3,215 research outputs found

    Smart cards: State-of-the-art to future directions

    Get PDF
    The evolution of smart card technology provides an interesting case study of the relationship and interactions between security and business requirements. This paper maps out the milestones for smart card technology, discussing at each step the opportunities and challenges. The paper reviews recently proposed innovative ownership/management models and the security challenges associated with them. The paper concludes with a discussion of possible future directions for the technology, and the challenges these present

    Trusted Platform Module for Smart Cards

    Get PDF

    Citizen Electronic Identities using TPM 2.0

    Full text link
    Electronic Identification (eID) is becoming commonplace in several European countries. eID is typically used to authenticate to government e-services, but is also used for other services, such as public transit, e-banking, and physical security access control. Typical eID tokens take the form of physical smart cards, but successes in merging eID into phone operator SIM cards show that eID tokens integrated into a personal device can offer better usability compared to standalone tokens. At the same time, trusted hardware that enables secure storage and isolated processing of sensitive data have become commonplace both on PC platforms as well as mobile devices. Some time ago, the Trusted Computing Group (TCG) released the version 2.0 of the Trusted Platform Module (TPM) specification. We propose an eID architecture based on the new, rich authorization model introduced in the TCGs TPM 2.0. The goal of the design is to improve the overall security and usability compared to traditional smart card-based solutions. We also provide, to the best our knowledge, the first accessible description of the TPM 2.0 authorization model.Comment: This work is based on an earlier work: Citizen Electronic Identities using TPM 2.0, to appear in the Proceedings of the 4th international workshop on Trustworthy embedded devices, TrustED'14, November 3, 2014, Scottsdale, Arizona, USA, http://dx.doi.org/10.1145/2666141.266614

    A User Centric Security Model for Tamper-Resistant Devices

    Get PDF
    In this thesis we propose a design for a ubiquitous and interoperable device based on the smart card architecture to meet the challenges of privacy, trust, and security for traditional and emerging technologies like personal computers, smart phones and tablets. Such a de- vice is referred a User Centric Tamper-Resistant Device (UCTD). To support the smart card architecture for the UCTD initiative, we propose the delegation of smart card owner- ship from a centralised authority (i.e. the card issuer) to users. This delegation mandated a review of existing smart card mechanisms and their proposals for modifications/improve- ments to their operation. Since the inception of smart card technology, the dominant ownership model in the smart card industry has been refer to as the Issuer Centric Smart Card Ownership Model (ICOM). The ICOM has no doubt played a pivotal role in the proliferation of the technology into various segments of modern life. However, it has been a barrier to the convergence of different services on a smart card. In addition, it might be considered as a hurdle to the adaption of smart card technology into a general-purpose security device. To avoid these issues, we propose citizen ownership of smart cards, referred as the User Centric Smart Card Ownership Model (UCOM). Contrary to the ICOM, it gives the power of decision to install or delete an application on a smart card to its user. The ownership of corresponding applications remains with their respective application providers along with the choice to lease their application to a card or not. In addition, based on the UCOM framework, we also proposed the Coopetitive Architecture for Smart Cards (CASC) that merges the centralised control of card issuers with the provision of application choice to the card user. In the core of the thesis, we analyse the suitability of the existing smart card architectures for the UCOM. This leads to the proposal of three major contributions spanning the smart card architecture, the application management framework, and the execution environment. Furthermore, we propose protocols for the application installation mechanism and the application sharing mechanism (i.e. smart card firewall). In addition to this, we propose a framework for backing-up, migrating, and restoring the smart card contents. Finally, we provide the test implementation results of the proposed protocols along with their performance measures. The protocols are then compared in terms of features and performance with existing smart cards and internet protocols. In order to provide a more detailed analysis of proposed protocols and for the sake of completeness, we performed mechanical formal analysis using the CasperFDR.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Cross-Platform Application Sharing Mechanism

    Get PDF
    The application sharing mechanism in multi-application smart cards facilitates corroborative schemes between applications in a secure and reliable manner. Traditional application sharing can only be realised if both applications are installed on the same device. In this paper, we extend the smart card firewall to include the application sharing mechanism between applications installed on different smart cards. We propose Platform and Application Binding Protocols that enables two smart-cards / applications to authenticate and ascertain the trustworthiness before sharing resources. Furthermore, we provide an informal analysis of the protocols along with comparison with existing protocols. Subsequently, mechanical formal analysis based on the CasperFDR, and the implementation experience is presented

    Rethinking the Smart Card Technology, Invited Paper

    Get PDF
    corecore