
A Secure and Trusted Channel Protocol for the User Centric

Smart Card Ownership Model

Abstract. The User Centric Smart Card Ownership Model (UCOM) provides an open and dy-
namic smart card environment enabling cardholders to request installation/deletion of an appli-
cation to which they are entitled. As in this model, smart cards are not under the control of a
centralised authority; hence, it is di�cult for an application provider to ascertain their trustworthi-
ness. At present, proposed secure channel protocols for the smart card environment do not provide
adequate assurance required by the UCOM. In this paper, we explore the reasons behind their fail-
ure to meet the UCOM requirements and then propose a secure and trusted channel protocol that
meets them. A comparison of the proposed protocol with existing smart card and selected Internet
protocols is provided. Then we analyse the protocol with the CasperFDR tool. Finally, we detail
the implementation and the performance measurement.

1 Introduction

The multi-application smart card initiative has been around since late 1990s; however, it did not
experience a wide scale adoption [1]. Nevertheless, recently the introduction of the Near Field
Communication (NFC) [2] technology and commercial realities have reinvigorated it [3].

This is an encouraging trend and there are a number of trials [4] being conducted around the
world. In most of these trials, either the traditional ownership model termed as Issuer Centric
Smart Card Ownership Model (ICOM) [5], or an extension of it referred to as Trusted Service
Manager (TSM) [6] is deployed. In the ICOM, a centralised authority referred as card issuer has
the sole control of the application installation and deletion on the issued smart cards.

The User Centric Smart Card Ownership Model (UCOM) [7] delegates the smart card's
ownership to their respective users (cardholders). The term ownership means �freedom of choice�
that only the users have the privilege to request installation or deletion of an application from a
Service Provider (SP). Each SP has an Application Lease Policy (ALP) [8], which if satis�ed by
a smart card the SP would lease the respective application to it.

For leasing an application, the respective SP will establish a secure channel protocol with
a smart card along with ascertaining its security and operational assurance. For this purpose,
we propose a Secure and Trusted Channel Protocol (STCP) in this paper. The STCP not only
establishes a secure communication channel but also provides assurance that the participating
smart card is secure and trustworthy.

We start the discussion with a brief description of the related work and provide the rationale
why we considered that most of the existing smart card protocols fall short in the UCOM
environment. The discussion is then extended in section three to the smart card architecture in the
UCOM environment that provides dynamic and ubiquitous security and reliability assurance. In
section four, we propose the STCP followed by the informal and mechanical formal (CasperFDR)
analysis of the STCP in section �ve. Section six details the performance measurements and �nally,
in section seven future research directions and conclusion of the paper are provided.

2 Secure Channel Protocols

In this section, we explore the rationale behind the STCP along with the related work that we
use as a point of reference for later discussions.

2.1 Motivation

A Secure Communication Protocol (SCP) by de�nition provides either or both: entity authen-
tication and key exchange between communicating parties (end points). The SCP preserves the
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con�dentiality and integrity of the messages on the channel but does not assure the same at the
end points.

Nevertheless, there can be implicit assurance in the integrity and security of the end points
as articulate by ETSI TS 102 412 [9]. This states that the smart card is a secure end point
under the assumption that it is a tamper-resistant device. The implicit assumption is valid for
the traditional smart card environment (e.g. ICOM and TSM) because smart cards are issued by
�trusted� card issuers. The assurance is provided by the card issuer or in some cases indirectly by
the Common Criteria (CC) evaluation [10]. This became the fundamental assumption in most
of the smart card based SCPs. For the ICOM, this makes sense as the strict control of a smart
card will e�ectively restrict it to only execute SCP with an entity that has prior authorisation
from the card issuer.

On contrary, in the UCOM, there is no such authority (i.e. card issuer); hence, the assumption
of the implicit assurance is no longer valid as illustrated by the simulator problem described in
[11]. A simulated smart card on a computer can initiate a communication channel with an SP in
the UCOM, download its application, and then try to reverse engineer it.

A trusted channel is a secure channel that is cryptographically bounded to the current state of
the communicating parties [12]. This state can be a hardware and/or software con�guration, and
ideally it will require a trustworthy component to validate it to be the same as claimed. Such a
component in most of the instances is a Trusted Platform Manager (TPM) [13] as demonstrated
by [14] and [15].

In the UCOM, an SP does not have any prior trust relationship with a smart card. Therefore,
the traditional smart card SCPs will fail to provide: (a) assurance that an SP is communicat-
ing with a genuine smart card platform and not a simulator, (b) the smart card security and
operational environment is certi�ed by a reputed third party evaluation, (c) the security and
operational environment state is still valid as it was at the time of the evaluation, and (d) the
smart card is owned by the user who is requesting the application download. These issues in the
context of the UCOM are further discussed in section 2.3.

We de�ne the STCP in the context of the UCOM as a protocol providing a secure and
reliable communication channel coupled with an assurance of security and integrity concerning
the communicating smart card. The STCP is used during: (a) application installation/deletion
process, and/or (b) communication between an installed application and its respective SP.

2.2 Related Work

In this section, we restrict to the discussion of the protocols that are speci�cally proposed for
the smart card environment or being used as point of comparison in later discussions.

Early smart card protocols were based on the symmetric key crypto-system like (deprecated)
SCP01 of the GlobalPlatform speci�cation [16]. Other protocols speci�ed by the GlobalPlatform
speci�cation are SCP02 (based on Triple-DES), SCP10 (based on asymmetric key crypto-system)
[16], SCP81 (based on SSL/TLS) [17], SCP03 (based on AES) [18], and SCP80 for the mobile
telecom industry [19].

The concept of trusted channel protocols was put forward by Gasmi et al. [12] along with
the adaptation of TLS protocol [20]. Later Armknecht et al. [15] proposed another adaptation
of OpenSSL to accommodate the concept of the trusted channel; similarly, Zhou and Zhang [14]
also proposed an SSL based trusted channel protocol.

In section 5.3, we will compare the proposed STCP with the existing protocols. These proto-
cols include the Station-to-Station (STS) [21], the Aziz-Di�e (AD) protocol [22], the ASPeCT
protocol [23], Just-Fast-Keying (JFK) [24], trusted TLS (T2LS) [12], GlobalPlatform SCP81 [17],
Markantonakis-Mayes (MM) protocol [25], and Sirett-Mayes (SM) protocol [26]. The rationale
for not including SCP10 is based on its similarity with the MM protocol.

The selection of the protocols is intentionally kept broad to include well-established protocols
like STS, Aziz-Di�e (AD) and JFK protocols. Also including the ASPeCT protocol, which is



designed speci�cally for the mobile network's value-added services. The T2LS is based on the
concept of trusted channels where SCP81, SM, and MM protocols are speci�c to smart cards.

2.3 Requirements and Goals of the STCP

The proposed protocol that supports the UCOM architecture should at minimum meet the
following requirements and goals. The listed requirements are selected on the basis of the desirable
features for an SCP and speci�c requirements of the UCOM.

G1) Mutual Entity Authentication: Both a smart card and an SP authenticates to each other to
avoid masquerading by a malicious entity.

G2) Exchange of certi�ed public keys between the entities to facilitate in the key generation and
entity authentication process.

G3) Mutual Key Agreement: Communicating parties will agree on the generation of a key during
the protocol run.

G4) Joint Key Control: Communicating parties will mutually control the generation of new keys
to avoid one party choosing weak keys or predetermining any portion of the session key.

G5) Key Freshness: The generated key will be fresh to the protocol session to protect replay
attacks.

G6) Mutual Key Con�rmation: Communicating parties will provide implicit/explicit con�rma-
tion that they have generated the same keys during a protocol run.

G7) Known-Key Security: If a malicious user is able to obtain session key of a particular protocol
run, it should not able him or her to retrieve the long-term secrets (private keys,) or session
keys (future and past).

G8) Unknown Key Share Resilience: In the unknown key share attack, an entity X believes that
it has shared a key with an Y, where the entity Y mistakenly believes that it has shared
the key with entity Z 6= X

G9) Key Compromise Impersonation (KCI) Resilience: If a malicious user retrieves the long-term
key of an entity, it will enable him or her to impersonate the entity. Nevertheless, it should
not facilitate him or her to impersonate other entities to it [27].

G10) Perfect Forward Secrecy: In case, if the long-term keys of communicating entities are com-
promised. It does not enable a malicious user to compromise previously generated session
keys.

G11) Mutual Non-Repudiation: Communicating entities will not be able to deny that they have
executed the protocol run with each other.

G12) Partial Chosen Key (PCK) Attack: Protocols that claim to provide joint key control are
susceptible to this attack [28]. In this attack, if two entities provide separate values to the
key generation function then one entity has to communicate its contribution value to the
other. The second entity can then compute the value of its contribution in such a way that
it can dictate its strength (able to generate a partially weak key). However, this attack
depends upon the computational capabilities of the second entity.

G13) Trust Assurance (Trustworthiness): The communicating parties not only provide security
and operation assurance but also validation proofs that are dynamically generated during
the protocol execution [29].

G14) Memory-DoS and Computation-DoS Prevention: The protocol should not require the server
(in our case SP's servers) to allocate the resources before authenticating and validating the
state of the requesting entity (a smart card) or verifying the credentials of the authorised
user.

G15) Privacy: A third party should not be able to know the identities of the user or her smart
card, either over the Internet or Over-the-Air (OTA). In addition, during the trust valida-
tion and assurance process; the requesting SP should not be able to gain any additional
information about the platform (e.g. applications installed on a smart card).



G16) Simulator Attack: This attack discussed in [29] allows a malicious user to masquerade a
smart card platform on a computer (as a simulation). Such a possibility will enable the
malicious user to download an application onto a simulated platform and then perform
reverse engineering on the downloaded application: revealing proprietary and sensitive data
of the application. Therefore, any proposed protocol for the UCOM architecture should
integrate the platform attestation in its speci�cation that veri�es the current state of the
platform to be trustworthy.

G17) Platform & Application User Separation (PAU) Attack: This attack is discussed in [29] in
which a malicious user provides access credentials of a genuine user to an SP and downloads
the respective application onto her smart card. Any protocol should tie a platform with its
respective card-owner (user) to avoid platform & application user separation attack.

For formal de�nition of the terms (italicised) used in the above list, readers are advised to
refer to [30]. The stated goals in this section are later used as point of reference to compare (see
table 4) the proposed STCP with listed protocols in section 2.2.

3 Smart Card Assurance and Validation Mechanism

In this section, we describe the UCOM smart card architecture with on the emphasis on the
trust assurance mechanism.

3.1 Smart Card Architecture

In the ICOM, both the card issuer and the application provider have an o�ine relationship.
That may translate into having business and legally-binding contracts that de�ne the terms and
conditions for both parties to co-exist, and abide by each other's security requirements/policies
on a smart card.

However, such an assumption is impossi-
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Fig. 1. Overview of the UCOM smart card ar-
chitecture.

ble to make in the UCOM where smart cards
are not under any centralised authority. This
absence of the prior and o�ine trust in the
UCOM is the major cause why most of the ex-
isting protocols fail the UCOM requirements
(section 2.3).An essential architectural change
is required to the smart card architecture that
can facilitate the establishment of the trust-
worthiness of both the smart card platform
and (installed) application(s) that is referred to as Trusted Environment & Execution Manager
(TEM) and illustrated in the overly simpli�ed �gure 1.

3.1.1 Trusted Environment & Execution Manager The TEM is used to provide a re-
mote, and dynamic security assurance and validation that the smart card's state is as it was
at the time of a third party evaluation. For security assurance, the third party evaluator issues
an Product Evaluation Certi�cate (PEC), which is a cryptographically signed certi�cate that
details the security and operational functionality of the evaluated product. The evaluation cer-
ti�cate will also certify a unique signature key pair of the card manufacturer. During the card
manufacturing, the smart card will generate a signature key pair [30] that will be certi�ed by
the card manufacturer. The certi�cate hierarchy in the UCOM architecture is shown in �gure 2.
One thing to note is that at present CC [10] or any other evaluation scheme for that matter does
not provide the PEC but proposals presented in [29] and [31] can be utilised.
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Fig. 2. Certi�cate hierarchy in the UCOM architecture.

For security validation, the TEM implements a validation mechanism that is divided into
two parts: tamper-evidence and reliability assurance. Smart cards are required to be a tamper-
resistant device [32] and for this purpose card manufacturers implement hardware based tamper
protections. The tamper-evidence process veri�es whether the implemented tamper-resistant
mechanisms are still in place and e�ective. The reliability assurance process on the other hand
verify the software part of the smart card that is crucial for its security and reliability has not
been tampered with.

A TEM tamper-evidence process should provide properties that are listed as below:

1. Robustness: On input of a certain data, it always produces the associated output.

2. Independence: When the same data is input to tamper-evidence process on two di�erent
devices, it outputs di�erent values.

3. Pseudo-randomness: The generated output should be computationally di�cult to distinguish
from a pseudo-random function.

4. Tamper-evidence: An invasive attack to access the function should have irreversible changes,
which render the device dead.

5. Assurance: The function can provide assurance (either implicitly or explicitly) to independent
(non-related) veri�ers. It should not require an active connection with the device manufac-
turer to provide the assurance. The assurance refers to the current hardware and software
state is as it was at the time of third party evaluation.

Table 1. Comparison of di�erent proposals for validation mechanism.
Features Active-Shield KAT Keyed-HMAC PRNG PUF

Robustness Yes Yes Yes Yes Yes

Independence No No No Yes Yes

Pseudo-randomness No No Yes Yes Yes

Tamper-evidence Yes No � - Yes

Assurance Yes No No No Yes*
Note: �Yes� means that the mechanism supports the feature. Similarly, �No� indicates that the mechanism does
not support the required feature. The entry �Yes*� means that it may support the feature if adequately designed.

For the TEM tamper-evidence process there can be several candidates including using active
(intelligent) shield/mesh [32], Known Answer Test (KAT) [33], hard-wired HMAC key, attestation
based on PRNG [34] and Physically Unclonable Function (PUF) [35], etc. Based on the above
listed features and table 1, we can safely assume that PUFs and PRNGs are better candidate
for the validation mechanism. Therefore, we have included an algorithm in appendix B that
implements PUF and PRNG based validation mechanism. We avoid discussing the details of the
validation mechanism and its e�ectiveness in this paper as its beyond the scope of this paper.

4 Secure and Trusted Channel Protocol

In this section, we start the discussion with the notation used followed by the description of the
proposed STCP.



4.1 Protocol Notation

The notation used in the protocol description is listed in table 2;

Table 2. Notation used in protocol description.
SP :Denotes a Service Provider.
SC :Denotes a smart card.
U :Denotes a smart card owner (user).
Xi :Represents the identity of an entity X.
grX :Di�e-Hellman exponential generated by an entity X.
CertX :Signature key certi�cate of an entity X.
SCCon :Capability list (i.e. supported security and operational functions) of the smart card.
XSup :List of Di�e-Hellman groups and protocol parameters (e.g. cryptographic algorithms) sup-

ported by an entity X.
XSel :List of Di�e-Hellman groups and protocol parameters selected by an entity X.
Nx :Random number generated by an entity x.
A→ B :Message sent by an entity A to an entity B.
X‖Y :Represents the concatenation of the data items X, Y in the given order.

[M ]Ke
Ka

:Message M encrypted by the session encryption key Ke and then MAC is computed using the
session MAC key Ka. Both keys Ke and Ka are generated during the protocol run.

Sigx(Z):Signature generated on data Z by the entity x using a signature algorithm [36].
H(Z) :Is the result of generating a hash of data Z.
Hk(Z) :Result of generating a keyed hash of data Z using key k.
SCookie :Session cookie generated by the respective SP. It indicates the session information and facil-

itates in protection against DoS attacks along with (possibly) providing the protocol session
resumption facility.

UCre :User authentication credential (e.g. login and password) associated with a particular SP.
V R :Validation request send by an SP to a smart card. In response the smart card provides the

security and reliabiltiy assurance to the SP.
ADP :The ADP will include appropriate parameters for the application download protocol (which is

beyond the scope of this paper).
ALP :The ALP is the minimum security, reliability and operational requirements imposed by the

respective SP on a smart card. The ALP also includes the respective application's details that
include application size and functionality support requirements.

4.2 Pre-Protocol Process

To initiate the STCP protocol, a user will connect her smart card to internet through a device (e.g.
mobile phone, desktop computer) that host Card Application Management Software (CAMS).
The CAMS provides an interface between a smart card, user and an SP. The user will provide
the CAMS with an SP's web address from where its applications can be downloaded. The CAMS
connects the SP with the smart card and STCP is initiated.

4.3 The STCP Protocol

Protocol messages are listed in table 3 and described as below;

Table 3. Secure and Trusted Channel Protocol (STCP).

1. SP → SC : SPi‖V R‖NSP ‖grSP ‖SPSup‖SCookie

2. SC → SP : grSC‖NSC‖SCSel‖SCCon‖[SigSC(SCi‖SPi‖grSP ‖grSC‖NSP ‖NSC)‖CertSC ]
Ke
Ka
‖SCookie

3. SP → SC : [V R‖ADP‖SigSP (SPi‖SCi‖grSP ‖grSC‖NSP ‖NSC‖ALP )‖CertSP ]
Ke
Ka
‖SCookie

4. SC → SP : [UCre‖SigU (SCi‖SPi‖Ui‖SCookie)‖CertU ]
Ke
Ka
‖SCookie

Message 1: The SP generates a random number NSP and computes the Di�e-Hellman expo-
nential grSP . The SPSup will also include the user's authentication process details in addition
to the ones described in table 2. These details communicate to the smart card the way the SP
would like to perform the user authentication. The MAC �HSPk

(grSP ‖NSP ‖SCIP )� serves as
a session cookie �SCookie�, and it is appended with each subsequent message sent by the smart



card. It indicates the session information and facilitates the protection against DoS attacks along
with (possibly) providing the protocol session resumption facility. Finally, the SP will request
the smart to provide assurance that its current state is same as it was at the time of third party
evaluation by sending the V R.

If the respective smart card does not support the Di�e-Hellman group selected by the SP,
then it will send a rejection message including a list of groups supported by the smart card
�SCSup�. If the smart card support the selected group, then it will proceed with the second
message.

Message 2: The smart card in response generates a random number, and Di�e-Hellman ex-
ponential grSC . It can then calculate the kDH = (grSP )rSC (mod n) which will be the shared
secret from which the rest of keys will be generated. The encryption key is generated as Ke =
HkDH

(NSP ‖NSC‖′′1′′) and MAC key as Ka = HkDH
(NSP ‖NSC‖′′2′′). We can further generate

(session) keys in a similar manner for the application download protocol or for the application
that requested it.

Subsequently, the TEM executes the validation mechanism, which if successful will generate
signature over the identities of the smart card and SP, along with the smart card random numbers
and Di�e-Hellman exponentials. This message signed by the smart card signature key is referred
as the validation proof. As the signature key will be di�erent if state of the platform is modi�ed;
therefore, by verifying the signature the SP can ascertain the current state of the platform.

On receipt of this message, the SP will �rst generate the session keys then verify the smart
card certi�cate. The smart card certi�cate gives the required assurance that the smart card is
evaluated by a third party that meets the SP's ALP requirements, followed by the veri�cation of
the signature. The assumption here is, if the third party evaluation has concluded as the smart
card is a tamper-resistant device that implements an e�ective validation mechanism. Then, this
will mean the TEM keys are di�cult to be revealed to a malicious user. Hence, in the presence
of tamper-evidence mechanism only a genuine TEM can generate the correct signature.

As a next step, the SP ascertains whether it has already issued an application lease to the
stated smart card. If there is an application lease to the smart card, the protocol will terminate
otherwise the SP will proceed to the next step. Furthermore, the SP will check the values of
Di�e-Hellman exponentials (i.e. grSP and grSC ) and generated random numbers to avoid main-
in-the-middle and replay attacks.

Message 3: The SP will then sign the random numbers and identities of both the SC and SP
along with the ALP.

On receipt, the smart card will verify whether it can support the listed requirements in the
ALP. Furthermore, the smart card will also check the Di�e-Hellman exponentials and generated
random numbers to avoid main-in-the-middle and replay attacks.

Message 4: The smart card requests the cardholder to provide the SP's authentication cre-
dentials as requested by the SP in the SPSup. After the user provides those credentials they are
packaged as UCre that is concatenated by a signed message containing identities of the smart card
(unique serial number [32]), SP and user along with the session cookie. Reason behind including
the session cookie in the signature is to provide a proof signed by the user's signature key pair
that she initiated the session represented by the session cookie details. The signed message along
with the certi�cate and user's credentials are then encrypted and MACed.

The SP veri�es the UCre and if the user authenticates then it will verify whether the user
(owner) identity refereed in the CertU is the one of an authorised and authenticated user. If so,
then the SP will verify the signature. Furthermore, the UCre will provide the SP an assurance
that the user is cryptographically bounded with the smart card (i.e. has the ownership of the
smart card).



4.4 Post-Protocol Process

On its successful completion, not only the STCP will provide an SP the assurance that the
requesting smart card is suitable for its application but also generates the key material for the
application download process. For completeness, an SP and a smart card can use a symmetric
key application download protocol from the GlobalPlatform speci�cation [16].

5 Protocol Analysis

In this section, we discuss the proposed STCP in terms of informal, and formal mechanical
analysis along with detailing the performance results.

5.1 Brief Informal Analysis of the Protocol

In this section, we informally discuss requirements for the STCP grouping �rst twelve together
and treating the rest individually.

5.1.1 Requirements One to Twelve. In this section, we constantly refer to the protocol
requirements and goals in section 2.3 with their respective numbers as listed in the same section.
Therefore, here onward in this section any reference to a goal or requirement number refers to
the listed item in section 2.3.

During the STCP protocol, in message two and three the communicating entities authenticate
to each other. The respective user is authenticated to the SP in message four; thus, satisfying the
G1. Similarly, for G2, all communicating entities exchange cryptographic certi�cates to facilitate
in authentication and ownership proof (in case of user signature key certi�cate).

The proposed STCP satis�es the requirement G3, G4, G5 and G12 by �rst requiring the SP to
generate the Di�e-Hellman exponentials as it is computationally powerful than the smart card.
If the smart card generate the exponential �rst then the SP can choose a weak key. Whereas, ,
as smart cards are computationally restricted device they cannot perform such a task.

In the STCP, session keys generated in one session has no link with the session keys generated
in other session, even when the session is established between the same entities. This enables the
protocol to provide resilience against the known-key security (G7). This unlinkability of session
key is based on the fact that each entity not only generate a new Di�e-Hellman exponential but
also a random number which are used during the STCP. Therefore, even if an adversary �A�
�nds out about the exponential and random numbers of a particular session; it would not enable
him to generate past or future session keys.

Furthermore, to provide unknown key share resilience (G8) that STCP includes the Di�e-
Hellman exponentials along with generated random numbers and each communicating entity
then signs them. Therefore, the receiving entity can then ascertain the identity of the entity with
whom it has shared the key.

The STCP can be considered to be a KCI resilient (G9) protocol, as protection against the
KCI is based on the digital signatures. In addition, the cryptographic certi�cates of each signature
key also include its association with a particular SP or a smart card. Therefore, if A has the
knowledge of the signature key of a smart card (or an SP) then it can only masquerade the smart
card to other entities but not other entities to the smart card.

The STCP also meet the perfect forward secrecy (G10) by making the key generation process
independent of any long term keys. The session keys are generated using fresh values of Di�e-
Hellman exponentials and random numbers, regardless of the long term keys like smart card,
user and SP's signature keys. Therefore, even if A �nds out the signature key of any entity it
will not enable him to �nd out past session keys. This independence of long term secrets from
the session key generation process also enabled the STCP to satisfy the G7.

Communicating entities in the STCP share signed messages with each other that includes
the session information; thus, providing mutual non-repudiation (G11).



5.1.2 Trust Assurance (Trustworthiness). In the proposed STCP, only smart cards pro-
vide the assurance of their current state to be secure and trustworthy to respective SPs; not the
other way around. The reason behind this is the deployment environment of the STCP where
smart cards are inherently not trustworthy and the UCOM not requiring the trustworthiness of
an SP. The UCOM assumes that an SP can be malicious but it will translate into the lease of
a malicious application(s). Therefore, security and reliability analysis (e.g. bytecode veri�cation
[37]) of the downloaded application and not the respective SP is required. Details of which are
omitted in this paper as they fall beyond the scope of the STCP.

A trusted channel establishment between a smart card and an SP is based on the security
and trustworthiness of the TEM. The argument for the trust goes as; the respective smart card
manufacturer gets a particular batch of smart cards certi�ed from a third party evaluator. As
discussed in section 3.1.1, the evaluation facility will issue a certi�cate for the evaluated product
to the respective manufacturer. That in return will mass-produce the smart cards that comply
with the evaluation certi�cate. The TEM security validation mechanism is also evaluated, and
during the STCP, the SP will validate the hardware and software (e.g Smart Card Operating
System: SCOS).

If and only if the validation mechanism is successful that the TEM will generate the signature
on the test results. On receipt of these results; an SP can also verify the test results and validate
the certi�cate chain (i.e. to check the evaluation authority of the smart card). In case it trusts the
evaluation authority and current state validates that the smart card complies with the evaluation,
then it will continue the protocol, otherwise it is terminated.

Therefore, the trust in the established protocol session comes from assurance that the smart
card is still in compliance with the evaluated state. That is certi�ed to be secure and trustworthy
by a third party evaluation. In which the respective SP has implicit or explicit trust.

5.1.3 Denial-of-Service Protection. The aim of the DoS protection is to provide a level of
assurance that the proposed protocol might not be used to mount a DoS attack against the SP.
This is achieved by (a) adding a session cookie to the protocol messages that serves as the session
identi�er (e.g. HSPk

(grSP ‖NSP ‖SCIP )), which includes the smart card's IP address, and (b) by
not requiring the SP to perform any public key operations unless it receives user or platform
authentication.

The session cookie is generated by the respective SP and it is smart card's responsibility to
include the cookie in every message that it sends to the SP. On receiving a message from a smart
card, the SP veri�es the session cookie and if it belongs to an active session, then it can ascertain
that the message came from a genuine host and not from an entity that is trying to mount the
DoS attack.

The second feature, which does not require the SP to perform any heavy computations until
the smart card does not provide a signed message either by the user's or platform's signature
key. This is necessary to avoid the SP to commit memory and computational resources; unless
the communicating smart card is authenticated to the SP's.

5.1.4 Privacy. The privacy preservation goal of the STCP requires that the privacy of the
user should be protected. This requirement does not include the privacy for the SP as part of
their business model is to advertise their presence and identity (i.e. web servers). Therefore, the
privacy requirement is restricted to the preservation of the user's and her smart cards identity.
The smart card's identity is protected to avoid traceability. With traceability, we mean that if a
user acquires an application from a malicious SP then it knows the smart card's identity. In the
future, if the user tries to acquire an application from another SP using the same smart card,
the malicious SP eavesdropping on the communication channel might trace it back to the user.
In the proposed protocol, we do not send any information that can be uniquely attached to a



particular user or a smart card in plaintext. All communications that include the identities and
cryptographic certi�cates are encrypted.

However, if a user always gets online through a permanent connection (i.e. �xed Internet
Protocol address) then a malicious user can trace the communication to a user. Only if the
malicious user has previously recorded the association of the IP address with the respective user.
In such a scenario, privacy preservation is di�cult to maintain in a restricted framework of the
secure channel protocols; therefore, the proposed STCP does not provide the protection against
traceability under �xed uniquely associated IP addresses to users.

5.1.5 Simulator Protection. The proposed STCP provides protection in relation to the
simulator attack: relying on the TEM's operations, trustworthiness, and e�ectiveness of the
evaluation laboratory. The certi�cation assures that the smart card is tamper-resistant, and it
is highly unlikely that a malicious user can retrieve the signature key pair of the smart card. In
addition, it also assures that the TEM validation mechanism is e�ective and reliable.

This will in theory give the assurance to the respective SP that the smart card with whom
it is communicating is not a simulator, and the current state of the smart card is as it was at
the time of evaluation. It does not mean that it can still be secure or a malicious user is not able
to simulate the environment with a genuine TEM signature key pair. It only gives the assurance
that the smart card is secure against the attacks it was evaluated by the third party as stated in
the issued certi�cate [29] and is state-of-the-art tamper-resistant device at the time of evaluation.
Therefore, if the evaluation certi�cate does not meet SPs requirements or it out-dates the current
attacker capability then the respective SP should decline the application lease. As stated earlier,
granting an application lease is on the sole discretion of the respective SP, so if they are not
satis�ed with the requesting smart card, they should not lease the application.

5.1.6 Platform & Application User Separation Attack. As discussed in section 2.3, in
this attack a malicious user tries to install an application that belongs to some other user on her
smart card. Therefore, the identity of the card owner and the leaseholder of the application are
di�erent.

The STCP provides assurances against this attack as in the second message the card owner's
identity and ownership proof is included in the message. The ownership proof comes from the
signature generated using the smart card owner's signature key pair (�gure 2). Thus, providing
a cryptographic binding between the smart card and its current owner.

5.2 Protocol Veri�cation by CasperFDR

The CasperFDR approach was adopted to test the soundness of the proposed protocol under the
de�ned security properties. In this approach, the Casper compiler [38] takes a high-level descrip-
tion of the protocol, together with its security requirements. It then translates the description
into the process algebra of Communicating Sequential Processes (CSP) [39]. The CSP descrip-
tion of the protocol can be machine-veri�ed using the Failures-Divergence Re�nement (FDR)
model checker [40]. The intruder's capability modelled in the Casper script (appendix A) for the
proposed protocol is: 1) an intruder can masquerade any entity in the network, 2) intruder can
read the messages transmitted in the network, and 3) an intruder cannot in�uence the internal
process of an entity in the network.

The security speci�cation for which the CasperFDR evaluates the network is as shown below.
The listed speci�cations are de�ned in the #Speci�cation section of appendix A: 1) the protocol
run is fresh and both applications were alive, 2) the key generated by the server application
is known only to the client application, 3) entities mutually authenticate each other and have
mutual key assurance at the conclusion of the protocol, 4) long terms keys of communicating
entities are not compromised, and 5) intruder is unable to deduce the identities of the user or the



smart card from observing the protocol messages. The CasperFDR tool evaluated the protocol
and did not �nd any feasible attack(s).

5.3 Revisiting the Requirements and Goals

Table 4 provides the comparison between the listed protocols in section 2.2 with the proposed
protocol in terms of the required goals (see section 2.3).

Table 4. Protocol comparison on the basis of the stated goals (see section 2.3.)

Goals
Protocols

STS AD ASPeCT JFK T2LS SCP81 MM SM STCP

1. Mutual Entity Authentication ∗ ∗ ∗ ∗ ∗ ∗ −∗ −∗ ∗
2. Exchange Certi�cates ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
3. Mutual Key Agreement ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
4. Joint Key Control ∗ ∗ ∗ ∗ ∗ ∗ ∗
5. Key Freshness ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
6. Mutual Key Con�rmation ∗ ∗ ∗ ∗ −∗ ∗
7. Known-Key Security ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
8. Unknown Key Share Resilience ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
9. KCI Resilience ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10. Perfect Forward Secrecy ∗ ∗ ∗ ∗ ∗ ∗
11. Mutual Non-Repudiation ∗ (∗) +∗ ∗ ∗ ∗ +∗ +∗ ∗
12. PCK Attack Resilience (∗) (∗) (∗) (∗) (∗) ∗
13. Trust Assurance ∗ −∗ ∗
14. DoS Prevention ∗ ∗
15. Privacy (∗) ∗ ∗ ∗
16. Simulator Attack Resilience −∗ ∗
17. PAU Attack Resilience ∗

Note: ∗ means that the protocol meets the stated goal, (∗) shows that the protocol can be modi�ed to satisfy
the requirement, +∗ shows that protocol can meet the stated goal but requires an additional pass or extra
signature generation, and −∗ means that the protocol (implicitly) meets the requirement not because of the

protocol messages but because of the prior relationship between the communicating entities.

As shown in the table 4, the STS protocol meets the �rst eleven goals. The main issue with
the STS protocol is that it does not provide adequate protection against partial chosen key
attack (G12). The remaining goals are not met by the STS because of the design architecture
and deployment environment, which did not require these goals. Similarly, the AD protocol does
not meet G6, and G10-G17. In the AD protocol, the user reveals her identity by sending the user
certi�cate in clear along with non-existence of key con�rmation.

The most promising results were from the ASPeCT and JFK protocols that meet a large set
of goals. Both of these protocols can be easily modi�ed to provide the trust assurance (requiring
additional signature). Furthermore, both of these protocols are vulnerable to the partial chosen
key attacks. However, in the table 4 we opt for the possibility that the JFK can be modi�ed to
meet this goal. The reason behind this is based on the entity that takes the initiators role and
if in the JFK we opt for the assumption that an SP will always take the initiators role then this
goal is met by the JKF.

The T2LS protocol meets the trust assurance goal by default but because it is based on
the TLS protocol, which does not meet most of the requirements of the STCP, so the T2LS
also does not meet them. A note in favour of the SCP10, SCP81, MM, and SM protocol is
that they were designed with the assumption that an application provider has a prior trusted
relationship with the card issuer; thus, implicitly trusting the respective smart card. Most of
these protocols to some extent have the similar architecture in which a server generates the key
and then communicates that key to the client (i.e. read smart card). There is no non-repudiation
as they do not use signatures in the protocol run.

As apparent from the table 4, the proposed STCP satis�es all goals that were described in
section 2.3. The protocols that are proposed speci�cally for the smart card environment only meet
half of the stated goals. However, the security requirements for the UCOM are more stringent



Table 5. Protocol performance measures (milliseconds).

Measures SSL TLS Kerberos
STCP

Card One Card Two

Card Speci�cation 32bit 32bit 32bit 16bit 16bit

Average 4200 4300 4240 3395.17 3532.09

Best Run NA NA NA 3343 3359

Worse Run NA NA NA 3875 6797

Standard Deviation NA NA NA 69.04 134.28

Note: Above mentioned measurement values for SSL are taken from [46], TLS from [47] and Kerberos from [44].

than the ICOM. Nevertheless, we still consider that the proposed STCP should be deployed even
in the ICOM and especially with any future ownership model that will support multi-applications
on a smart card under the Trusted Service Manager (TSM) architecture.

6 Practical Implementation

The proposed protocol in section 4 do not specify actual details of the cryptographic algorithms,
which are left to the respective SPs and smart cards. However, in our implementation we use AES
(128-bit key) in Cipher Block Chaining (CBC) mode without padding [41] for both encryption
and generating MACs. The signature algorithm was chosen to be RSA with 512-bit key. For
generating hash values, we use SHA-256 [42]. For Di�e-Hellman key generation, we chose the
2058-bit MODP group speci�ed in the RFC-5114 [43].

Our implementation model has two entities; a smart card, and an SP, implemented on a Java
Card and 1.83GHz with 2GB RAM laptop, respectively. We have implemented two applets on
16bit Java Cards; one takes the role of the TEM and second as the protocol handler. At the time
of writing the paper, we did not have access to the smart card platform that will enable us to
implement the TEM close to the hardware level (see �gure 1). We su�ce our implementation at
the application level and consider that similar or better performance can be attained if TEM is
implemented as part of the platform (which we plan to do in future). At the application level,
implementation of the TEM cannot have memory access to measure the hash value of the SCOS.
Therefore, we generated the hash values on a �xed set of values stored in an array of size 256
bytes to represent an SCOS.

The performance of the raw implementation without any pre-computation, measured on two
di�erent Java Cards is listed in the table 5. The implementation of the protocol on Java Cards
takes 9799 bytes. The values in the table 5 were taken from the data set that was collected by
executing each protocol on individual cards for 1000 times and recording the time it takes to
complete each iteration. We choose performance measures of the SSL, TLS, and public key based
Kerberos [44] to provide a comparison with our proposal. The rationale for this choice is based
on the GlobalPlatform's SCP81 for the TSM architecture (based on the SSL/TLS) and Multos
application installation architecture [45] that can adopt the public key based Kerberos.

7 Conclusion and Future Research Directions

In this paper, we have proposed a protocol that provides a secure and trusted communication
channel to the communicating parties. The proposed protocol was compared with nine other
protocols against the stated goals and requirements, and it performed better then the selected
protocols. We provide the mechanical formal analysis of the STCP that did not �nd any feasible
attacks, and then �nally we showed that it performs better then other protocols that are proposed
for the TSM architecture. We consider that the proposed protocol is not only suitable for the
UCOM architecture but we recommend it for the ICOM or TSM architectures.

As part of future research, the TEM architecture has to be formalised by de�ning how a PUF
or another mechanism can provide assurance of hardware protection. Furthermore, we will look
into how the UCOM architecture can be expanded into the other computing domains like mobile
phones, tablets, and personal computers through a portable, cross-platform, fault-tolerant, and
tamper-resistant generic device that is in a user's control.
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A CasperFDR Script

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeySC, iMsg, rMsg, EnMaKey : Field

SC, SP, User: Agent

gSC, gSP: Num

nSC, nSP, SCOSHash: Nonce

VKey: Agent->PublicKey

SKey: Agent->SecretKey

InverseKeys = (VKey, SKey), (EnMaKey, EnMaKey), (Gen, Gen), (Exp, Exp)

#Protocol description

0. -> SP : SC

[SC!=SP]

<iMsg := Exp(Gen,gSP)>

1. SP -> SC : SP, nSP, iMsg%halfkeySP

<EnMaKey := Exp(halfkeySP, gSC); rMsg := Exp(Gen,gSC)>

2. SC -> SP : nSC, rMsg%halfkeySC

<EnMaKey := Exp(halfkeySC, gSP)>



3. SP -> SC: nSP, nSC

4. SC -> SP : {{rMsg, User, nSP}{SKey(User)}}{EnMaKey}

[rMsg==halfkeySP]

5. SP -> SC : {{iMsg,SP, nSC}{SKey(SP)}}{EnMaKey}

[iMsg==halfkeySC]

6.SC -> SP : {{SCOSHash, SC, nSP}{SKey(SC)}}{EnMaKey}

#Actual variables

SCard, SProvider, USER, MaliciousEntity: Agent

GSC, GSP, GMalicious: Num

NSC, NSP, SCOSHASH, NMalicious: Nonce

#Processes

INITIATOR(SP,SC, User, gSP, nSP)knows SKey(SP), VKey

RESPONDER(SC,SP, User, SCOSHash, gSC, nSC) knows SKey(User), SKey(SC), VKey

#System

INITIATOR(SProvider, SCard, USER, GSP, NSP)

RESPONDER(SCard, SProvider, USER, SCOSHASH, GSC, NSC)

#Functions

symbolic VKey, SKey

#Intruder Information

Intruder = MaliciousEntity

IntruderKnowledge = {SProvider, SCard, MaliciousEntity,

GMalicious, NMalicious, SKey(MaliciousEntity), VKey}

#Specification

Aliveness(SP, SC)

Aliveness(SC, SP)

Agreement(SP, SC, [EnMaKey])

Secret(SP, EnMaKey, [SC])

Secret(SC, EnMaKey, [SP])

Secret(SC, User, [SP])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp(Gen, y), x)



B Attestation Process

Algorithm 1: Attestation process based on a PUF and a PRNG

Input :
l: list of selected memory addresses.
hK: hard-wired key that would be destroyed in an invasive attack.

Output:
S: signature key of the SC.
Data:
seed: temporary input value for the PUF set to zero.
n: number of memory addresses in the list l.
i: counter set to zero.
a: memory address.
prKey; PRNG secret key that is unique to each smart card.
k: secret key used to encrypt the smart card signature key.
Se: encrypted signature key S using a symmetric algorithm with key k.

AttestationHandler (l, hK) begin
while i < n do

a←− Read (i, l)
seed ←− GenHash (ReadMemoryContents (a), hK,seed)
i ←− i+1

if seed 6= ∅ then
if Attestation == PUF then

k ←− PUF (seed)

if Attestation == PRNG then

k ←− PRNG (seed, prKey)

else

return testfailed

S ←− DecryptionFunction (k, Se)
return S


