4,890 research outputs found

    Robust Geometry Estimation using the Generalized Voronoi Covariance Measure

    Get PDF
    The Voronoi Covariance Measure of a compact set K of R^d is a tensor-valued measure that encodes geometric information on K and which is known to be resilient to Hausdorff noise but sensitive to outliers. In this article, we generalize this notion to any distance-like function delta and define the delta-VCM. We show that the delta-VCM is resilient to Hausdorff noise and to outliers, thus providing a tool to estimate robustly normals from a point cloud approximation. We present experiments showing the robustness of our approach for normal and curvature estimation and sharp feature detection

    The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab

    Get PDF
    The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.Comment: 43 pages, 27 figures, 5 tables - update referenc

    Direct Observation of Cosmic Strings via their Strong Gravitational Lensing Effect: II. Results from the HST/ACS Image Archive

    Full text link
    We have searched 4.5 square degrees of archival HST/ACS images for cosmic strings, identifying close pairs of similar, faint galaxies and selecting groups whose alignment is consistent with gravitational lensing by a long, straight string. We find no evidence for cosmic strings in five large-area HST treasury surveys (covering a total of 2.22 square degrees), or in any of 346 multi-filter guest observer images (1.18 square degrees). Assuming that simulations ccurately predict the number of cosmic strings in the universe, this non-detection allows us to place upper limits on the unitless Universal cosmic string tension of G mu/c^2 < 2.3 x 10^-6, and cosmic string density of Omega_s < 2.1 x 10^-5 at the 95% confidence level (marginalising over the other parameter in each case). We find four dubious cosmic string candidates in 318 single filter guest observer images (1.08 square degrees), which we are unable to conclusively eliminate with existing data. The confirmation of any one of these candidates as cosmic strings would imply G mu/c^2 ~ 10^-6 and Omega_s ~ 10^-5. However, we estimate that there is at least a 92% chance that these string candidates are random alignments of galaxies. If we assume that these candidates are indeed false detections, our final limits on G mu/c^2 and Omega_s fall to 6.5 x 10^-7 and 7.3 x 10^-6. Due to the extensive sky coverage of the HST/ACS image archive, the above limits are universal. They are quite sensitive to the number of fields being searched, and could be further reduced by more than a factor of two using forthcoming HST data.Comment: 21 pages, 18 figure

    PUBLIC OCR SIGN AGE RECOGNITION WITH SKEW & SLANT CORRECTION FOR VISUALLY IMP AIRED PEOPLE

    Get PDF
    This paper presents an OCR hybrid recognition model for the Visually Impaired People (VIP). The VIP often encounters problems navigating around independently because they are blind or have poor vision. They are always being discriminated due to their limitation which can lead to depression to the VIP. Thus, they require an efficient technological assistance to help them in their daily activity. The objective of this paper is to propose a hybrid model for Optical Character Recognition (OCR) to detect and correct skewed and slanted character of public signage. The proposed hybrid model should be able to integrate with speech synthesizer for VIP signage recognition. The proposed hybrid model will capture an image of a public signage to be converted into machine readable text in a text file. The text will then be read by a speech synthesizer and translated to voice as the output. In the paper, hybrid model which consist of Canny Method, Hough Transformation and Shearing Transformation are used to detect and correct skewed and slanted images. An experiment was conducted to test the hybrid model performance on 5 blind folded subjects. The OCR hybrid recognition model has successfully achieved a Recognition Rate (RR) of 82. 7%. This concept of public signage recognition is being proven by the proposed hybrid model which integrates OCR and speech synthesizer

    Automatic Detection of Calibration Grids in Time-of-Flight Images

    Get PDF
    It is convenient to calibrate time-of-flight cameras by established methods, using images of a chequerboard pattern. The low resolution of the amplitude image, however, makes it difficult to detect the board reliably. Heuristic detection methods, based on connected image-components, perform very poorly on this data. An alternative, geometrically-principled method is introduced here, based on the Hough transform. The projection of a chequerboard is represented by two pencils of lines, which are identified as oriented clusters in the gradient-data of the image. A projective Hough transform is applied to each of the two clusters, in axis-aligned coordinates. The range of each transform is properly bounded, because the corresponding gradient vectors are approximately parallel. Each of the two transforms contains a series of collinear peaks; one for every line in the given pencil. This pattern is easily detected, by sweeping a dual line through the transform. The proposed Hough-based method is compared to the standard OpenCV detection routine, by application to several hundred time-of-flight images. It is shown that the new method detects significantly more calibration boards, over a greater variety of poses, without any overall loss of accuracy. This conclusion is based on an analysis of both geometric and photometric error.Comment: 11 pages, 11 figures, 1 tabl

    Novel Methodologies for Pattern Recognition of Charged Particle Trajectories in the ATLAS Detector

    Get PDF
    By 2029, the Large Hadron Collider will enter its High Luminosity phase (HL- LHC) in order to achieve an unprecedented capacity for discovery. As this phase is entered, it is essential for many physics analyses that the efficiency of the re- construction of charged particle trajectories in the ATLAS detector is maintained. With levels of pile-up expected to reach = 200, the number of track candidates that must be processed will increase exponentially in the current pattern matching regime. In this thesis, a novel method for charged particle pattern recognition is developed based on the popular computer vision technique known as the Hough Transform (HT). Our method differs from previous attempts to use the HT for tracking in its data-driven choice of track parameterisation using Principal Component Analysis (PCA), and the division of the detector space in to very narrow tunnels known as sectors. This results in well-separated Hough images across the layers of the detector and relatively little noise from pile-up. Additionally, we show that the memory requirements for a pattern-based track finding algorithm can be reduced by approximately a factor of 5 through a two-stage compression process, without sacrificing any significant track finding efficiency. The new tracking algorithm is compared with an existing pattern matching algorithm, which consists of matching detector hits to a collection of pre-defined patterns of hits generated from simulated muon tracks. The performance of our algorithm is shown to achieve similar track finding efficiency while reducing the number of track candidates per event

    Investigation into the use of the Microsoft Kinect and the Hough transform for mobile robotics

    Get PDF
    Includes bibliographical references.The Microsoft Kinect sensor is a low cost RGB-D sensor. In this dissertation, its calibration is fully investigated and then these parameters are compared to the parameters given by Microsoft and OpenNI. The parameters found were found to be different to those given by Microsoft and OpenNI therefore, every Kinect should be fully calibrated. The transformation from the raw data to a point cloud is also investigated. Then, the Hough transform is presented in its 2-dimensional form. The Hough transform is a line extraction algorithm which uses a voting system. It is then compared to the Split-and-Merge algorithm using laser range _nder data. The Hough transform is found to compare well to the Split-and-Merge in 2 dimensions. Finally, the Hough transform is extended into 3-dimensions for use with the Kinect sensor. It was found that pre-processing of the Kinect data was necessary to reduce the number of points input into the Hough transform. Three edge detectors are used - the LoG, Canny and Sobel edge detectors. These were compared, and the Sobel detector was found to be the best. The _nal process was then used in multiple ways - _rst to determine its speed. Its accuracy was then investigated. It was found that the planes extracted were very inaccurate, and therefore not suitable for obstacle avoidance in mobile robotics. The suitability of the process for SLAM was also investigated. It was found to be unsuitable, as planar environments did not have distinct features which could be tracked, whilst the complex environment was not planar, and therefore the Hough transform would not work
    • …
    corecore