduling. In this work, we evaluated the support of the quality of service (QoS) of the standard by focusing on distributed scheduling. System problems in the support of voice traffic have been identified. To solve these problems, we proposed a protocol for supporting VoIP, called Assisted VoIP Scheduling Protocol (AVSP), as an extension to the original standard to support high QoS to VoIP. Our preliminary simulation results show that AVSP provides a good improvement to support VoIP

    A VOICE PRIORITY QUEUE (VPQ) SCHEDULER FOR VOIP OVER WLANs

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication. The Wireless Local Area Network (WLAN) is the most assuring of technologies among the wireless networks, which has facilitated high-rate voice services at low cost and good flexibility. In a voice conversation, each client works as a sender and as a receiver depending on the direction of traffic flow over the network. A VoIP application requires a higher throughput, less packet loss and a higher fairness index over the network. The packets of VoIP streaming may experience drops because of the competition among the different kinds of traffic flow over the network. A VoIP application is also sensitive to delay and requires the voice packets to arrive on time from the sender to the receiver side without any delay over WLANs. The scheduling system model for VoIP traffic is still an unresolved problem. A new traffic scheduler is necessary to offer higher throughput and a higher fairness index for a VoIP application. The objectives of this thesis are to propose a new scheduler and algorithms that support the VoIP application and to evaluate, validate and verify the newly proposed scheduler and algorithms with the existing scheduling algorithms over WLANs through simulation and experimental environment. We proposed a new Voice Priority Queue (VPQ) scheduling system model and algorithms to solve scheduling issues. VPQ system model is implemented in three stages. The first stage of the model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. The second stage will be designed for bursty Virtual-VoIP Flow (Virtual-VF) while the third stage is a Switch Movement (SM) technique. Furthermore, we compared the VPQ scheduler with other well known schedulers and algorithms. We observed in our simulation and experimental environment that the VPQ provides better results for the VoIP over WLANs

    Gestion adaptative des ressources dans les réseaux maillés sans fil à multiples-radios multiples-canaux

    Full text link
    Depuis quelques annĂ©es, la recherche dans le domaine des rĂ©seaux maillĂ©s sans fil ("Wireless Mesh Network (WMN)" en anglais) suscite un grand intĂ©rĂȘt auprĂšs de la communautĂ© des chercheurs en tĂ©lĂ©communications. Ceci est dĂ» aux nombreux avantages que la technologie WMN offre, telles que l'installation facile et peu coĂ»teuse, la connectivitĂ© fiable et l'interopĂ©rabilitĂ© flexible avec d'autres rĂ©seaux existants (rĂ©seaux Wi-Fi, rĂ©seaux WiMax, rĂ©seaux cellulaires, rĂ©seaux de capteurs, etc.). Cependant, plusieurs problĂšmes restent encore Ă  rĂ©soudre comme le passage Ă  l'Ă©chelle, la sĂ©curitĂ©, la qualitĂ© de service (QdS), la gestion des ressources, etc. Ces problĂšmes persistent pour les WMNs, d'autant plus que le nombre des utilisateurs va en se multipliant. Il faut donc penser Ă  amĂ©liorer les protocoles existants ou Ă  en concevoir de nouveaux. L'objectif de notre recherche est de rĂ©soudre certaines des limitations rencontrĂ©es Ă  l'heure actuelle dans les WMNs et d'amĂ©liorer la QdS des applications multimĂ©dia temps-rĂ©el (par exemple, la voix). Le travail de recherche de cette thĂšse sera divisĂ© essentiellement en trois principaux volets: le contrĂŽle d‟admission du trafic, la diffĂ©rentiation du trafic et la rĂ©affectation adaptative des canaux lors de la prĂ©sence du trafic en relĂšve ("handoff" en anglais). Dans le premier volet, nous proposons un mĂ©canisme distribuĂ© de contrĂŽle d'admission se basant sur le concept des cliques (une clique correspond Ă  un sous-ensemble de liens logiques qui interfĂšrent les uns avec les autres) dans un rĂ©seau Ă  multiples-sauts, multiples-radios et multiples-canaux, appelĂ© RCAC. Nous proposons en particulier un modĂšle analytique qui calcule le ratio appropriĂ© d'admission du trafic et qui garantit une probabilitĂ© de perte de paquets dans le rĂ©seau n'excĂ©dant pas un seuil prĂ©dĂ©fini. Le mĂ©canisme RCAC permet d‟assurer la QdS requise pour les flux entrants, sans dĂ©grader la QdS des flux existants. Il permet aussi d‟assurer la QdS en termes de longueur du dĂ©lai de bout en bout pour les divers flux. Le deuxiĂšme volet traite de la diffĂ©rentiation de services dans le protocole IEEE 802.11s afin de permettre une meilleure QdS, notamment pour les applications avec des contraintes temporelles (par exemple, voix, visioconfĂ©rence). À cet Ă©gard, nous proposons un mĂ©canisme d'ajustement de tranches de temps ("time-slots"), selon la classe de service, ED-MDA (Enhanced Differentiated-Mesh Deterministic Access), combinĂ© Ă  un algorithme efficace de contrĂŽle d'admission EAC (Efficient Admission Control), afin de permettre une utilisation Ă©levĂ©e et efficace des ressources. Le mĂ©canisme EAC prend en compte le trafic en relĂšve et lui attribue une prioritĂ© supĂ©rieure par rapport au nouveau trafic pour minimiser les interruptions de communications en cours. Dans le troisiĂšme volet, nous nous intĂ©ressons Ă  minimiser le surcoĂ»t et le dĂ©lai de re-routage des utilisateurs mobiles et/ou des applications multimĂ©dia en rĂ©affectant les canaux dans les WMNs Ă  Multiples-Radios (MR-WMNs). En premier lieu, nous proposons un modĂšle d'optimisation qui maximise le dĂ©bit, amĂ©liore l'Ă©quitĂ© entre utilisateurs et minimise le surcoĂ»t dĂ» Ă  la relĂšve des appels. Ce modĂšle a Ă©tĂ© rĂ©solu par le logiciel CPLEX pour un nombre limitĂ© de noeuds. En second lieu, nous Ă©laborons des heuristiques/mĂ©ta-heuristiques centralisĂ©es pour permettre de rĂ©soudre ce modĂšle pour des rĂ©seaux de taille rĂ©elle. Finalement, nous proposons un algorithme pour rĂ©affecter en temps-rĂ©el et de façon prudente les canaux aux interfaces. Cet algorithme a pour objectif de minimiser le surcoĂ»t et le dĂ©lai du re-routage spĂ©cialement du trafic dynamique gĂ©nĂ©rĂ© par les appels en relĂšve. Ensuite, ce mĂ©canisme est amĂ©liorĂ© en prenant en compte lâ€ŸĂ©quilibrage de la charge entre cliques.In the last few years, Wireless Mesh Networks (WMNs) area brought a new field of advanced research among network specialized scientists. This is due to the many advantages which WMN technology offers, such as: easy and inexpensive installation, reliable connectivity and flexible interoperability with other existing networks (Wi-Fi, WiMax, Cellular, Sensors, WPAN networks, etc.). However, several problems still remain to be solved such as the scalability, the security, the quality of service (QoS), the resources management, etc. These problems persist for WMNs, therefore the researchers propose to improve the existing protocols or to conceive new protocols for WMNs. In order to solve some of the current limitations met in the wireless networks and to improve QoS of real time multimedia applications in such networks, our research will be divided primarily into three parts: traffic admission control, traffic differentiation and handoff-aware channel assignment schemes. In the first part, we propose a distributed admission control scheme for WMNs, namely, Routing on Cliques (a clique is defined as a subset of logical links that interfere with each other) Admission Control (RCAC). Particularly, we propose an analytical model to compute the appropriate acceptance ratio and guarantee that the packet loss probability in the network does not exceed a threshold value. The model also allows computing end-to-end delay to process flow requests with delay constraints. In the second part, we design an efficient scheduler for Mesh Deterministic Access (MDA) in IEEE 802.11s-based WMNs, called Enhanced Differentiated-MDA (ED-MDA) to support voice and video applications with strict requirements on delay and on blocking/dropping probability. ED-MDA together with Enhanced Admission Control, namely EAC, reserves the minimum amount of necessary resources while maintaining an acceptable handoff call dropping and high resource utilization. The final section addresses handoff-aware channel assignment (CA) problem in Multiple Radios WMNs (MR-WMNs). In this section, we first propose a multi-objective optimization model that, besides maximizing throughput, improves fairness and handoff experience of mesh clients. In this model, the Jain’s index is used to maximize users’ fairness and to allow same channel assignments to links involved in the same high handoff traffic, thus reducing handoff-triggered re-routing characterized by its high latency. Second, we solved this model to obtain exact solutions by the CPLEX software for a limited number of nodes. We therefore propose to use centralized heuristics/meta-heuristics algorithms as an offline CA process to obtain near-optimal solutions for larger instances (real size network). Moreover, in order to adapt to traffic dynamics caused especially by user handoffs, an online CA scheme is proposed that carefully re-assigns channels to interfaces with the purpose of continuously minimizing the re-routing overhead/latency during user handoffs. This online scheme is improved using load balancing
    corecore