
1

Cross-Platform Application Sharing Mechanism
Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Information Security Group, Smart card Centre, Royal Holloway, University of London.
Egham, Surrey, United Kingdom.

Email: {RajaNaeem.Akram.2008, K.Markantonakis, Keith.Mayes}@rhul.ac.uk

Abstract—The application sharing mechanism in multi-
application smart cards facilitates corroborative schemes be-
tween applications in a secure and reliable manner. Traditional
application sharing can only be realised if both applications
are installed on the same device. In this paper, we extend the
smart card firewall to include the application sharing mechanism
between applications installed on different smart cards. We
propose Platform and Application Binding Protocols that enables
two smart-cards / applications to authenticate and ascertain the
trustworthiness before sharing resources. Furthermore, we pro-
vide an informal analysis of the protocols along with comparison
with existing protocols. Subsequently, mechanical formal analysis
based on the CasperFDR, and the implementation experience is
presented.

I. INTRODUCTION

The multi-application smart card initiative enabled a single
device to host multiple applications in a secure and reliable
manner. The smart card based firewall mechanisms provide
a secure and reliable framework for resource sharing among
corroborative applications, prohibiting unauthorised applica-
tion communication. In traditional smart card architectures, a
firewall only allows application sharing within the bounds of
a smart card on which they are installed. Examples are Multos
[1] and Java Card [2] firewall.

The Near Field Communication (NFC) [3] has reinvigorated
the drive towards the multi–application smart card initiative.
A user can have an NFC enabled smart phone that might
have several applications on a secure element (e.g. smart card,
embedded secure element, and secure memory card), which is
a tamper-resistant device that can securely store and execute
programs [4]. This also enables a user to have multiple secure
elements in a mobile phone, where each can have a number
of applications [5].

Furthermore, the User Centric Smart Card Ownership
Model (UCOM) [6] gives the ownership of smart cards to their
cardholders. The ownership entitles a user the “freedom of
choice”, which means that a user can only select an application
for installation or deletion given that she is entitled to it.
The application remains in total control of the application
provider (or Service Provider: SP). The security and reliability
assurance is provided by the platform itself; thereby, an SP
does not have to trust the cardholder [7].

Therefore, there is a real possibility of having two applica-
tions that are in a corroborative scheme installed on different
smart cards. The firewall mechanism of the UCOM [8] already
provides an extension to the traditional mechanisms deployed
in Multos and Java Card. In this paper, we further extend

the architecture of the UCOM firewall [8] to accommodate
the application sharing among applications that are installed
on different smart cards. This extension to the UCOM fire-
wall is referred as the Cross-Platform Application Sharing
Mechanism (CPAM) and is the focus of this paper. To enable
CPAM, two fundamental goals have to be met: 1) establishing
trust and secure relationship between two smart cards, and
2) authentication, authorisation, and establishing trust in the
current state of individual communicating applications.

We begin the discussion by providing the architecture of
the CPAM. In section three, we describe the Platform Binding
Protocol (PBP) that provides trust and establishment of secure
binding between various platforms. Furthermore, in section
four we discuss the Application Binding Protocol (ABP) that
enables two applications to authenticate and ascertain trust
in each other to accomplish application sharing. In section
five, we briefly discuss structure of the application resource
sharing request. Section six analyse the proposed protocols
with respect to informal analysis that includes comparison
with existing protocols, mechanical formal analysis using
CasperFDR, and test implementation experience. Finally, in
section seven we conclude the discussion and provide future
research directions.

II. CROSS-PLATFORM APPLICATION SHARING
MECHANISM

In this section, we describe the CPAM initiative and then
extend the discussion to the security and operational, goals
and requirements for the proposed protocols that support the
CPAM.

A. Framework for Cross-Platform Application Sharing

In the Cross-Platform Application Sharing (CPAS) archi-
tecture, a smart card acts like a node that is registered with a
centralised system. The centralised system in our proposal is
a software running on a host platform (e.g. computer, mobile
phone, or tablets, etc.), which is referred as Card Application
Management Software (CAMS) [6]. For a simplistic illustra-
tion, figure 1 shows two possibilities of the CPAS network.

In figure 1a, a mobile phone has three secure elements and
each of them are connected to a CAMS hosted on the mobile
phone. The CAMS can be hosted on an insecure platform and
in the UCOM or the proposed CPAM, CAMS are not required
to be secure. The only function of CAMS is to provide discov-
erability and interconnectivity to individual UCOM platforms.
With discoverability, we mean that a platform registers itself

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28900055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

with the CAMS and thus it becomes discoverable to all other
platforms in the network. The interconnectivity deals with the
communication channel established between two (or more)
secure elements. Therefore, figure 1a depicts the scenario
in which multiple secure elements are connected to a host
device (i.e. a mobile phone), and their interconnectivity and
discoverability is handled by the CAMS installed on it.

On the other hand, figure 1b shows that host devices
are connected with each other through their CAMS. Each
individual host device may have multiple smart cards that
are registered to their respective CAMS. Although, figure 1b
depicts as if there is a single centralised CAMS. Which is
incorrect, instead each host device has its own CAMS and
there are no centralised CAMS. Thereby, if a particular device
is not available, other platforms can still communicate with
each other. Now in this scenario, a host device would discover
other devices and register them. Here, we can divide this
scenario into two possible cases. In first case, each individual
host device advertises the connected smart cards to the entire
network. Where in second case, each host device only provides
the details of the respective CAMS and not the smart cards
registered with it. For our proposed CPAM, we prefer the
former as it provides a better privacy of individual smart cards.

Furthermore, the provision of whether an application sup-
ports CPAS is on the sole discretion of the respective SP. The
UCOM architecture would provide two levels of application
sharing: a) localised sharing, and b) CPAS network. The
first option restricts the application sharing to the smart card
on which the application is installed. Any client application
that is not installed on it will not be able to access the
shareable resources of the server application, and vice versa.
This scenario is implemented in traditional smart card firewalls
and supported by the UCOM [8, 16]. The second option allows
application sharing with a client application, whether or not it
is installed on the same platform.

(a)

S
e

c
u

re
 E

le
m

e
n

ts

Cell Phone with Multiple

Secure Elements

Tablet

Computer

CAMSCAMS

(b) Smart Cards attached to

different Platforms

Cell Phone

Cell Phone

Figure 1. Cross-Platform Application Sharing Network

B. Trusted Environment & Execution Manager (TEM)

An important component of UCOM smart cards is the
Trusted Environment & Execution Manager (TEM). The TEM
is responsible for a) security assurance and validation of the
platform, and b) user/TSM ownership management and del-
egation. The smart card runtime environment might conform

to any of the smart card platforms or operating systems (e.g.
Java Card or Multos).

A generic architecture of the TEM is illustrated in figure
2. For the sake of concision, we will only discuss those
components of the TEM that are directly related to this paper.

Trusted Environment & Execution Manager (TEM)

Smart Card Hardware

Native Code

Random

Number

Generator

Crypto-coprocessor

· Asymmetric

· Symmetric

· Digital Signature

Self-test

Manager

Interface
· Protocol Handling

· Enforces Access Policy

Attestation

Handler

Figure 2. Generic Architecture of Trusted Execution & Environment Manager
(TEM)

The two main components that are related to the proposed
protocols are “Attestation Handler” and “Self-test Manager”.
Both of these modules are used to provide a remote, dynamic,
and ubiquitous security assurance and validation that the
platform’s state is as it was at the time of a third party
evaluation. This security assurance and validation mechanism
is used during the application installation process to affirm to
an SP that the smart card is as secure and reliable as it is
stated by the evaluation certificate. An evaluation certificate is
a cryptographically signed certificate issued by an evaluation
body, and it is placed on the smart card by the respective card
manufacturer [7].

The evaluation certificate will certify a unique signature
key pair of the card manufacturer that it will use to issue
certificates to the manufactured smart cards that conform to
the evaluated product. During smart card manufacturing, the
TEM will generate a signature key pair [17] that will be
certified by the card manufacturer. On request for the platform
assurance and validation (either from a cardholder, an SP,
or an application), the TEM will evaluate the current state
of the smart card. The result will be signed by the TEM
and communicated to the requesting entity that can check
whether the current state is the same as stated in the evaluation
certificate. A point to note is that at present Common Criteria
(CC) [18] or any other evaluation scheme, does not provide
any such service but proposals presented in [7, 19] can be
utilised. At the protocol layer, the assurance and validation
requests are handled by the “Attestation Handler”.

The self-test mechanism implemented by the “Self-test
Manager” validates both the hardware and software state of the
smart card to be as it was at the time of evaluation. It is a two-
part mechanism: tamper-evidence and reliability assurance.
Smart cards are required to be a tamper-resistant device [20].
For this purpose smart card manufacturer implement hardware
based tamper protections. The tamper-evidence process veri-
fies whether the implemented tamper-resistant mechanisms are
still in place and effective. The reliability assurance process
verifies the software part of the smart card platform is not
been tampered/modified.

For the tamper-evidence mechanism, one possible avenue
is to utilise the Physically Unclonable Functions (PUFs) [21]

3

in conjecture with the TEM self-test implementations. In this
paper, we consider them to provide the assurance that an SP
is communicating with a hardware platform (i.e. to avoid a
simulator attack [22]) and assure that all implemented security
mechanisms (i.e. tamper-resistant mechanisms) are functioning
properly. We are still analysing how the PUF or other tamper-
evident mechanisms can be used in a secure and efficient way.
However, for this paper we assume that such a mechanism is in
place that can provide tamper-evidence to a requesting entity
as a part of the proposed protocols. The software state of a
platform can be validated by measuring its hash value. We can
consider with reasonable assurance that the state of the smart
card is as it was at the time of evaluation, if it matches with
the one that is listed in the evaluation certificate.

Similarly, the TEM would also assist in ascertaining the
current state of individual applications. When two SPs decide
to have application sharing among their respective appli-
cations. Either both of the SPs can opt for a third party
evaluation of their respective applications, or they can issue a
certificate to each other’s applications that contain the hash of
application state. In both of these cases, the certified state of
the application is treated as the trusted state by the other entity.
During the CPAM protocols, individual TEMs will evaluate the
current state of the respective application and communicate
it to other applications, which will then verify whether the
current stated is the trusted state.

The Platform Binding Protocol (PBP) will establish a secure
binding between two devices (e.g. secure elements) facilitate
the resource sharing between applications installed on them.
The Application Binding Protocol (ABP) enables two appli-
cations to perform authentication, authorisation, and ascer-
tain the trustworthiness in each other’s state. On successful
completion, it will generate a cryptographic key to bind the
communicating applications.

C. Goals and Requirements for the Proposed Protocols
A CPAM based protocols for the UCOM architecture should

meet the goals listed as below:
1) Mutual Entity Authentication: Entities authenticates to

each other to avoid masquerading by a malicious entity.
2) Exchange of certified public keys between the entities

to facilitate the key generation and entity authentication
processes.

3) Mutual Key Agreement: Communicating parties will
agree on the generation of a secret key during the protocol
run.

4) Joint Key Control: Communicating parties will mutually
control the key generation to avoid one party choosing
weak keys.

5) Key Freshness: The generated key will be fresh to the
protocol session.

6) Mutual Key Confirmation: Communicating parties will
provide implicit/explicit confirmation that they have gen-
erated the same keys during a protocol run.

7) Known-Key Security: If a malicious user is able to obtain
session key of a particular protocol run, it should not able
her to retrieve the long-term secrets (private keys) or the
session keys (future and past).

8) Unknown Key Share Resilience: If a malicious user
retrieves the long-term key of an entity, it will enable
her to impersonate the entity. Nevertheless, it should not
facilitate her to impersonate other entities to it [23].

9) Perfect Forward Secrecy: If the long-term keys of
communicating entities are compromised. An adversary
should not be able to compromise previously generated
keys.

10) Mutual Non-Repudiation: Communicating entities will
not be able to deny that they have executed the protocol
run with each other.

11) Trust Assurance (Trustworthiness): Communicating par-
ties provide a validation proof that is dynamically gener-
ated during the protocol execution [7].

12) Privacy: A third party should not be able to know the
identity of the communicating applications or devices.

13) Partial Chosen Key Attack: Protocols that claim to pro-
vide joint key control are susceptible to this attack [24].
In this attack, if two entities provide separate values to
the key generation function then one entity has to com-
municate its contribution value to the other. The second
entity can then compute the value of its contribution in
such a way that it can dictate its strength (able to generate
a partially weak key). However, this attack depends upon
the computational capabilities of the second entity.

14) Avoid Simulator Attack: A malicious user masquerade
a smart card on a computer (as a simulation). This can
enable him to download an application on a simulated
environment and perform reverse engineering on it, pos-
sibly revealing proprietary and sensitive data [22].

For formal definition of the italicised terms in the above
list, readers are advised to refer to [17]. The notation used in
the PBP and ABP protocols is listed in table I.

Table I
NOTATION USED TO DESCRIBE THE PROPOSED PROTOCOLS

S Denotes a server application.
C Denotes a client application.
SCX Denote a smart card platform X
SPX Denote the Service Provider of an application X .
Xi Represents the identity of an entity X .
gX Current Diffie-Hellman exponential (mod p) generated by the

entity X .
CertX Signature key pair certificate of an entity X .
NX Random number generated by an entity X .
A→ B Message sent by an entity A to an entity B.
X||Y Represents the concatenation of the data items X , Y in the

given order.
SigX(Z) Is the signature on data Z by an entity X using a signature

algorithm [25].
H(Z) Is the result of generating a hash of data Z.
Hk(Z) Is the result of generating a keyed hash (HMAC) of data Z

using key k.
[M]Ke

Km
Message M encrypted by the session encryption key Ke and
then MAC is computed using the session MAC key Km.

DHGroup Details the Diffie-Hellman group that is used to generate the
gx [26].

III. PLATFORM BINDING PROTOCOL

The Platform Binding Protocol (PBP) is executed by two
smart cards that are listed as SCa and SCb. Both smart
cards can be part of the same CAMS or associated with

4

Table II
PLATFORM BINDING PROTOCOL DESCRIPTION

1. SCa → SCb : SCa′
i||SCb′

i||NSCa ||H(NSCa ||gSCa ||SCb′
i)||DHGroup

2. SCb → SCa : SCb′
i||SCa′

i||NSCb ||H(NSCb ||gSCb ||SCa′
i)||DHGroupSel

3. SCa → SCb : gSCa ||SCa′
i ||SC

b′
i ||NSCa ||NSCb

4. SCb → SCa : gSCb ||NSCb ||[ReqV al||SCa′
i ||SC

b
i ||H(NSCa ||gSCa ||SCb′

i)||gSCb ||CertSCb ||PEC]Ke
Km

5. SCa → SCb : [ReqV al||SignSCa (gSCb ||gSCa ||NSCb ||NSCa ||SCa||SCb||Useri||H(SCOS))||CertSCa ||PEC]Ke
Km

6. SCb → SCa : [SignSCb (gSCa ||gSCb ||NSCa ||NSCb ||SCa||SCb||Useri||H(SCOS)]Ke
Km

two different CAMS. Both cases are accommodated by the
protocol described in table II and discussed as below.

Message 1. The PBP is initiated by the smart card A referred
as SCa. The first message contains the pseudo identities
of individual smart cards (e.g. SCa′

and SCb′), a random
number generated by the SCa. In addition, the SCa will
generate a Diffie-Hellman exponential gSCa

but to avoid
partial key chosen attack (see section III-C) it does not send
the gSCa

. Instead, it sends a commitment that is basically a
hash generated on the gSCa

, random number and recipient’s
pseudo identity.

Message 2. In response, the smart card B referred as SCb

will select a Diffie-Hellman group that it can support and
include the selection as DHGroupSel. The SCb will generate
a similar message as the SCa (e.g. Message 1) and sends it
to the SCa including the DHGroupSel. The Diffie-Hellman
commitments are made from the both communicating entities
and now in subsequent messages they can send the generated
Diffie-Hellman exponential.

Message 3. The SCa will send the Diffie-Hellman exponen-
tial to the SCb along with pseudo-identities and random num-
bers generated by the communicating smart cards. On receipt,
the SCb will generate the Diffie-Hellman secret (DHSecret =

(gSCb

)g
SCa

mod n. The session keys (i.e. encryption and Mac
keys) are generated as: Ke = HDHSecret

(NSCa ||NSCb ||1)
and Km = HDHSecret

(NSCa ||NSCb ||2). The PBP master keys
that will be used to generate session keys in all future commu-
nications are generated as: KE = HDHSecret

(NSCa ||NSCb ||0)
and KM = HDHSecret

(NSCb ||NSCa ||0).
Message 4. In response, the SCb will request for the

platform assurance and validation proof (i.e. ReqV al) from the
SCa. Furthermore, the pseudo identity of the SCa is appended
with the true identity of the SCb along with the commitment
hash generated by the SCa, Diffie-Hellman exponential and
cryptographic certificate of the SCb. Finally, the Product Eval-
uation Certificate (PEC) that is issued by third party evaluation
that has tested the security and operational functionality of the
smart card. The entire message except for the Diffie-Hellman
Exponential and the generated random number is encrypted
and Maced using the generated session keys (i.e. Ke and Km).

On receipt of the message four, the SCa will also generate
the Diffie-Hellman secret along with session keys similar to
the SCb. It will then verify the SCb’s cryptographic certificate
and PEC. If both smart cards are being evaluated by the same
laboratory than this process will be simple as SCa already
trusts that particular evaluation laboratory. Otherwise, it will
request the CAMS to traverse the certificate chain to find
out whether the SCa’s evaluation laboratory is part of that
certificate chain. Even if this fails, then the SCa can request its

respective card manufacturer that depending upon the provided
certificate decides whether it should proceed with the binding
or not. Therefore, only if SCa successfully ascertain the
validity of the certificate provider of the SCb’s certificate that
it will proceed with the protocol.

Message 5. In response, the SCa will proceed with a
platform assurance and validation mechanism. On successful
completion, the SCa will generate a hash value of critical
components and its referred as H(SCOS) in the protocol
description. The SCa will append the Diffie-Hellman ex-
ponentials will generated random numbers and identities of
communicating smart cards. The identity of current user of
the SCa is also concatenated with the message, which is then
signed by the SCa. The signed message is appended by the
SCa certificate and encrypted and Maced by the session keys.

The SCb verifies the SCa’s signature and then validates
whether the value of H(SCOS) is same as it was at the time
of evaluation, which is certified in the PEC of the SCa. To
verify the certificate chain, the SCb will iteratively employ the
similar procedure as SCa discussed as part of the message
four. Furthermore, the SCb will also verify the identity of
the user of the SCa. The SCb will record whether the user’s
identity is same for both smart cards or not. This information
will be used by applications to decide whether they would like
to establish a communication link with an application installed
on a different user’s smart card.

Message 6. The SCb will initiate the platform assurance
and validation mechanism, which generates the hash value
of the critical components of the SCb. It will append the
Diffie-Hellman exponentials, random numbers and identities
of communicating smart cards and current owner of the SCb.
Entire message is signed by the SCb, which is encrypted and
Maced by the session keys.

On receipt, the SCa will verify the signature and validate
the value of the H(SCOS) to the same as the PEC specifics,
which was sent to the SCa in message four.

IV. APPLICATION BINDING PROTOCOL

The Application Binding Protocol (ABP) is executed be-
tween two applications that have an application sharing en-
gagement. These two applications can be either on the same
or different devices. The protocol listed in the table III
accommodates the ABP when the respective applications are
installed on two distinct devices. This protocol can also be
used by applications even when they are installed on the same
device. The protocol in table III is between a client, and server
application represented as C and S, respectively.

Message 1. The protocol is initiated by the client application
C, which is installed on a smart card SCa. It will generate

5

Table III
APPLICATION BINDING PROTOCOL DESCRIPTION

1. C → S : gC ||NC ||HS→C(Ci||Si||SPC
i||SPS

i ||g
C ||NC)||DHGroup

2. S → C : gS ||NS ||[ReqV al||ReqUserID||SignS(g
S ||gC ||Ci||Si||SPC

i ||SP
C
i ||NC ||NS)||CertS]

Ke
Km
||DHGroupSel

3. C → S : [ReqV al||SignSCb (H(S)||SCb
i ||UserID||NC ||NS)||SignC(gS ||gC ||SPS

i ||SP
C
i ||NC ||NS)||CertC ||CertSCC

||PEC]Ke
Km

4. S → C : [SignSCa (H(S)||SCa
i ||UserID||NC ||NS)||CertSCS

||PEC||ResLocator]Ke
Km

a Diffie-Hellman exponential (gC) and a random number.
In addition, the application C also generates a keyed hash
of identities of the client and server applications, and their
respective SPs along with gC and NC . The rationale behind
the generation of the keyed hash value is to avoid man-in-
the-middle attack on the first message. To mount this attack, a
malicious user has to gain knowledge of identities of individual
applications and associated SPs and the secret key (S → C).
However, this message cannot avoid the replay attacks, which
we deal with in subsequent messages. The message is then
appended with the DHGroup.

On receipt of message one, the server application S in-
stalled on the smart card SCb will verify the authentication
credentials (i.e. keyed hash) and on a successful outcome,
it will continue with the protocol. The application S will
generate a Diffie-Hellman exponential and a random number.
Subsequently, the application S will generate the session keys
and long-term encryption and Mac keys in a similar manner
as in message three of PBP (see section IV).

Message 2. The application S will generate a signature
on the message containing the Diffie-Hellman exponential
generated by both the client and server applications, identities
of applications and their respective SP’s along with generated
random numbers. The signed message is appended by the
server application’s certificate along with requesting the client
application’s state validation and user authentication. The user
authentication is an optional parameter in the ABP, which
depends upon whether a server application allows application
sharing with client applications that are issued to different
users. If the server application allows application sharing
with different user’s client application then the parameter can
be omitted. Otherwise, ReqUserID will request the client
application to provide the details of the registered owner of the
smart card on which it resides. The message is then encrypted
and Maced using the session keys.

On receipt of message two, the application C will first gen-
erate the DHSecret and then session and long-term encryption
and Mac keys. After this, it will proceed with verifying the
Mac and decrypt the message two. First, it will validate the
certificate CertS and then verify the signature.

Message 3. The application C will then request the host
smart card to validate its current state by generated the hash
value. The smart card SCb will generate the hash of the
application and then sign it. The signed message includes
hash of the application C, identities of the smart card and
its owner (if requested by the server application in message
two), random number generated by both applications. In
addition, the client application also generates a signature on
the message containing Diffie-Hellman exponentials generated
by communicating applications along with identities of their
respective SP’s and generated random numbers. The signed

message by the smart cards provides security assurance and
validation that the client application, and the signed message
by the client application provides entity authentication to the
server application.

After the server application S receives the message three, it
will first verify whether the generated hash of the application
is same as certified by the either the SP of the application S or
stated in PEC. If successful, then in will verify the signature
generated by the application C. In case, the server application
requests for the user’s identity in message two then it will also
verify whether the user identity provided by the message three
is as required by the application S.

Message 4. In the final message of ABP, the server applica-
tion S will request host smart card SCa to generate the hash
of the application S. The SCa will generate the hash, append
it with identities of the smart card and user (if required) along
with generated random numbers. The resource locator referred
as ResLocator provides a handle to the shareable resources
provided by the server applications. The ResLocator uniquely
identify the smart card on which the server application is
installed, and the name of the resource that are being shared
(e.g. SIO or RMI object, etc.).

On receipt, the application A will verify the state of the
application S and if required to verify the identity of the
current owner of the smart card SCa on which the application
S is installed.

V. CROSS-PLATFORM APPLICATION SHARING

At the time, when a client application requests the shareable
resources, either in synchronous or asynchronous mode. It will
use the long-term encryption and Mac keys generated during
the ABP to calculate the session keys. The client application
will generate the message illustrated as payload in figure 3.
The message is appended with client and server application’s
identities. The smart card of the client application would then
also generate session keys and encrypt the received message
from client application. It appends the registered identities of
the client and server application’s smart cards. For brevity,
we do not dive into the details of the session key generation,
which can be left on the sole discretion of the communicating
parties.

Encrypted and MACed using PBP Keys

Encrypted and MACed using ABP Keys

Sharing Request (Payload)Client SC-ID Client AIDServer AIDServer SC-ID

Figure 3. Cross-Platform Application Sharing Message

VI. ANALYSIS OF THE PROPOSED PROTOCOLS

In this section, we look at the proposed protocols in
terms of informal analysis, mechanical formal analysis using

6

Table IV
PROTOCOL COMPARISON ON THE BASIS OF STATED GOALS (SEE SECTION III-C)

Goals Protocols
STS AD ASPeCT JFK T2LS SCP10 SCP81 MM SMM PBP ABP

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗

10 (∗) (∗) ∗ ∗ ∗ +∗ +∗ +∗ +∗ ∗ ∗
11 ∗ ∗ ∗
12 ∗ ∗
13 ∗ ∗ ∗ ∗ ∗
14 ∗ ∗

Note: ∗ means that the protocol meets the stated goal, (∗) represents that the protocol can modified to satisfy the requirement, and +∗ illustrates that the
protocol can meet the stated goal but require an additional pass or extra signature generation.

CasperFDR and finally providing the practical implementation
and performance details.

A. Revisiting the Requirements and Goals

In this section, we take the security goals, and requirements
stipulated in section III-C and provide a comparison of the
proposed PBP and ABP protocols with the selected protocols
like Station-to-Station (STS) [27], Aziz-Diffie (AD) [28] and
Just Fast Key (JFK) [29]. Furthermore, we choose the ASPeCT
protocol [30] that was created specifically for the mobile
network environment, and the T2LS a trusted secure channel
protocol [31].

From the smart card based environment, we have selected
four protocols that are specifically designed for the smart
card platform. These are the GlobalPlatform protocol SCP10
[32] and SCP81(based on SSL/TLS) [33], and Markantonakis-
Mayes (MM) [34]. Finally, we included the Sirett-Mayes-
Markantonakis (SMM) protocol [35] that is designed to se-
curely download applications from an application server to a
SIM card [20]; this protocol closely relates to the proposed
protocols.

As shown in the table IV, the STS protocol meets the first
10 along with the goal 13. The remaining goals not met by the
STS are because of the design architecture, and deployment
environment, which did not require these goals. Similarly, the
AD protocol does not meet certain goals. In the AD protocol,
the user reveals her identity by sending the user certificate in
clear along with the non-existence of key confirmation.

The most promising results were from the ASPeCt and JFK
protocols that meet a large set of goals. Both of these protocols
can be easily modified to provide the trust assurance (requiring
additional signature). Furthermore, both of these protocols are
vulnerable to the partial chosen key attacks. However, in the
table IV we opt for the possibility that the JFK can be modified
to meet this goal. The reason behind this is based on the entity
that takes the initiator’s role and in both protocols, a smart
card takes the initiator role; thereby, avoiding partial chosen
key attack.

The T2LS protocol meets the trust assurance goal by
default; however, it does not meet most of the required goals

of CPAS protocols (i.e. PBP, and ABP). A note in favour of
the SCP10, SCP81, MM, and SM protocol is that they were
designed with the assumption that an application provider has
a prior trusted relationship with the smart card issuer; thus,
implicitly trust the respective smart card. This assumption,
which is nearly implausible to ascertain in the UCOM, is
what makes these protocol not support a large number of the
listed goals. Most of these protocols, to some extent have the
similar architecture in which a server generates the key and
then communicates that key to the client (i.e. read smart card).
There is no non-repudiation as they do not use signatures in
the protocol run.

Nonetheless, the proposed protocols PBP and ABP meet all
the stated goals.

B. CasperFDR Analysis of the Protocols

The CasperFDR approach was adopted to test the sound-
ness of the proposed protocol under the defined security
properties. In this approach, the Casper compiler [39] takes
a high-level description of the protocol, together with its
security requirements. It then translates the description into
the process algebra of Communicating Sequential Processes
(CSP) [40]. The CSP description of the protocol can be
machine-verified using the Failures-Divergence Refinement
(FDR) model checker [41]. The intruder’s capability modelled
in the Casper script (Appendix A) for the proposed protocol
is as below:

1) An intruder can masquerade any entity in the network.
2) It can read the messages transmitted by each entity in the

network.
3) An intruder cannot influence the internal process of an

agent in the network.
The security specification for which the CasperFDR evalu-

ates the network is as shown below. The listed specifications
are defined in the #Specification section of Appendix A:

1) The protocol run is fresh and both applications were alive.
2) The key generated by the SP and SC is not known to the

intruder.
3) Entities have mutually authentication and key assurance

at the conclusion of the protocol.

7

Table V
PROTOCOL PERFORMANCE MEASURES (MILLISECONDS)

Measures SSL [36] TLS [37] Keberos [38] PBP ABP
Set One Set Two Set One Set Two

Card Specification 32bit 32bit 32bit 16bit 16bit 16bit 16bit
Average Time 4200 4300 4240 4436.23 4628.35 2998.71 3091.38

Best Time - - - 4078 4235 2906 3031
Worse Time - - - 5469 5875 3922 4344

Standard Deviation - - - 133.48 127.89 117.71 96.32

4) Long terms keys of communicating entities are not com-
promised.

5) User’s identity is not revealed to the intruder.
The protocol description defined in the Casper script (Ap-

pendix A) is a simplified representation of the proposed
protocol. The CasperFDR tool evaluated the protocol and did
not find any feasible attack(s).

C. Practical Implementation

The proposed protocols does not provide any specific details
of the cryptographic algorithms to be used during the protocol
run. This choice is left to the respective SPs and smart cards.
To provide a performance measure for the protocols, we have
used Advance Encryption Standard (AES) [42] 128-bit key
symmetric encryption with Cipher Block Chaining (CBC) [17]
without padding for both encryption and MAC operations. The
signature algorithm is based on the Rivest-Shamir-Aldeman
(RSA) [17] 512-bit key. We have used SHA-256 [43] for
the hash generation by the TEM. For Diffie-Hellman key
generation, we used 2058-bit group with the 256-bit prime
order subgroup specified in the RFC-5114 [26].

The architecture of the test-bed is based upon two entities,
both implemented on smart cards. The protocols execute on
16-bit Java Cards, and the implementation takes 9799 bytes
for PBP and 8374 bytes for ABP. The implemented protocols
were executed for 1000 iterations and time taken to complete
each iteration was recorded. The performance measures are
taken from two different sets of 16-bit Java Cards, and an
average of recorded measurements for both cards is listed in
table V. For comparison, we have selected the performance of
SSL [36], TLS [37], and Kerberos [38] on 32-bit smart cards.
The performance measures of the SSL, TLS and Kerberos
listed in the table V is with one node executing on a smart
card and other on a PC. Therefore, unlike ABP and PBP only
one communicating node is implemented on a smart card.

We consider that with adequate code optimisation we may
be able to achieve better performance results. It should be
noted that the performance measure is in reference to our
implementation. Where the actual implementation will be
required to take into account the SCOS and application size,
and communication speed.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we presented the CPAM architecture along
with two protocols that support the proposal. The proposed
protocols namely Platform Binding Protocol (PBP) and Appli-
cation Binding Protocol (ABP), provide entity authentication,
trusted assurance and validation, and key generation to devices

and applications, respectively. Both protocols were compared
with selected protocols as part of the informal analysis.
We also provided the mechanism formal analysis based on
the CasperFDR tool. Finally, the implementation details and
performance measures of these protocols were listed.

The CPAS mechanism in specific and user centric security
architecture for tamper-resistant devices in general is in its in-
fancy. Therefore, as part of future research direction we would
like to analyse the possible solutions to the platform assurance
and validation mechanism. The security and reliability of the
user centric security devices would heavily rely on the trust-
worthiness of this mechanism. Furthermore, how a network
of user centric security devices can establish and maintain
a dynamic trust matrix that calculates and assigns trust val-
ues to individual nodes. The conception of synchronous and
asynchronous application sharing requires deliberations, and
we aim for a well-defined and practically feasible system.
Furthermore, the Java Card Shareable Interface Object (SIO)
and Remote Method Invocation (RMI) methods are required
to be studied and adequately modified for the CPAS. Finally, it
would be beneficial to have PBP and ABP protocols based on
elliptic curve cryptosystem, which will provide a comparison
with the proposed approach.

VIII. ACKNOWLEDGEMENT

We would like to extend our appreciation to the anonymous
reviewers for their valuable time and feedback. Additionally,
thanks to Min Chen, Babar Mahmood, and Hisham Abbasi for
patience while proof reading drafts.

REFERENCES

[1] Multos: The Multos Specification,, Online, . [Online]. Available:
http://www.multos.com/

[2] Java Card Platform Specification, Online, Sun Microsystem Inc
Specification Version 3.0.1, May 2009. [Online]. Available: http:
//java.sun.com/javacard/3.0.1/specs.jsp

[3] ISO/IEC 18092: Near Field Communication - Interface and Protocol
(NFCIP-1), International Organization for Standardization (ISO) Std.,
April 2004.

[4] (2011, February) GlobalPlatform Device: Secure Element Remote Ap-
plication Management. Online. GlobalPlatform.

[5] G. Madlmayr, O. Dillinger, J. Langer, and J. Scharinger, “Management
of Multiple Cards in NFC-Devices,” in CARDIS ’08: Proceedings of
the 8th IFIP WG 8.8/11.2 international conference on Smart Card
Research and Advanced Applications, G. Grimaud and F.-X. Standaert,
Eds. Berlin, Heidelberg: Springer, 2008, pp. 149–161.

[6] R. N. Akram, K. Markantonakis, and K. Mayes, “A Paradigm Shift in
Smart Card Ownership Model,” in Proceedings of the 2010 International
Conference on Computational Science and Its Applications, B. O.
Apduhan and M. Gavrilova, Eds. Fukuoka, Japan: IEEE CS, March
2010, pp. 191–200.

http://www.multos.com/
http://java.sun.com/javacard/3.0.1/specs.jsp
http://java.sun.com/javacard/3.0.1/specs.jsp

8

[7] ——, “A Dynamic and Ubiquitous Smart Card Security Assurance
and Validation Mechanism,” in 25th IFIP International Information
Security Conference (SEC 2010), ser. IFIP AICT, K. Rannenberg and
V. Varadharajan, Eds. Brisbane, Australia: Springer, September 2010,
pp. 161–172.

[8] ——, “Firewall Mechanism in a User Centric Smart Card Ownership
Model,” in CARDIS 2010: Proceeding of the 9th IFIP WG 8.8/11.2
International Conference on Smart Card Research and Advanced Ap-
plication, ser. LNCS, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny,
Eds. Passau, Germany: Springer, April 2010, pp. 118–132.

[9] NFC Trials, Pilots, Tests and Live Services
around the World. Online. NFC World. [Online].
Available: http://www.nearfieldcommunicationsworld.com/
list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/

[10] “StarBucks: Mobile Applications,” Online, Visited May 2011. [Online].
Available: http://www.starbucks.com/coffeehouse/mobile-apps

[11] J. Guaus, L. Kanniainen, P. Koistinen, P. Laaksonen,
K. Murphy, J. Remes, N. Taylor, and O. Welin, “Best
Practice for Mobile Financial Services: Enrolment Business
Model Analysis,” Mobey Forum Mobile Financial Services Ltd.,
Helsinki, Finland, Online, June 2008. [Online]. Available: http:
//www.mobeyforum.org/files/bestpractice/Best%20Practices%20for%
20MFS%20Enrolment%20Business%20model%20analysis%20final.pdf

[12] R. N. Akram, K. Markantonakis, and K. Mayes, “User Centric Security
Model for Tamper-Resistant Devices,” in the 8th IEEE International
Conference on e-Business Engineering (ICEBE 2011), J. Li and J.-Y.
Chung, Eds. Beijing, China: IEEE Computer Science, October 2011.

[13] “National Strategy for Trusted Identities in Cyberspace,” Department
of Homeland Security, USA, Draft Proposal, June 2010. [Online].
Available: http://www.dhs.gov/xlibrary/assets/ns_tic.pdf

[14] “Future Networks and the Internet: Early Challenges Regarding the
"Internet of Things",” Commission of the European Communities,
Brussels, Commisision Staff Working Document SEC(2008) 2516,
September 2008. [Online]. Available: http://ec.europa.eu/information_
society/eeurope/i2010/docs/future_internet/swp_internet_things.pdf

[15] H. Kopetz, “Internet of Things,” in Real-Time Systems, ser. Real-Time
Systems Series. Springer US, 2011, pp. 307–323. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4419-8237-7_13

[16] R. N. Akram, K. Markantonakis, and K. Mayes, “Application-Binding
Protocol in the User Centric Smart Card Ownership Model,” in the 16th
Australasian Conference on Information Security and Privacy (ACISP),
ser. LNCS, U. Parampalli and P. Hawkes, Eds. Melbourne, Australia:
Springer, July 2011, pp. 208–225.

[17] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC, October 1996.

[18] Common Criteria for Information Technology Security Evaluation, Part
1: Introduction and general model, Part 2: Security functional require-
ments, Part 3: Security assurance requirements,, Common Criteria Std.
Version 3.1, August 2006.

[19] D. Sauveron and P. Dusart, “Which Trust Can Be Expected of the
Common Criteria Certification at End-User Level?” Future Generation
Communication and Networking, vol. 2, pp. 423–428, 2007.

[20] K. Mayes and K. Markantonakis, Eds., Smart Cards, Tokens, Security
and Applications. Springer, 2008.

[21] H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The
PUF promise,” in Proceedings of the 3rd international conference
on Trust and trustworthy computing, ser. TRUST’10. Berlin,
Heidelberg: Springer-Verlag, June 2010, pp. 290–297. [Online].
Available: http://portal.acm.org/citation.cfm?id=1875652.1875675

[22] R. N. Akram, K. Markantonakis, and K. Mayes, “Simulator Problem
in User Centric Smart Card Ownership Model,” in 6th IEEE/IFIP
International Symposium on Trusted Computing and Communications
(TrustCom-10), H. Y. Tang and X. Fu, Eds. HongKong, China: IEEE
CS, Dec 2010.

[23] S. Blake-Wilson, D. Johnson, and A. Menezes, “Key Agreement Pro-
tocols and Their Security Analysis,” in Proceedings of the 6th IMA
International Conference on Cryptography and Coding. London, UK:
Springer-Verlag, 1997, pp. 30–45.

[24] C. Mitchell, M. Ward, and P. Wilson, “Key Control in Key Agreement
Protocols,” Electronics Letters, vol. 34, no. 10, pp. 980 –981, May 1998.

[25] C. Furlani, FIPS 186-3 : Digital Signature Standard (DSS), Online,
National Institute of Standards and Technology (NIST) Std., June 2009.

[26] M. Lepinski and S. Kent, “RFC 5114 - Additional Diffie-Hellman
Groups for Use with IETF Standards,” , Jan 2008.

[27] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
Authenticated Key Exchanges,” Des. Codes Cryptography, vol. 2, pp.
107–125, June 1992.

[28] A. Aziz and W. Diffie, “Privacy And Authentication For Wireless Local
Area Networks,” IEEE Personal Communications, vol. 1, pp. 25–31,
First Quarter 1994.

[29] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D.
Keromytis, and O. Reingold, “Just Fast Keying: Key Agreement in a
Hostile Internet,” ACM Trans. Inf. Syst. Secur., vol. 7, May 2004.

[30] G. Horn, K. M. Martin, and C. J. Mitchell, “Authentication Protocols
for Mobile Network Environment Value-Added Services,” in IEEE
Transactions on Vehicular Technology, vol. 51. IEEE, Mar 2002.

[31] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan, “Beyond
Secure Channels,” in the 2007 ACM workshop on Scalable Trusted
Computing. NY, USA: ACM, 2007, pp. 30–40.

[32] GlobalPlatform: GlobalPlatform Card Specification, Version 2.2,, Glob-
alPlatform Std., March 2006.

[33] Remote Application Management over HTTP, Card Specification v 2.2
- Amendment B, Online, GlobalPlatform Specification, September 2006.

[34] K. Markantonakis and K. Mayes, “A Secure Channel Protocol for
Multi-application Smart Cards based on Public Key Cryptography,” in
CMS 2004 - Eight IFIP TC-6-11 Conference on Communications and
Multimedia Security, D. Chadwick and B. Prennel, Eds. Springer,
September 2004, pp. 79–96.

[35] W. G. Sirett, J. A. MacDonald, K. Mayes, and C. Markantonakis, “De-
sign, Installation and Execution of a Security Agent for Mobile Stations,”
in Smart Card Research and Advanced Applications, 7th IFIP WG
8.8/11.2 International Conference, CARDIS, ser. LNCS, J. Domingo-
Ferrer, J. Posegga, and D. Schreckling, Eds., vol. 3928. Tarragona,
Spain: Springer, April 2006, pp. 1–15.

[36] P. Urien, “Collaboration of SSL Smart Cards within the WEB2 Land-
scape,” Collaborative Technologies and Systems, International Sympo-
sium on, vol. 0, pp. 187–194, 2009.

[37] P. Urien and S. Elrharbi, “Tandem Smart Cards: Enforcing Trust for
TLS-Based Network Services,” Applications and Services in Wireless
Networks, International Workshop on, vol. 0, pp. 96–104, 2008.

[38] A. Harbitter and D. A. Menascé, “The Performance of Public Key-
Enabled Kerberos Authentication in Mobile Computing Applications,”
pp. 78–85, 2001.

[39] Casper: A Compiler for the Analysis of Security Protocols, ser. Journal
of Computer Security, June 1998.

[40] C. A. R. Hoare, Communicating Sequential Processes. New York, NY,
USA: ACM, 1978, vol. 21, no. 8.

[41] P. Ryan and S. Schneider, The Modelling and Analysis of Security
Protocols: the CSP Approach. Addison-Wesley Professional, 2000.

[42] Joan Daemen and Vincent Rijmen, The Design of Rijndael: AES - The
Advanced Encryption Standard. Berlin, Heidelberg, New York: Springer
Verlag, 2002.

[43] FIPS 180-2: Secure Hash Standard (SHS), National Institute of Stan-
dards and Technology Std., 2002.

APPENDIX

A. CasperFDR Script for the Platform Binding Protocol
#Free variables
datatype Field = Gen|Exp(Field, Num) unwinding
2
halfkeySCA, iMsg, rMsg, halfkeySCB, EnMaKey :
Field
SCB, SCA, User: Agent
gSCB, gSCA: Num
nSCB, nSCA, SCOSAHash, SCOSBHash: Nonce
VKey: Agent->PublicKey
SKey: Agent->SecretKey
h: HashFunction
InverseKeys = (VKey, SKey), (EnMaKey, \
EnMaKey), (Exp, Exp), (Gen, Gen)

#Protocol description
0. -> SCA : SCB
[SCB!=SCA]
<iMsg:=Exp(Gen,gSCA)>
1. SCA -> SCB : SCA, nSCA, H(iMsg)%hashSCA
<rMsg:=Exp(Gen,gSCB)>
2. SCB -> SCA : SCB, nSCB, H(rMsg)%hashSCB
3. SCA -> SCB: SCA, SCB, nSCA, nSCB,
iMsg%halfkeySCA,

http://www.nearfieldcommunicationsworld.com/list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/
http://www.nearfieldcommunicationsworld.com/list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/
http://www.starbucks.com/coffeehouse/mobile-apps
http://www.mobeyforum.org/files/bestpractice/Best%20Practices%20for%20MFS%20Enrolment%20Business%20model%20analysis%20final.pdf
http://www.mobeyforum.org/files/bestpractice/Best%20Practices%20for%20MFS%20Enrolment%20Business%20model%20analysis%20final.pdf
http://www.mobeyforum.org/files/bestpractice/Best%20Practices%20for%20MFS%20Enrolment%20Business%20model%20analysis%20final.pdf
http://www.dhs.gov/xlibrary/assets/ns_tic.pdf
http://ec.europa.eu/information_society/eeurope/i2010/docs/future_internet/swp_internet_things.pdf
http://ec.europa.eu/information_society/eeurope/i2010/docs/future_internet/swp_internet_things.pdf
http://dx.doi.org/10.1007/978-1-4419-8237-7_13
http://portal.acm.org/citation.cfm?id=1875652.1875675

9

<EnMaKey := Exp(halfkeySCA, gSCB)
[hashSCA==h(halfkeySCA)]
4. SCB -> SCA : SCA, SCB, rMsg%halfkeySCB,
{SCB, nSCA, nSCB}{EnMaKey}
<EnMaKey := Exp(halfkeySCB, gSCA)>
[hashSCB==h(halfkeySCB)]
5. SCA -> SCB : {{gSCA, gSCB, User,
SCOSAHash}{SKey(SCA)}}{EnMaKey}
6. SCB -> SCA : {{gSCA, gSCB, User,
SCOSBHash}{SKey(SCB)}}{EnMaKey}

#Actual variables
SCardOne, SCardTwo, USER, MaliciousEntity:
Agent
GSCB, GSCA, GMalicious: Num
NSCB, NSCA, NMalicious: Nonce

#Processes
INITIATOR(SCA,SCB, User, gSCA, nSCA,
SCOSAHash)knows SKey(SCA), VKey
RESPONDER(SCB,SCA, User, gSC, nSCB, SCOSBHash)
knows SKey(User), SKey(SC), VKey

#System
INITIATOR(SCardA, SCardB, GSCA, NSCA,
SCOSAHASH)
RESPONDER(SCardB, SCardA, USER, GSCB, NSCB,
SCOSBHASH)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = MaliciousEntity
IntruderKnowledge = {SCardA, SCardB,
MaliciousEntity, GMalicious, NMalicious,
SKey(MaliciousEntity), VKey}

#Specification
Aliveness(SCA, SCB)
Aliveness(SCB, SCA)
Secret(SCA, EnMaKey, [SCB])
Secret(SCB, EnMaKey, [SCA])
Secret(SCA, User, [SCB])
Secret(SCB, User, [SCA])
Agreement(SCA, SCB, [EnMaKey])
Agreement(SCB, SCA, [EnMaKey])

#Equivalences
forall x, y : Num . Exp(Exp(Gen, x), y) =
Exp(Exp(Gen, y), x)

B. CasperFDR Script for the Application Binding Protocol
#Free variables
datatype Field = Gen|Exp(Field, Num) unwinding
2
halfkeyC, iMsg, rMsg, halfkeyS, EnMaKey :
Field
S, C, User: Agent
gS, gC: Num
nS, nC, AppS, AppC: Nonce
VKey: Agent->PublicKey
SKey: Agent->SecretKey
h: HashFunction
InverseKeys = (VKey, SKey), (EnMaKey,
EnMaKey), (Exp, Exp), (Gen, Gen)

#Protocol description

0. -> C : S
[S!=C]
<iMsg:=Exp(Gen,gC)>
1. C -> S : C, nC, iMsg%halfkeyC
<EnMaKey := Exp(halfkeyC, gS);\
rMsg:=Exp(Gen,gS)>

2. S -> C : S, nS, rMsg%halfkeyS
<EnMaKey := Exp(halfkeyS, gC)>
3. C -> S: nC, nS
4. S -> C : {{halfkeyC, halfkeyS, User, nC,
nS, h(AppS)}{SKey(S)}}{EnMaKey}
[rMsg==halfkeyS]
5. C -> S : {{halfkeyC, halfkeyS, User, nC,
nS, h(AppC)}{SKey(C)}}{EnMaKey}
[iMsg==halfkeyC]

#Actual variables
Server, Client, USER, MaliciousEntity: Agent
GS, GC, GMalicious: Num
NS, NC, APPS, APPC, NMalicious: Nonce

#Processes
INITIATOR(C,S, User, gC, nC, AppC)knows
SKey(C), VKey
RESPONDER(S,C, User, gS, nS, AppS) knows
SKey(S), VKey

#System
INITIATOR(Client, Server, GC, NC, APPC)
RESPONDER(Server, Client, USER, GS, NS, APPS)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = MaliciousEntity
IntruderKnowledge = {Server, Client, APPC,
APPS, MaliciousEntity, GMalicious, NMalicious,
SKey(MaliciousEntity), VKey}

#Specification
Aliveness(C, S)
Aliveness(S, C)
Secret(C, EnMaKey, [S])
Secret(S, EnMaKey, [C])
Secret(S, User, [C])
Secret(C, User, [S])
Agreement(C, S, [EnMaKey])
Agreement(S, C, [EnMaKey])

#Equivalences
forall x, y : Num . Exp(Exp(Gen, x), y) =
Exp(Exp(Gen, y), x)

	Introduction
	Motivation
	Why Cross-Platform Application Sharing Mechanism?

	Cross-Platform Application Sharing Mechanism
	Framework for Cross-Platform Application Sharing
	Trusted Environment & Execution Manager (TEM)
	Goals and Requirements for the Proposed Protocols

	Platform Binding Protocol
	Application Binding Protocol
	Cross-Platform Application Sharing
	Analysis of the Proposed Protocols
	Revisiting the Requirements and Goals
	CasperFDR Analysis of the Protocols
	Practical Implementation

	Conclusion and Future Research Directions
	Acknowledgement
	References
	Appendix
	CasperFDR Script for the Platform Binding Protocol
	CasperFDR Script for the Application Binding Protocol

