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Abstract

By 2029, the Large Hadron Collider will enter its High Luminosity phase (HL-

LHC) in order to achieve an unprecedented capacity for discovery. As this phase

is entered, it is essential for many physics analyses that the efficiency of the re-

construction of charged particle trajectories in the ATLAS detector is maintained.

With levels of pile-up expected to reach <µ> = 200, the number of track can-

didates that must be processed will increase exponentially in the current pattern

matching regime. In this thesis, a novel method for charged particle pattern recog-

nition is developed based on the popular computer vision technique known as the

Hough Transform (HT). Our method differs from previous attempts to use the

HT for tracking in its data-driven choice of track parameterisation using Princi-

pal Component Analysis (PCA), and the division of the detector space in to very

narrow tunnels known as sectors. This results in well-separated Hough images

across the layers of the detector and relatively little noise from pile-up. Addi-

tionally, we show that the memory requirements for a pattern-based track finding

algorithm can be reduced by approximately a factor of 5 through a two-stage com-

pression process, without sacrificing any significant track finding efficiency. The

new tracking algorithm is compared with an existing pattern matching algorithm,

which consists of matching detector hits to a collection of pre-defined patterns of

hits generated from simulated muon tracks. The performance of our algorithm

is shown to achieve similar track finding efficiency while reducing the number of

track candidates per event.
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Impact Statement

To continue building on our understanding of fundamental physics, it is crucial

that we exploit the huge quantities of data from the LHC to make both precision

measurements of the Standard Model and search for Beyond Standard Model pro-

cesses. Therefore, the ATLAS detector requires frequent and significant upgrades

to both its hardware and its software to make these discoveries possible. The work

in this thesis directly contributes to the ongoing efforts to develop faster and more

efficient algorithms to reconstruct event data to be used in many different physics

analyses.

Outside of high energy physics and, indeed, outside of academia, techniques

such as the Hough Transform are employed for a wide range of imaging tasks. The

novel concept of applying Principal Component Analysis to parameterise objects

for the Hough Transform could be leveraged to improve detection capabilities in

such tasks, and contribute to the field of computer vision overall.
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Chapter 1

Introduction

Many of the experiments at the Large Hadron Collider (LHC) face a common prob-

lem - in order to continue making new discoveries and further precision measure-

ments, the luminosity must continue to reach unprecedented magnitudes. While

an increased luminosity allows for a greater capacity to detect statistically signif-

icant levels of very rare processes, it is accompanied by an even greater rise in

the number of pile-up collisions. In the High Luminosity LHC (HL-LHC) phase

starting in 2029, the average number of pile-up collisions will reach <µ> = 200,

which poses a serious data processing challenge, especially for track reconstruction

in the trigger system. A proposed solution in the ATLAS experiment has been to

implement Hardware-based Tracking for the Trigger (HTT) through the storage

of pattern banks obtained from Monte Carlo simulations and a pattern matching

algorithm. Patterns in these banks consist of eight layers of hits (1 pixel layer,

7 strip layers) generated through MC simulation of single muons traversing the

detector. The hits in each layer have variable width allowing groups of very similar

tracks to be described by a single pattern. The pattern matching algorithm then

attempts to match the hits fired in an event to the template patterns in the bank.

If there are multiple hits in each layer, there will be several combinations of clus-

ters for which a χ2 fit can be computed and a cut applied. The top quality tracks
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can then be extrapolated into the remaining layers before a full χ2 fit is performed,

and the track parameters can then be calculated. Although development of the

hardware-based solution has stopped at the time of writing, we propose a novel

approach that uses the pattern bank data structures for track finding.

The approach presented in this thesis consists of two main steps. The first

step involves the compression and dimensionality reduction of the HTT pattern

banks using Principal Component Analysis (PCA). The number of components

necessary to explain the variance in the patterns and produce a comparable pattern

matching efficiency will be investigated. The second step of our proposed method

employs a well-known feature extraction technique from the field of computer

vision known as the Hough Transform (HT). The HT has been used for decades

to detect objects in images and is not new to high energy physics experiments.

There are several examples, including from both ATLAS and CMS, of attempts

to use the HT for charged particle track reconstruction. However, these attempts

fail to systematically justify the choice of track parameterisation which is essential

for effective track finding with the HT. Instead, they appear more determined

to use the HT with some ad-hoc parameterisation and then assess its suitability

afterwards. In this thesis, we will use the HTT pattern banks as training data for

a PCA-based compression and hence develop a data-driven approach to using the

HT. In addition to this, the HT tracking algorithm is applied independently to

narrow tunnels of the detector volume to reduce the pile-up noise in the resulting

images.

The thesis will begin with an overview of the ATLAS detector and the Inner

Tracker responsible for charged particle tracking, as well as the design of the

HTT and simulated pattern banks. Next, a literature review of the HT will

be conducted, covering its initial invention and its multiple use cases over the

years. After this, we will describe the two-stage compression of the pattern banks

and demonstrate that the compressed, low-dimensionality pattern space is both
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appropriate and effective for performing the HT. A detailed explanation will then

be provided for how a tracking algorithm can be designed in this space, including

a description of the additional image processing techniques that are used. Finally,

the implementation and performance of our HT-based solution will be presented

and discussed, contrasting the results with those obtained by the HTT pattern

matching algorithm.
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Chapter 2

The LHC, ATLAS and the HTT

To put the research in this thesis in context, this chapter will first describe the

LHC machinery and roadmap. This will follow on to the problems that the ATLAS

experiments will face due to the HL-LHC phase and we will describe the detector

layout, particularly focusing on the Inner Tracker. Finally, we will outline the

plans for the HTT architecture and implementation before describing the pattern

bank data structures taken from these plans to be used in this work.



2.1. The LHC 16

2.1 The LHC

The LHC, which began its operations in 2009, is a two-ring-superconducting

hadron collider located at the CERN site on the Swiss-French border. With many

of the tunnels and infrastructure already built, the LHC was constructed in the

27km underground ring used previously for the LEP (Large Electron-Positron)

accelerator [1], and exploits the existing accelerator chain to inject the main ring

with high energy hadrons. The broader accelerator complex is shown in Figure

2.1.

There are several different experiments located along the main ring, some of

which are dedicated to studying specific sectors of the Standard Model (SM), such

as the LHCb [3] experiment designed to study b-physics, or ALICE [4], which

Figure 2.1: A schematic map of the CERN accelerator complex, showing
the different experiments and their relative locations in the site. [2].
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Figure 2.2: The long term LHC schedule. In January 2022, the schedule
was updated with long shutdown 3 (LS3) to start in 2026 and to last
for 3 years. [7]

investigates QCD and the strong interaction, in the extreme conditions of heavy

ion collisions. Additionally, there are two general-purpose detectors which are

designed to study a wide range of physics phenomena. These are the ATLAS

experiment (A Toroidal LHC ApparatuS) and the CMS experiment (Compact

Muon Solenoid) [5]. To maintain and upgrade the collider and the detectors, the

LHC operates only during scheduled Runs and the upgrades take place during

years-long shutdowns. In Run 1, the collider achieved centre-of-mass energies of
√
s = 7 TeV with Run 2 increasing to

√
s = 13 TeV. This is accomplished using

helium-cooled superconducting magnets producing a magnetic field with strength

up to 8T [6]. At the time of writing, the Run 3 phase has begun and will achieve

a maximum centre-of-mass energy of
√
s = 14 TeV.

The LHC roadmap for the next 16 years is shown in Figure 2.2. By 2029, the

HL-LHC phase is expected to begin, during which the instantaneous luminosity

will be 5-7 times greater than the value the LHC was originally designed for. The

change in integrated luminosity over time, which represents the accumulation of

collected data and hence statistical power in analyses, is shown in Figure 2.3. The

ultimate integrated luminosity by the end of the HL-LHC is around 4000 fb−1 and

would deliver an unprecedented potential for new physics discoveries and incredi-
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Figure 2.3: Expected luminosity of the LHC / HL-LHC over the next two
decades, showing the ultimate HL-LHC luminosity of 4000fb−1. Note
that the timeline in this plot is not in line with that from Figure 2.2,
but the luminosity targets are roughly the same. [7].

Figure 2.4: The dependency of reconstruction wall time per event on the
pileup. The luminosity block count represents short intervals of data
taking, in which the instantaneous luminosity is estimated and, from
this, the integrated luminosity derived. [8]
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bly high-precision SM measurements. This will be discussed further in Section

2.4. However, the promising plan for the future is accompanied by many technical

challenges that each of the experiments face. The increased luminosity results

in many more pp collisions per bunch crossing, referred to collectively as pile-up,

which results in drastically higher detector occupancy and radiation levels. In the

case of ATLAS, Figure 2.4 shows how the reconstruction time per event increases

with pile-up. The increase in time is exponential, and the expected pile-up levels

during the HL-LHC are around <µ> = 200, demonstrating the need for upgrades

to both the detector and algorithmic designs in ATLAS.
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2.2 The ATLAS Experiment

2.2.1 ATLAS Detector

The ATLAS experiment is making SM precision measurements and testing Beyond

Standard Model (BSM) theories using the unprecedented centre of mass energy of
√
s = 14 TeV at the LHC. A diagram of the detector is shown in Figure 2.5. In

total, the detector is a 44m long cylinder with a diameter of 25m and weighs over

7000 tonnes. It consists of a central barrel and two end-caps to ensure forward

physics coverage and hermeticity. The detector’s geometry is forward-backward

symmetric and, from the inside out, the detector contains the Inner Detector (ID),

a name given to several tracking systems designed to measure the momentum of

charged particles. This is inside a 2T magnetic field, and beyond this are the

calorimeters to measure electromagnetic (EM) radiation and hadrons. Finally, the

outer layers of the detector consist of a muon detection system. The coordinate

Figure 2.5: A computer generated image of the ATLAS detector with its
main components labelled. [9]
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system used throughout the detector begins with the z-axis which is defined by the

beam direction, with the x-y plane being transverse to the beam. The azimuthal

angle φ is defined in the x-y plane around the beam axis and the polar angle θ is

measured from the z-axis [10]. However, a parameter that is often used to express

the angle from the beam axis instead is the pseudorapidity, given by:

η = −ln tan
(
θ

2

)
(2.1)

as, at relativistic limits, this is equivalent to the property of rapidity, differences

of which are invariant under a Lorentz boost in the z-axis. Additionally, the

transverse plane is often used to describe the kinematics of collisions and the

transverse momentum is defined as:

pT =
√

(p2x + p2y) (2.2)

More comprehensive details of the calorimeters and muon detector can be found

in the Technical Design Report (TDR) for the ATLAS detector [10], but since the

work in this thesis pertains to tracking, we will turn our attention to the Inner

Detector which houses the tracking systems of the ATLAS detector.

2.2.2 The Inner Detector

The innermost layers of the ATLAS detector make up what is known as the Inner

Detector (ID). The ID comprises three main parts - the pixel detector and the

semiconductor tracker (SCT) and the transition radiation tracker (TRT). A cross-

section diagram of the ID is shown in Figure 2.6. The ID offers high efficiency

charged particle tracking over the eta range |η| < 2.5. The components of the ID

each contain specialised hardware and contribute towards a full track reconstruc-

tion. The innermost pixel detector [11] provides high-precision measurements as
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Figure 2.6: Cross-section diagram of the current ATLAS inner detector
[11].

close to the collision point as possible. It consists of 4 barrel layers (including

the insertable B-layer (IBL) [12]) as well as three end-cap layers on each side,

each providing two-dimensional space-point measurements. The pixel detector

was initially constructed with 80 million readout channels, with the IBL provid-

ing an additional 12 million [13]. Outside of the pixel detector, the SCT measures

charged particles at an intermediate distance from the collision point and improves

the determination of vertex position and track momentum. The SCT consists of

four barrel layers and nine end-cap layers on each side. In total, these contribute

6 million readout channels to the ID. The outermost section of the ID, the TRT,

is used for the identification of charged particles and consists of drift tubes that

are filled with a mixture of Xe, CO2 and O2, and contain a central gold-plated

tungsten wire. When charged particles traverse the TRT, the gas inside the straws

is ionised and the free electrons drift towards the wire and are amplified and then

read out. In addition, transition radiation provides information on the particle

type that passed through the tracker.
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The current ID has various limitations that hinder its performance as the LHC

machine is upgraded. Radiation damage and high detector occupancy result in

the requirement for a full replacement of the ID in the Phase-II upgrade with

the new ITk [8] [14]. One significant change in the detector layout is that the

ITk will consist only of silicon detectors, replacing the TRT, and extend to a 1m

radius, whereas the current SCT outer layer extends only to 60cm. A schematic

cross section of the ITk is shown in Figure 2.7. The acceptance of the detector

is increased so that the strip detector covers a range of |η| < 2.7 with the pixel

detector extending the range to |η| < 4.0.

Figure 2.7: Schematic cross-section of the ATLAS ITk inclined tracker,
demonstrating the increased η coverage. The four blue outermost layers
compose the strip detector and the five red innermost layers compose
the pixel detector. [15]

2.2.3 Trigger and Data Acquisition (TDAQ)

The collision rate in the ATLAS detector stands at 40 MHz (40 million collisions

per second) and the data selected by the trigger must be stored and analysed. The



2.2. The ATLAS Experiment 24

ATLAS trigger system is responsible for making the decision of which events to

keep based on their potential for physics analyses, and may be considered in two

parts: the Level 1 (L1) trigger and the High Level Trigger (HLT). In conjunction

with the trigger system, the data acquisition system is responsible for channeling

the selected data to storage. A schematic for the Run 2 TDAQ system is shown in

Figure 2.8. The L1 trigger reduces the event rate from 40MHz to only 100kHz by

looking for interesting activity in Regions of Interest (RoIs) in the detector [16].

Using coarse-granularity information from the EM and hadronic calorimeters, the

trigger will search for physics objects such as electrons, photons and jets, as well

as finding muons in the muon detector. In Run 2, a topological trigger processor

(L1Topo) can additionally combine these objects to make topological selections

based on, for example, invariant mass requirements or angular separation.

The RoIs identified in the L1 trigger are passed to the HLT for more so-

Figure 2.8: ATLAS Trigger and Data Acquisition (TDAQ) system in Run
2 [16]. Although, note that FtK was not implemented in Run 2.
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phisticated reconstruction using full-granularity information from the rest of the

detector. Here, the event rate is reduced to approximately 1kHz with an aver-

age processing time of 200ms. Certain tasks, such as the reconstruction of b-jets,

would be very CPU-intensive for the HLT. ATLAS pursued a custom-hardware

based solution, called the Fast TracKer (FTK), which would provide full-event

tracking at 100kHz and would have been replaced by the Hardware Tracking for

the Trigger (HTT) for HL-LHC. Both the FTK and HTT rely on the aforemen-

tioned pattern matching algorithm, which uses large banks of template patterns

to reconstruct tracks. While the ATLAS strategy has since evolved and does not

include the FTK and HTT solutions, the algorithmic work developed as part of

these projects may still provide the basis for interesting and novel algorithmic

solutions, one of which is pursued in this thesis.
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2.3 Track Reconstruction in ATLAS

The reconstructed tracks of charged particles are essential for many physics anal-

yses, particularly because of the importance of b-jets. Many high-mass particles,

such as the Higgs boson, top quark or predicted BSM particles will decay to b-

quarks, so being able to tag b-jets with high efficiency is of great importance for

the entire physics programme of ATLAS. The ability to tag jets as b-jets relies

heavily on the reconstructed vertices and tracks, so as the luminosity of the LHC

increases, it is essential that our ability to quickly reconstruct tracks remains.

The general procedure of track reconstruction in the pixel and SCT detectors first

involves a clusterisation step which constructs space-points in the detector from

energy deposits left by a particle. Then one of several CPU-expensive pattern

recognition procedures is implemented. This step generates track candidates by

grouping measurements together throughout the inner tracker, and, in addition

to finding good track candidates, will produce "fake" track candidates (also some-

times called "ghost" tracks in the literature) not belonging to any real particle.

Finally, to gain a more precise estimate of the track parameters and to remove the

fake tracks, the quality of the tracks is assessed through a track fitting stage.

2.3.1 Pattern Recognition

The raw measurements within the pixel and SCT sensors are energy deposits

above a certain threshold. The process of clusterisation [17] consists of grouping

together individual deposits sharing a common edge or corner. From the resulting

clusters, three-dimensional measurements of the particle called space-points are

made. Once the clusterisation of energy deposits has yielded a set of space points

throughout the detector volume, the next stage of pattern recognition is performed.

In general, this is equivalent to data association - grouping together hits in different
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layers into tracks. This is a non-trivial task, especially when the hit density within

the detector is very high, and as such, there are different groups of methods

through which this may be done. Broadly speaking, these can be distinguished

as local and global pattern recognition, based on whether the hits are considered

sequentially or all at once. The previously described pattern matching algorithm is

an example of of global pattern recognition, as all hits are matched to the pattern

banks simultaneously.

Local pattern recognition [17] methods are best employed when the detector

geometry allows for sufficiently continuous hits such that it is likely that a neigh-

boring hit belongs to the same track. These methods consider tracks as a sequence

of hits and, from a particular starting point, will attempt to extrapolate through-

out the detector collecting hits belonging to the same track. A method currently

used in ATLAS is known as iterative combinatorial track-finding. This relies on

firstly generating track seeds - a few selected hits to act as the initial track can-

didate. A seed will be typically consist of 3 constructed space-points close to the

interaction point, in the inner layers of the tracking detector. Then, there must be

a way of parameterising the track in order to extrapolate to other, outer layers, to

include further hits. This extrapolation is performed from the inside-out, extend-

ing from the seed to the outer layers using a Kalman filter [18]. Finally, the track

candidates must be assessed by some quality criterion to distinguish real tracks

from fake tracks. Track candidates are then passed to the track-fitting stage to

obtain more precise estimates of the track parameters.

2.3.2 Track Fitting

Ultimately, the patterns generated through pattern recognition are the artifacts

left behind when charged particles traverse the detector volume. In order to be

useful for physics analyses, we require reconstruction of the particle kinematics
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from these patterns. There are several parameterisations of tracks, but since the

shape of the charged particle trajectories in a uniform magnetic field is helical, in

general 5 parameters are required to approximate the true trajectory. One such

parameterisation is known as perigee:

p = (d0, z0, φ0, cot(θ), Q/pT ),

where the definitions of the parameters are as follows:

• d0 = transverse impact parameter - distance of closest approach to the beam-

line (z-axis).

• z0 = longitudinal impact parameter - z-coordinate of the point of closest

approach to the z-axis (where d0 is calculated).

Figure 2.9: An illustration of the perigee track parameters in ATLAS.
The point of closest approach is defined by the signed transverse impact
parameter d0 and the longitudinal impact parameter z0. The direction
of momentum is defined using the global angular coordinates, φ and
θ. [19]
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• φ0 = azimuthal angle - angle in the x − y plane for the point of closest

approach.

• cotθ = inverse slope of the track in the (r, z) plane, where θ is the polar

angle.

• Q/pT = inverse transverse momentum multiplied by the charge of the par-

ticle.

An illustration of these parameters within the ATLAS coordinate system is

shown in Figure 2.9. One method used for fitting these parameters to the observed

hit measurements is a global χ2 fit. For each hit in the track candidate a residual

can be calculated, defined as the distance between the track prediction and the

centre of the cluster on the plane defined by the sensor surface. Then, the global

fit aims to minimise the function:

χ2 =
N∑
i=1

r2i
σ2
i

(2.3)

where r2i are the aforementioned residuals for each hit and σ2
i are their associated

uncertainties. Note that this equation is only correct for 1D measurements.

In the case of the combinatorial Kalman filter [20], the track finding and track

fitting stages occur simultaneously. As the seeds are propagated through the detec-

tor, the fit predictions can be used to decide which measurements are compatible

with the existing track candidate. A number of branches can then be formed

with those leading to inactive regions of the detector being dropped, and some

threshold on the goodness-of-fit χ2 limiting the total number of paths.
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2.4 Motivation for the HL-LHC

Whatever the long-term objectives of the experiments at the LHC, success lies in

our ability to collect more data. With Run 3 having begun at the time of writ-

ing and finishing in 2024, operating with an instantaneous luminosity of 2× 1034

cm−2s−1, by the end of the run at least L = 300 fb−1 of data will have been

collected by ATLAS. Since a measurement’s statistical uncertainty is proportional

to 1/
√
L, a linear rise in the machine’s luminosity will bring a relatively stagnant

improvement in the precision of measurements. To continue to improve the dis-

covery power, precision and exploration potential, the luminosity will be increased

to 5 × 1034 cm−2s−1 initially for the HL-LHC (2.5 times the Run 3 luminosity),

increasing up to 7.5 × 1034 cm−2s−1 by the mid-2030s. The physics programme

offered by the HL-LHC is vast [21] and some of the physics objectives in this

programme will be outlined here to motivate the upgrade, and the corresponding

challenges for tracking in ATLAS will be addressed.

2.4.1 Physics Motivation

Since the discovery of the Higgs boson at the ATLAS and CMS experiments

[22] [23] in 2012, the study of the Higgs sector has greatly expanded to include

many precision measurement analyses, new ideas and predictions from theory

and searches for rare production and decay processes. One important question

to answer is whether the observed Higgs is that predicted from the electroweak

symmetry breaking mechanism [24] or if it is, in fact, the first signal in some

Beyond Standard Model (BSM) physics. With the accumulated data so far, the

identity of the Higgs boson is consistent with SM predictions and all measurements

are confined to the couplings of the Higgs to SM particles, which are proportional

to the particles’ masses, but further precision measurements of these couplings
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Figure 2.10: Examples of Feynman diagrams for Higgs boson production
and decays. The Higgs boson is produced via gluon–gluon fusion (a),
vector-boson fusion (VBF; b), and associated production with vector
bosons (c), top- or -quark pairs (d), or a single top quark (e). f–i, The
Higgs boson decays into a pair of vector bosons (f), a pair of photons or
a boson and a photon (g), a pair of quarks (h), and a pair of charged
leptons (i). [25]

could illuminate any potential discrepancies from prediction. The main production

and decay channels for the Higgs boson are shown in Figure 2.10.

The Higgs couplings to the SM particles, including effective couplings to gluons

and photons, can be probed in the κ-framework where for a given production or

decay mode, we define:

κ2i = σi/σ
SM
i = Γi/ΓiSM (2.4)

where σi and Γi are the cross-sections and decay widths for the process, re-

spectively. The set of κi values then parameterises the potential deviation from

SM predictions. For example, κg denotes the coupling modifier for the ggH pro-

duction channel. The κi uncertainties in Run 1 and projected uncertainties using

combined ATLAS + CMS data in the HL-LHC phase are shown in Figure 2.11.

The theory uncertainties are approximated by reducing the present theory uncer-

tainties by a factor of two, to reflect the improved HL-LHC parton distribution

functions. With the exception of κµ and κZγ, which are the rarest decay channels,
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(a) With all data from Run 1 [26] (b) Expected uncertainties for the
combination of ATLAS and CMS

extrapolations in HL-LHC
regime. [27]

Figure 2.11: Summary plots showing the total ±1σ uncertainties on the
per-decay-mode branching ratios normalised to the SM predictions.

the total projected uncertainties from the HL-LHC are dominated by theoretical

uncertainty. Additionally, each coupling modifier κi is reduced by approximately

a factor of 10 when compared with the Run 1 uncertainties.

Another important property of the Higgs boson whose measurement could be

a promising window into new physics is its trilinear self-coupling. This comes from

the Higgs Lagrangian [28]:

Lh =
1

2
(∂µh)2 − λv2h2 − λvh3 − 1

4
λh4 +

1

4
λv4 (2.5)

From this, we see the h2 term that corresponds to the physical Higgs boson,

and two higher order terms, describing the trilinear and quartic self-interactions.

The Feynman diagrams for these interactions is shown are Figure 2.12. In the SM,

with the mass of the Higgs boson measured, the value of λ for both the trilinear

and quartic interactions are completely determined,
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Figure 2.12: Feynman diagrams for the Higgs boson self-interactions,
showing the trilinear (left) and quartic (right) interactions.

λSM3 = λSM4 ≈ 0.13 (2.6)

Since new physics could modify these values, further constraints on, or preci-

sion measurements of, the trilinear coupling provides a test of the SM. A direct

approach for measuring this coupling involves a search for Higgs pair production

with a range of decay channels, e.g. HH −→ bbbb. However, it is expected that

with the combined ATLAS and CMS data, the HL-LHC will only achieve a 4σ

sensitivity to the di-Higgs signal. The projected likelihood profile as a function of

κλ is shown in Figure 2.13. Similarly to Eq. 2.4, κλ is defined as the deviation

of the trilinear coupling from SM prediction (κλ = λ/λSM). Depending on the

value of κλ, and hence whether or not new physics is at play, there may be a

difference in the number of total events in the HH signal, and as a result the

likelihood profile contains a secondary minimum. This minimum can be excluded

at the 99.4% confidence level, and at a 68% confidence level the self-coupling can

be constrained to 0.5 < κλ < 1.5. Furthermore, the HL-LHC will be able to make

precise measurements of single Higgs production and decay processes, which can

be used to indirectly constrain the trilinear coupling [29], since variations in κλ

will affect the differential cross sections. In general, precision measurements of the

Higgs sector provide indirect probes to just about any extension of the SM. There

are many theoretical particles predicted by various BSM scenarios that can also be
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Figure 2.13: Left: Projected combined HL-LHC sensitivity to trilinear
coupling from direct search channels. Right: Sensitivity to BSM Higgs
bosons in the H/A −→ ττ channel. [27]

searched for in the HL-LHC. One set of such scenarios falls under the title of Super-

symmetry (SUSY) [30], which predicts superpartners belonging to every fermion

and every boson. The Minimal Supersymmetric Standard Model (MSSM) [31]

proposes the minimum number of additional particles, for which mass constraints

can be directly made in the HL-LHC. Direct dark matters searches can also be

probed at higher mass scales, and new detector upgrades will facilitate searches

for long-lived exotic particles. Additionally, BSM physics can be further probed

through rare b and c hadron decays that may be measured using the increased

integrated luminosity [32].

2.4.2 Necessity for a Tracking Trigger

Regardless of whether SM precision measurements are being made or BSM searches

conducted, the identification of charged particle trajectories is key to many differ-

ent physics analyses at the HL-LHC. The increased level of pile-up poses a chal-
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lenge to the trigger system, since many interesting signals require the detection

of low-pT leptons (e.g. leptonic decays from W/Z/H). Hence raising the trigger

thresholds would reduce the volume of data at the cost of weakening physics analy-

ses. At present, only information from the muon system and hadronic calorimeters

are used in the L1 trigger. One significant improvement that can be made to the

tracking system in ATLAS is to include a fast and efficient capacity for track re-

construction within the L1 trigger. Track reconstruction currently occurs in the

high level trigger (HLT), but there are many benefits to providing precise mea-

surement of track parameters at an earlier stage. Event rates can be reduced by

filtering events based on lepton tracks independent of activity elsewhere in the de-

tector, and associating tracks with calorimeter clusters can improve electron iden-

tification. Furthermore, measurements of global quantities, such as the missing

transverse momentum, can be improved by using reconstructed tracks to measure

primary collision vertices. Completely new analyses may also be conducted with

the aid of a tracking trigger that are were not previously possible due to dominant

background processes, such as direct searches for long-lived particles [33]. ATLAS

has proposed several solutions for tracking for the trigger [34] [35], and in the next

section we will outline the plan for the Hardware-based Tracking for the Trigger

(HTT), from which the pattern banks used in this work are derived.
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2.5 Hardware-based Tracking for the Trigger (HTT)

2.5.1 Design & Architecture

The design of the HTT is based on that of the Fast TracKer (FTK) [34], a

hardware-based tracking upgrade planned for Run 3. The HTT consists of inde-

pendent tracking units known as HTT units, each containing two types of tracking

processors: Associative Memory Tracking Processors (AMTP) and Second-Stage

Tracking Processors (SSTP), each of which connect to the Event Filter (EF) pro-

cessor farm through HTT interface units (HTTIF). The AMTP performs the task

of pattern recognition, with each unit holding two Pattern Recognition Mezzanines

(PRMs), and the SSTP then provides track-fitting with two Track-Fitting Mez-

zanines (TFMs). Within each HTT unit, there is a single SSTP and six AMTPs

which can perform both regional and global tracking, as per the requests of the

EF.

2.5.2 Pattern Banks and Pattern Matching

For the current level of pileup in the ATLAS detector, a local method of pattern

recognition known as seeded combinatorial track following meets the data-flow

(a) Overview of the HTT system (b) Diagram of HTT unit

Figure 2.14: Schematic of HTT design. [36]
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and reconstruction time requirements, but newer techniques must be sought out

as pile-up increases. To outline the pattern matching [17] [36] technique planned

to be used by the HTT, a description of patterns and pattern banks is necessary.

First, the clusters formed from individual hits in the strip layers are converted

to superstrip measurements, referred to as a SuperStrip Identifier (SSID), where

a superstrip is defined as a collection of neighboring strip channels. The SSID

is contained within a detector element, and so a hit is defined by its SSID and

a detector element ID. For the pixel layer the same is true, with an additional

column measurement. We then define a pattern as a set of hits in 8 layers of

the tracker, with at least 1 hit fired in the pixel detector. Additionally, each

superstrip has a variable width defined by the number of so-called "Don’t Care"

(DC) bits. The least significant bits in the superstrip number may be ignored in

order to combine similar patterns, reduce the number of overall patterns needed

and improve the pattern matching efficiency. Hence, a pattern contains 8 detector

element IDs, 8 SSIDs and associated DC bits. A pattern bank is a large collection

of such patterns. The pattern banks that are used to investigate the simulation of

HTT pattern matching are produced by Monte Carlo generated single muons, and

separated into 1256 different regions of 0.2×0.2 in η−φ space, each with 2 million

patterns (i.e. each pattern bank consists of a collection of 2 million patterns for

a single 0.2 × 0.2 region). The muons are produced with |z0| < 150mm and a

flat pT distribution with pT > 1 GeV up to 400 GeV. Approximately 100 million

muons (per 0.2 × 0.2 region in η − φ) are simulated and very high granularity,

neighbouring patterns can be grouped together to reduce the total number, such

that the pattern matching efficiency is maximised with respect to muons and

minimised with respect to pile-up. To effectively model inactive regions in the

detector, some patterns will have ’missing hits’ known as wildcards in one or two

layers. A simple schematic illustrating the composition of a single pattern within

these pattern banks is given in Figure 2.15.
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Figure 2.15: Schematic illustrating the structure of a pattern in the
pattern bank, containing a unique pattern index followed by 8 detector
element IDs and 8, more granular, SSIDs.

The implementation of pattern matching used in the HTT is as follows. For

each event, the hits are iterated through and any pattern associated with that

particular hit (within the allowance of the DC bits) is stored and a counter is

incremented for the pattern. If the pattern contains a wildcard in the layer at

hand then it is assumed to match. If the counter for any pattern reaches the

pattern matching criteria of 7 out of 8 matched layers, the pattern is stored in

an output of matched patterns. Hence, the pattern matching efficiency is defined

as the percentage of reference muon tracks that are matched to any pattern in

the pattern bank. If the efficiency is low, then the pattern bank either contains

too few patterns to match all of the muons, or the patterns themselves do not

represent the muon tracks precisely.
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Chapter 3

Hough Transform Literature Review

In this chapter, the broad history and various applications of the Hough Transform

(HT) will be covered. The technique has been employed for decades in the imaging

world as a way to detect lines and other shapes in images and has found its place in

several high-energy physics experiments. In order to present a clear picture of the

methodology used in this work, it is important to understand why this technique

has become so useful in this field and exactly how it is implemented. The different

applications to tracking in high energy physics produce varying results and we

will outline why this is and how this could be improved upon. It is within this

context that the more novel aspect of our implementation can be introduced and

then explained further in the following chapter.
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3.1 History of the HT

3.1.1 Transform Origin

It is quite suitable that the very transform used in this work to develop a novel

tracking algorithm was invented in a search for an automated way of detecting the

tracks of subatomic particles in bubble chambers [37]. However, the original in-

vention, which is detailed in a US patent [38] by Paul Hough in 1962, only faintly

resembles the transform as we use it here. The purpose of the transform is to

convert the problem of detecting a line (or a set of colinear points) in an image

into the problem of finding intersecting lines in a transform space. The original

patent provided no mathematical formulation for the transform or parameterisa-

tion of the transform space, but instead contains a graphical description of the

point-to-line mapping that the transform essentially performs. This is shown in

Figure 3.1: A graphical description of the Hough Transform, as drawn in
the original patent. A single point in the upper image space corresponds
to a line in the lower image space, such that a colinear set of points maps
to a set of lines with an intersection or ’knot’. [38].
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Figure 3.1, where we can see that the colinear points on a given line map to a

set of lines that intersect at a single point, referred to by Hough as a knot. This

general description is the essence of the Hough transform, which can be thought of

as the discrete version of the Radon transform [39], used frequently in biomedical

imaging. The obvious benefit of a discrete parameter space in which the transform

can be performed is that the execution time is far quicker, hence the more preva-

lent application in computer vision. The first mathematical formulation of the

Hough Transform comes in the book Picture Processing by Computer by Azriel

Rosenfeld [40] in 1969. Here, the patent is referenced and the transform is defined

algebraically by:

y = yix+ xi (3.1)

where x and y are the coordinates of the transform plane and (xi, yi) are points

in the image plane. This choice of parameterisation retains the property of the

transform that if a set of points are colinear, they will intersect at a single point in

the transform space. It is also here that, for the first time, the transform space is

suggested to be defined as an array of counters, referred to as an accumulator space.

In this way, the presence of many superimposed values of 1 result in a high value in

the array, allowing the knot or intersection point to be easily identified. In many

ways, this implementation of the HT more closely resembles the well known HT

used throughout the field today, in that the parameter space is properly defined

and is structured as an accumulator, with points in the original image casting

"votes" along lines in the parameter space. However, it was in 1973 in a paper

by Duda Hart [41], and thanks to an innovation by mathematicians in the field

of integral geometry [37], that a more sensible parametric representation was first

chosen:
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ρ = xcos(θ) + ysin(θ) (3.2)

which allows every possible line in the image plane to correspond to a unique

point in the transform plane. In other words, there can be a one-to-one point-

to-line mapping between image and parameter space, which is not possible when

the parameter space is unbounded as with the slope-intercept representation given

by Eq. 3.1. However, this problem can also be circumvented using a Cascaded

HT [42], which splits the unbounded parameter space into several bounded spaces.

The normal representation shown in Eq. 3.2 would go on to be used for decades

in textbooks and courses, and comprises the backbone of many different advanced

and modified techniques.

3.1.2 Variants and Extensions

Since the formulation of the classical line-detecting HT, different variants have

been used to detect circles, ellipses and many more arbitrary shapes. A simple

diagram in Figure 3.2 shows the general components of the standard HT. First a

transform is performed into the defined parameter space which is constructed as

a quantised accumulator, referred to as the accumulator or Hough space. Votes

are cast for bins in the array by points in the image, and once all votes are cast

some method of peak detection is used to locate instances of a line or object. It

may seem natural to extend the transform to more complex shapes if there is an

explicit parametric representation available, such as:

(x− a)2 + (y − b)2 = r2 (3.3)

for a circle, where the parameters (a, b) define the position of the circle and r

defines the radius. However, the dimensionality of the parameter space is now
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3-D, with a circle in the image space being represented by a cone in the parameter

space, an example of which is shown in Figure 3.3a. The higher dimensionality

results in significantly higher storage requirements and a far greater space to search

for peaks in. As a result, there have been several attempts to avoid a brute

force approach when detecting more complex shapes. The conventional approach

outlined by Kerbyson [45] is equivalent to applying a convolution of a circle of

defined radius R with the image. By removing the variable R, each edge point in

the image plane produces a circle in the (a, b) parameter space and a peak will

arise at the intersection point of the set of circles. Then for the full calculation, a

scan of the possible values of R must be conducted.

While several modifications were made to the classical HT [46] [47] [48], a more

general approach was later formulated that can detect any arbitrary shape. Figure

Figure 3.2: A block diagram of the general Hough Transform process.
[43]

(a) without directional
information

(b) with directional
information

Figure 3.3: The locus of parameters for a single point on a circle. [44]
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Figure 3.4: An example of an arbitrary shape to be detected using GHT.

3.3 is pulled from the work of Ballard [44] which first defines the Generalised Hough

Transform (GHT) as a two-stage process involving learning and then recognition.

One important improvement shown in 3.3b utilises the gradient direction of the

edge point. By leveraging this additional information, the locus of parameters is

reduced to a line. The same information is key to detecting arbitrary shapes like

the example shown in Figure 3.4. The first learning stage of the GHT consists of

choosing a reference point for the shape, y (essentially a local origin, analogous

to the centre of a circle). For each edge point x, the gradient direction φ(x) is

found and the variable radius, r = y − x is stored as a function φ in what is

referred to as an R-table. Once the local gradient properties have been mapped

in this table, the next stage is recognition. In the example of circle detection

Figure 3.5: (a) The projected edge points in the Hough space, (b) A
single contribution of an edge point to the Hough space. [45]
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in Figure 3.5, for a fixed radius r, the projected circle is drawn in the Hough

space for each edge point. Similarly, in the GHT, although the radius is not fixed

but specific to each edge point and defined relative to the reference point y, it

can be extracted from the R-table depending on the gradient φ. Then for each

boundary point x, the circle x + r can be incremented in the Hough space and

then, as usual, peaks in this space correspond to instances of the shape. While

this is only a brief description of the process, Ballard [44] outlines in detail how

this can be used to detect even composite shapes. The extension of this upon the

classical HT is summarised in the block diagram shown in Figure 3.6, which shows

that the parametric transformation is essentially replaced with the construction

of the R-table. As well as advancements of the technique’s ability to detect any

Figure 3.6: A block diagram of the GHT Hough Transform process. The
distinction with respect to the classical HT lies in the learning phase
and construction of an R-table, since the explicit transformation is not
possible with non-analytic shapes. [43]

shape, there have been several variants developed to speed up the implementation.

Examples of these include the Probabilistic HT [49] and Randomised HT [50],

which involve selecting a subset of data points or pixels from the image plane such

that the overall reduction in the ability to detect features is negligible. Another

probabilistic approach based on the idea that shapes in images will be approximate

forms of the exact parametric representation is the Fuzzy HT [51], in which each

data point corresponds to a fuzzy region in the Hough space.
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3.1.3 Probabilistic Inference with Explaining Away

An important addition to the HT library, for our investigation, is the concept

of explaining away, a method for reducing the presence of spurious peaks in the

Hough image. In order to introduce this technique, it is useful to consider the

original image and its pixels as voting elements. Similarly, each point in the

Hough space can be thought of as a hypothesis about an object being present in

the image at a particular location. The transform then determines, for each pixel,

which hypotheses it will vote for in the Hough space. A peak in this space is the

result of a large number of votes being cast by different elements in the original

image, i.e. the presence of an object or shape. Formulating the transform in this

manner provides an appropriate framework to introduce a probabilistic model

first introduced by Barinova et al [52]. Here, an example is outlined in which the

maximum of the Hough image corresponds to a correctly identified object. The

elements that voted for this peak may well cast strong votes for other instances

as well. There is, as far as we have outlined so far in this Section, currently

no mechanism built into the Hough transform that reduces the impact of these

Figure 3.7: A demonstration of the effect of explaining away on the
Hough image and ability to detect multiple instances of an object. As
the iterations increase, the Hough image changes and multiple pedes-
trians are detected despite overlap between instances [52].
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additional votes, despite the fact that the same elements have cast their votes for a

more significant peak. This is the principle behind explaining away - to introduce

probabilistic interference such that, once an element votes for a local maximum,

the weight assigned to its votes for other hypotheses is reduced. By doing so in

an iterative way, the presence of spurious peaks can be greatly reduced, and as

described in [52], integrating this with the HT allows for efficient detection of

multiple object instances. This ability is showcased in a pedestrian-detection task

in Figure 3.7.
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3.2 HT in High Energy Physics

Given that the original application of the HT in particle physics was to track

particles in a bubble chamber, it is not surprising that the technique has been

used in the LHC experiments for the same purpose. Both of the general purpose

detectors, ATLAS and CMS, have investigated the potential of the transform for

charged particle tracking in different ways and these attempts will be discussed

briefly here.

3.2.1 Global HT Tracking in ATLAS

As we have described already in this chapter, the HT requires a parametric rep-

resentation of the object for detection. Additionally, the perigee track parameter-

isation used in ATLAS was defined in Section 2.3.2. These are summarised here

in Table 3.1.

Parameter Description

d0 Transverse Impact Parameter
z0 Longitudinal Impact Parameter
φ Azimuthal Angle at Origin
θ Polar Angle at Origin

Q/pT Charge-Signed Curvature

Table 3.1: Summary of the perigee track parameters used in ATLAS. [53]

Since two parameters would be the ideal number for computing a Hough Trans-

form, φ and q/pT are chosen to construct the Hough space. The assumption that

d0 = 0 is made, since the outer layers of the ITk are approximately 30cm from

the beam line, compared with the negligible |d0| < 3mm that is the case with

tracks coming from, for example, b-hadron decays. The transformation from the

xy plane to a (φ, q/pT ) plane can be derived from Figure 3.8. Here, several track
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Figure 3.8: Definition of track variables for the global track parameter
HT. ρt is the radius of the curvature of the track, φt and φh are the
azimuthal angles for the track at origin and at the hit, respectively, and
rh is the distance from the origin to the hit. [54]

variables are illustrated such as the radius of the curvature of the track, ρt, the

azimuthal angles of the track at both the origin and at the hit, φt and φh, and the

distance from the origin to the hit, rh. From the diagram, the following relation

can be deduced:

sin(φh − φt) =
rh
2ρt

(3.4)

which, using ρt = pT/0.3B can be rearranged to:

sin(φh − φt) =
0.15rhB

pT
(3.5)

and since φh−φt is assumed to be very small, we can use the linear approximation

of sin(φh − φt) to reach:

φt = φh −
0.15rhB

pT
(3.6)

Figure 3.9 shows an illustration of the transformation of several hits using this
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Figure 3.9: Illustration of a track in detector space and the corresponding
transform into the global track parameter Hough space. [54].

parameterisation. As the image shows, each of the hits lie along a similar direction

and the projected track forms an elongated peak. This is expected from Eq. 3.6,

which shows that all lines in this space will have a positive gradient and hence the

intersections are spread out in one direction. Additionally, Figure 3.10 shows the

summation of histograms across 8 layers including pile-up hits. The density of hits

in the image is very high and, although the tracks may be identified qualitatively

Figure 3.10: Hough space using the global track parameter representa-
tion. The event data contains single simulated muons with pile-up of
<µ> = 200 [54].
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by the diagonal strips, extracting the track parameters with any precision is not

easy in this Hough space. Attempts are made to reduce the effect of pile-up using

techniques such as hit filtering to reduce the number of hits in the image and

"slicing", in which the detector is split into 0.2 × 0.2 segments in η − φ space.

Even so, it is suggested that any Hough space will produce a very large number

of combinatorial fake tracks and that further algorithmic refinements would be

required to resolve this issue.

3.2.2 CMS Approach

There have also been attempts to employ the Hough Transform for tracking in

the CMS experiment. In the work by N. Pozzobon et al. [55], a CMS-like detector

layout is used as a case study for implementing a HT-based tracking algorithm fo-

cused on straight line parameterisations. The paper outlines this method in detail,

but we will only summarise the main points here in order to draw comparisons

with the global ATLAS parameterisation and our proposed method. The CMS

Drift Tube (DT) detector contains separate tracking stations known as super-

(a) Layout of the CMS-like DT chamber
with three choices for z = 0
superimposed to the layout.

(b) Representation of
straight line parameters

with respect to the detector
layers.

Figure 3.11: Summary of setup for HT track parameterisation in the
CMS case study. [55] Angles are measured with respect to the nor-
mal direction to telescope layers, and the intercept is measured on a
reference plane parallel to the telescope layers.
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layers where measurements of the muon tracks are recorded. A gradient-intercept

parameterisation is used to define the tracks as shown in Figure 3.11. The param-

eters used for the HT are defined in three examples illustrated in Figure 3.11a.

There are three different choices for z = 0 which defines the location of the inter-

cept - example A with respect to the middle of the inner super-layer, example B

at the lowest layer and example C with respect to the middle of the DT chamber.

Using these setups, the HT parameters are then defined by the slope:

m = tan(φ) (3.7)

and the intercept:

c = x(z = 0) (3.8)

Figure 3.12: Example of the HT of a straight muon track segment sim-
ulated with GEANT4 in the inner super-layer of a CMS DT chamber.
The parameter space for each example corresponds to the choice of
z = 0 as shown in Figure 3.11.
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on a reference plane x = −mz+c. Figure 3.12 contains illustrations of several hits

transformed into each of the three parameter spaces. The images show that each

of the representations produces transformed hits with varying degrees of angular

separation. Example C appears to suffer from a similar problem as was outlined

in the ATLAS example, in that the hits are almost colinear in the Hough space,

producing strip-like peaks. The other two examples, A and B, appear to be more

sensible parameterisations as the intersection of the hits can be easily identified.

However, since the gradient m is independent of the choice of origin, the different

Hough Transforms may be combined to produce improved results.
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3.3 HT Tracking using PCA-based Track Param-

eterisation

The previous attempts to use the HT for tracking have varying degrees of success

with respect to the choice of parameterisation. Although we have only quali-

tatively assessed how suitable the representations are based on the resulting his-

tograms and how well the intersections can be identified, there are clear drawbacks

associated with these attempts. Firstly, the parameters are chosen in an ad-hoc

way. There is no statistical justification for the choices and the efficacy of the

method must be investigated after the fact. In the case of the CMS example,

the process of combining different representations was not immediately intuitive

and somewhat cumbersome. Additionally, the issue of high image hit density can

arise. We saw that in the case of the ATLAS perigee track parameterisation, the

Hough images were filled with noise when pile-up was included. We propose an

alternative approach that fixes both of these issues.

Firstly, in addition to dividing the detector into 0.2× 0.2 regions in η-φ space,

each region may be further split into a large number of so-called "sectors" defined

by a unique set of detector elements. By doing so, the tracking can be performed

independently for each sector and the density of hits in the Hough images will be

far lower. Secondly, the pattern banks from the HTT can be used as training data

for a Principal Component Analysis (PCA)-based pattern data compression. The

parametric representation can then be chosen to be the n (ideally two) principal

components that explain sufficient variance in the pattern data. In this way,

the parametric representation is data driven and images in each layer will be well

separated in the Hough space. The resulting images have little noise to handle and

relatively circularly symmetric peaks. We can then use probabilistic interference

to explain away any spurious peaks and gain competitive track finding efficiency
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with fewer track candidates to process. Finally, a track fitting stage is applied to

further remove any fake tracks and keep only the highest quality fits. In the next

chatper, we will focus on the definition of the compressed pattern space and show

its suitability for HT tracking.
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Chapter 4

The Compressed Pattern Space

In the last section, it was discussed that we can use PCA to construct a novel

parametric representation of tracks in order to perform a Hough Transform. The

resulting Hough space is capable of producing well-defined and symmetric peaks

that allow for efficient track finding even with high levels of pile-up. Addition-

ally, for any practical implementation of a pattern-based track finding algorithm

on massively parallel hardware, such as GPUs, it is crucial to compress the pat-

tern information due to memory size limitations. In this chapter, we describe

the lossless dictionary-based compression of Monte-Carlo (MC) generated pattern

banks, which organises patterns into so-called sectors defined by the unique sets

of detector elements containing hits. Next, we use the patterns in each sector

to train a PCA model and learn a compressed pattern representation. We will

investigate the physical meaning of the resulting PCA components and how they

relate to track geometry. Finally, we will report the overall compression factor of

the pattern banks and the number of components required to still achieve efficient

pattern matching.
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4.1 Dictionary-based Compression

For the work in this section, we use ATLAS ITK pattern banks composed of two

million patterns from MC generated single muons with pT > 4 GeV (see Figure

?? for distribution). A subset of 8 layers is used to define the pattern bank, and

the structure of a single pattern, which was described in 2.5.2, is shown again for

convenience in Figure 4.1. We study the compression of pattern banks in 4 different

Figure 4.1: Schematic illustrating the structure of a pattern in the pat-
tern bank, containing a unique pattern index followed by 8 detector
element IDs and 8, more granular, SSIDs.

η regions in the detector, listed in the Table 4.1. These regions cover the central

barrel region and out to the end-cap region, and allow us to investigate the effect

of the compression algorithms on different regions of interest in the detector. Since

the patterns are defined by a coarse set of detector element IDs followed by more

granular SSIDs, each of the pattern banks contains some redundancy, as many

patterns share the same detector elements and differ only in which superstrips

η Region

0.1 < η < 0.3
0.7 < η < 0.9
1.2 < η < 1.4
2.0 < η < 2.2

Table 4.1: The different η regions of each pattern bank.
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Figure 4.2: Schematic illustrating the ’factorisation’ of a pattern into a
dictionary entry defining its sector and a reduced pattern format. Two
compressed patterns are shown in the diagram, but in reality there are
up to thousands of patterns in each sector.

fired. If we define a sector as a unique set of 8 detector element IDs, then we refer

to the grouping together of patterns into sectors as dictionary-based compression.

A visual representation of the procedure is shown in Figure 4.2. Each sector is

given a unique ID which is stored along with its detector element IDs in a sector

dictionary. The same detector elements can then be dropped in the corresponding

patterns within the sector. In doing so, for a sector with N patterns, the set of

detector elements only needs to be stored once in the dictionary, as opposed to N

times in the pattern bank. The resulting pattern bank, whose detector element

IDs have been dropped and replaced with a sector index, will be referred to as a

reduced pattern bank (note that the number of patterns is still the same, but the

storage requirements have been reduced). With the sectors organised by decreasing

pattern population, Figure 4.3 shows the cumulative sum of patterns over all the

sectors for the 0.1 < η < 0.3 region. The total number of sectors is around 25000

with approximately half of the sectors containing 90% of all patterns in the bank.

With the pattern bank split into a sector dictionary and reduced pattern bank,

the lossless compression factor is then defined by:

Z =
storage required for full pattern bank

storage required for sector dictionary + reduced patterns
(4.1)

This can be used to assess the level of compression for the pattern banks in each
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Figure 4.3: The cumulative sum of patterns with increasing sector index
for 2 million patterns in the 0.1 < η < 0.3 region. Sectors are organised
in decreasing pattern population.

of the η regions. Each pattern bank has the same number of patterns (which

is determined to be sufficiently high so as to not reduce the pattern matching

efficiency), and hence the size of the reduced pattern bank will also be the same

across η regions and the only difference in terms of compression will come from

the size of the sector dictionary. The compression factor, Z, for each region is

given in Table 4.2. The compression factors are very similar as the variable size

of the sector dictionary only makes up a small part of the total storage. Overall,

the storage required for the pattern banks can be more than halved for each

region using this lossless compression. Additionally, by organising the patterns

Eta Region Compression Factor (Z)

0.1 < η < 0.3 2.089
0.7 < η < 0.9 2.087
1.2 < η < 1.4 2.097
2.0 < η < 2.2 2.143

Table 4.2: Compression factors for the lossless dictionary-based com-
pression for each eta region.
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into these sectors, we can perform further sector-wise compression using Principal

Component Analysis.
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4.2 Principal Component Analysis (PCA)

4.2.1 Introduction to PCA

It is common to want to reduce the size of a dataset to allow for easier analysis

without removing the statistical potential that can be exploited. A useful tool in

statistical analysis that may be used for dimensionality reduction and data com-

pression is Principal Component Analysis (PCA). For a multidimensional dataset,

this technique aims to learn along which axes, known as principal components,

the data has the greatest variance and perform a change of basis to transform the

dataset onto these components. The principal components with the least vari-

ance can then be ignored, thereby reducing the dimensionality of the dataset. An

example of this on a 2D dataset is shown in Figure 4.4.

Figure 4.4: A simple demonstration of the first principal component
lying along the axis of greatest variance. [56]

To describe how PCA is implemented [57], consider m measurements of n

independent, inter-correlated variables such that the matrix of measurements can

be written as the n×m matrix:
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X =



x1,1 x1,2 x1,3 . . . x1,m

x2,1 x2,2 x2,3 . . . x2,m
...

...
... . . . ...

xn,1 xn,2 xn,3 . . . xn,m


(4.2)

Given that the covariance between two variables is defined as:

cov(x1, x2) =
1

m

m∑
i=1

(x1,i − x1)(x2,i − x2) (4.3)

we can rewrite the matrix X by subtracting the mean from each measurement and

dividing by 1√
m
, such that the n× n covariance matrix becomes:

C = XXT (4.4)

In order to find the principal components, we find the matrix V which diagonalises

the covariance matrix:

VTCV = D, (4.5)

where D is the diagonal matrix of eigenvalues of C and V is the matrix whose

columns are the eigenvectors of C. These eigenvalues are sorted in descending

order, with the columns of V being rearranged in a corresponding way. Hence, the

first column of V gives the largest principal component, and the last column give

the smallest principal component - the least significant component for describing

the data which, along with other components, may be discarded depending on

how small the eigenvalues are and how much information one is willing to lose.

A measure of this ’information loss’ can be gained by the fraction of explained

variance of each component, given by the relevant eigenvalue divided by the sum

of eigenvalues:
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fi =
Di,i∑n
k=1Dk,k

(4.6)

This value will be greatest for the first component and will decrease for each

subsequent component. A more useful metric is the cumulative explained variance,

which provides an intuitive figure of how much variance is kept once the least

significant components are dropped. If, for example, we keep d of the original n

components, then the cumulative explained variance is given by:

d∑
i=1

fi (4.7)

The decision on whether components can be dropped and how many may be

dropped can be based on keeping this value as close as possible to one. Once the

number of principal components is decided, the dataset is transformed to the basis

of new components, reducing the dimensionality of the data.

4.2.2 PCA Compression for Complete Sectors

Until now, it has only been briefly mentioned that many of the patterns in the

original pattern banks contain missing hits or wildcards in one or two layers to

account for the inactive regions of the detector. Since the detector element ID is

not known for these layers, any patterns containing the same remaining detector

element IDs and the same wildcard(s) are grouped together into these incom-

plete sectors. The categorisation of sectors can then be summarised as complete

(containing no wildcards) or incomplete (containing one or two wildcards). The

proceeding steps for PCA compression rely on this distinction and to begin with,

it is instructive to consider only the complete sectors before moving on to discuss

a sector-linking step which accounts for the incomplete sectors.

In order to perform the PCA-based compression on a sector of patterns, the

dictionary index and pattern index are removed from the pattern and the DC bits
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are removed from each layer. The remaining pattern data is a 9-dimensional vector

consisting of two measurements for the pixel layer (row + column), followed by 1

superstrip measurement for the remaining 7 layers. The number of possible values

for column and row positions in the pixel layer, as well as superstrip positions in

the strip layers, are dependent on the η region due to the larger detector elements

in the endcap region, and they are summarised in Table 4.3.

η Region Col (Pixel) Row (Pixel) SS (Strip)

0.1 < η < 0.3 2 22 32
0.7 < η < 0.9 2 22 32
1.2 < η < 1.4 2 22 32
2.0 < η < 2.2 4 44 152

Table 4.3: Number of possible values for column and row positions in the
pixel layer, and superstrip (SS) positions in the strip layers, at different
η regions. The values are used to encode/decode pattern data into the
compressed uint8 format.

Additionally, the column measurement is a categorical variable and may not

be appropriate to include in the PCA. [58]. In this case, however, the proposed

solution is to split each sector into the same number of sub-sectors as the number

of column values, so that all patterns in these sub-sectors share the same column

value and the variable can be dropped. The row measurement in the pixel layer is

then essentially treated as a superstrip measurement. The decomposition of the

8-dimensional patterns into n components through PCA then takes the following

form:

p = p0 +
∑
n

λnen (4.8)

where p0 is the so-called mean pattern, and e and λ are the eigenpatterns and cor-

responding eigenvalues. Since the objective is to use the eigenvalues as parameters

for a Hough transform and for subsequent imaging techniques, ideally the number

of components should not exceed 2. Hence, it is necessary to check what level of
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η Region Expl. Variance (%)

0.1 < η < 0.3 99.5
0.7 < η < 0.9 99.5
1.2 < η < 1.4 99.9
2.0 < η < 2.2 99.7

Table 4.4: The explained variance from 2 PCA components - the figure
quoted is the average explained variance across the 15 most populated
sectors.

information is lost by using only 2 components. Table 4.4 contains the explained

variance from 2 components for each of the η regions, which shows that there is

a negligible loss of variance in the superstrip positions. This result is significant

in that it allows us to efficiently represent patterns in 2 dimensions and hence the

following parametric representation can be used:

p = p0 + λ1e1 + λ2e2 (4.9)

This equation will later serve as the basis for transforming superstrip measure-

ments into a Hough space for tracking, and since the explained variance is very

high in all η regions, a transformation to 2 components is unlikely to result in a

significant loss of track finding efficiency. It should be noted that the quoted ex-

plained variance for 2 components is calculated using only the 15 most populated

sectors, and so the approximation for less populated sectors may be less precise.

However, we find that for each η region this metric does not fall below 90% for

sectors with very few patterns, and since we have already seen that the vast ma-

jority of patterns are contained within relatively few sectors, the overall loss of

information is still very small. This assumption is later justified by assessing the

relative efficiency using the approximated patterns. Additionally, during the HT

tracking we set a threshold on the minimum number of patterns in a sector and

so the large number of sectors with only a few patterns are omitted. In Figure
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4.5, the eigenvalues in the most populated sector in each region are plotted using

the two principal components from Eq. 4.9. As the figure shows, the patterns in

each sector are bounded by a convex polygon which defines the sector in the new

2-dimensional space. While we are only illustrating the most populated sector, it

is clear to see that the patterns in the outer eta regions have a much wider range

of values for λ1, while the range for λ2 is relatively constant.

(a) 0.1 < η < 0.3 (b) 0.7 < η < 0.9

(c) 1.2 < η < 1.4 (d) 2.0 < η < 2.2

Figure 4.5: The distributions of patterns in the most populous sector in
each η region are shown. For each, the col = 0 subsector is used.
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4.2.3 Interpretation of Eigenvalues

While Figure 4.5 does provide useful information about where tracks can exist

within the image for each sector, it does not uncover the physical meaning of the

eigenvalues (λ1, λ2). To make this clearer, consider four points at the extreme

edges of the polygon in Figure 4.6. By using these (λ1, λ2) pairs, we can find the

Figure 4.6: Four extreme points of the polygon along λ1 = 0 and λ2 =
0 for the most popular sector in the 0.1 < η < 0.3 region, labeled A-D.
The polygon is the same as that in Figure 4.5a with the scale adjusted.

projected superstrip positions across all of the layers using Eq. 4.9. Since each

point represents an extreme pattern in both the positive and negative directions for

(λ1, λ2), the resulting shape and orientation should clarify what the values of these

parameters represents physically with respect to the track. These extreme points

are approximated by choosing the central value of zero for each component and

calculating the superstrip positions for minimum and maximum available values

of the other component. Figure 4.7 contains visual representations of the resulting

patterns. Note that the range of values corresponds to that listed in Table 4.3 for

the 0.1 < η < 0.3 region.
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(a) Point A: λ1 = 0, λ2 = −15 (b) Point B: λ1 = 0, λ2 = 15

(c) Point C: λ1 = −25, λ2 = 0 (d) Point D: λ1 = 30, λ2 = 0

(e) ’Average’ pattern:
λ1 = 0, λ2 = 0

(f) Eigenpatterns

Figure 4.7: The "extreme patterns" obtained by projecting the (λ1, λ2)
pairs at the extreme edges of the polygon into the pattern space. These
correspond to the image in 4.6, for the most popular sector in the 0.1 <
η < 0.3 region. Also shown is the ’average’ pattern from (λ1 = 0, λ2 = 0)
and the eigenpatterns, e1 and e2.
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Also included in Figure 4.7 is the central ’average’ pattern produced with

(λ1 = 0, λ2 = 0) and the shape of the eigenpatterns, e1 and e2. Note that the

pixel layer has been omitted to provide a better image as the number of superstrip

positions is different in this layer.

First, the average pattern is approximately a straight line through the centre

with a ’tail’ caused by the SS position in Layer 1. This tail is also present in each

of the extreme patterns and hence is not a consequence of the values of (λ1, λ2).

It can be seen that the pattern at point C is almost identical to the pattern at

point A and is simply shifted to the right. Equally, the patterns at point B and

D are approximately the same shape and differ only from the linear translation.

This is shown more clearly in Figure 4.8a and Figure 4.8b, where the patterns

from several points along the lines AD and CB have been plotted. As each of the

lines is traversed, the pattern shifts to the right of the image. In Figure 4.8c and

Figure 4.8d, lines in the opposite direction are traversed (AC and DB). As these

images show, the position along these lines determine the direction in which the

pattern ’fans’ out as it propagates through the detector layers. This is analogous

to a shift in the curvature of the pattern, although since the transformation occurs

in the superstrip coordinate space defined by the sector, it is not the true φ0 that

is defined in the global ATLAS detector coordinate system.

In summary, within each sector the patterns may be described by two compo-

nents, (λ1, λ2). This is possible due to some of the degrees of freedom present in a

helical track are constrained due to the sector acceptance. The remaining degrees

of freedom represent the linear, parallel translation of the average pattern within

the sector and the "rotation" of the average pattern within the sector around a

point near the first layer. However, these are not described in a one-to-one map-

ping by the eigenvalues (λ1, λ2). Instead, linear combinations of the eigenvalues,

defined by the gradients of the lines traversed in Figure 4.8, parameterise the two

physical properties that have been described.
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(a) Point B - Point D (b) Point C - Point A

(c) Point B - Point C (d) Point D - Point A

Figure 4.8: The patterns produced along the lines B-D, C-A, B-C, D-A.
In each case, the blue pattern is the at the first point and the red at
the last.

4.2.4 Sector Linking & Incomplete Sectors

For the incomplete sectors that contain wildcards, the issue of how to perform

PCA with missing data arises. [59] Approximately half of the sectors in the 0.1 <

η < 0.3 pattern bank have wildcards in one or two of the layers, accounting

for around 36% of the patterns, and so a solution is required to include these

sectors. A sector linking stage of the algorithm is devised in order to map a

set of incomplete sectors to a corresponding complete sector which shares all the
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available detector elements. Figure 4.9 presents a simple diagram of this process.

As many as 36 incomplete sectors could, in principle, be linked to a single complete

Figure 4.9: Schematic of the sector linking stage. Each complete sector
is linked to a set of incomplete sectors that share all detector element
IDs, except for the layers containing wildcards.

sector (8 single-wildcard sectors + 28 double-wildcard sectors), but in practice

the most populated complete sectors will have 8-9 linked sectors. The precision

of the PCA will be improved if the number of patterns in the sector is increased,

so the patterns from incomplete sectors are concatenated with those from the

corresponding complete sector. The layer(s) containing wildcard(s) is dropped,

and the PCA compression can be performed on the reduced dimensionality sector,

with the wildcards inserted into the mean pattern and eigenpatterns.

Additionally, there are a number of sectors that contain wildcards which can

not be linked to any complete sector. These often have relatively low pattern

population and as a result the precision of the sector parameters may not be as

high as for the rest of the sectors. For these, there are no complete patterns to

merge with, and so the wildcard layers are simply dropped and, as before, the

PCA is performed on the lower dimensionality sector.
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4.3 Compression and Efficiency

In this section we will review the results of the overall compression and relative

efficiency in pattern matching of our benchmark pattern banks. These banks have

undergone a two-stage compression with both a lossless factorisation method and

an approximate PCA transformation. While we have already demonstrated the

level of compression for the first stage and also that the explained variance through

2-component PCA compression is very high, we can now investigate the efficiency

of the pattern matching algorithm using these approximations.

First, the level of compression of the pattern banks from PCA is not dependent

on the value of η and can be calculated since the patterns and sectors have con-

sistent data-types. The superstrip position and DC-bits are encoded in a uint16

integer, and the detector element IDs are stored in int32 integers. Since there

are 8 layers and an additional unique int32 pattern ID, each pattern originally

required 416 bits to store. With a total of one million patterns in a single bank,

which itself is one of 1256 0.2×0.2 regions in η-φ space, the total storage required

for each is 52MB. After both stages of compression, each pattern requires only

the pattern ID, sector index and (λ1, λ2) eigenvalues which are stored in int8 in-

tegers. Additionally, there are storage requirements for the sector dictionary and

PCA sector parameters. Per sector, the dictionary needs 9 int32 for the detector

element IDs as well as the sector index. To store the sector parameters from the

PCA approximation, there are 2 eigenpatterns and a mean pattern. These com-

prise of 8 int8 integers and the pattern ID, as well as the column position for

the subsector. Combining these together, each sector requires 912 bits per sector.

The total number of bits and overall storage needed for the pattern banks is then

summarised in Table 4.5. The storage required for each pattern is greatly reduced

by over a factor of 5, but additional requirements are picked up due to the sector

dictionary and storage of PCA sector parameters. The metrics in this table refer
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Before Compression After Compression

Bits per Pattern 416 80
Total Pattern Storage (MB) 52 10

Bits per Sector - 912
Total Sector Storage (MB) - 1.40

Total Storage (MB) 52 11.40

Table 4.5: Summary of storage requirements before and after compres-
sion pipeline for 0.1 < η < 0.3 pattern bank. The results are the same
for other η regions except for the number of sectors and hence total
storage per sector, however this makes up only a small fraction of the
total storage.

to the 0.1 < η < 0.3 bank and the total storage is found using the actual outputs,

since it should be mentioned that the sector storage is variable. The number of

sectors will vary for each bank and within each sector, it may be the case that

there were only patterns with a single column measurement and hence only one

subsector of PCA sector parameters is stored. Additionally, for the 2.0 < η <

2.2 region, the number of column positions is 4 and so there may be many more

subsectors stored. However, the total storage will not vary considerably given that

the bulk of the storage requirements come from the patterns themselves.

Finally, we must assess the pattern matching efficiency using the approximated

patterns. To do this, the patterns are transformed into their original pattern space

using Eq. 4.8. The resulting restored patterns will not be identical to the original

bank due to the loss of information in the PCA transformation. Using the relative

efficiency defined by:

εrel =
Efficiency using approximate patterns

Efficiency using exact patterns
(4.10)

we obtain the results that are summarised in Table 4.6. As shown, the original

pattern matching efficiency and cumulative explained variance for all η regions is

very high. We find that for all regions, the relative efficiency is still very high and
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η Region Expl. Variance (%) εexact εapprox εrel

0.1 < η < 0.3 99.5 0.99 0.99 1.0
0.7 < η < 0.9 99.5 0.99 0.98 0.99
1.2 < η < 1.4 99.9 0.99 0.99 1.0
2.0 < η < 2.2 99.7 0.99 0.99 1.0

Table 4.6: Summary of cumulative explained variance and relative pat-
tern matching efficiency for each η region. [60]

the drop in performance is almost negligible. Since the relative efficiency is 100%,

for the following chapters we use the 0.1 < η < 0.3 region to demonstrate how the

compressed pattern representation can be used in the HT-based tracking.

The PCA compression results from this section are reported in [60]. Addition-

ally, the plan to use the PCA compressed space for the Hough Transform tracking

algorithm is introduced, with some follow-up discussion on its feasibility on GPUs.
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Chapter 5

Hough Transform Based Tracking

In this chapter, we will describe the details of a tracking algorithm based on the

aforementioned PCA Hough space. First, the transforming of superstrip positions

is demonstrated and the initial images in this accumulator space are produced.

Through an iterative explaining away procedure, the presence of real and spu-

rious peaks can then be distinguished and the noise in the image removed. We

also describe the additional dilation filters used to assist the pipeline’s ability to

produce sufficiently prominent peaks for real tracks before outlining the different

methods of blob detection that can locate these peaks. Finally, we outline a track

fitting stage that selects only the highest quality track candidates and removes

many instances of fake tracks.
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5.1 Transforming Superstrips

In section 4.2, the compressed PCA space was defined and used to reduce the

storage required for the pattern banks. In this way, a 2-dimensional (λ1, λ2) space

was defined in which patterns, and therefore tracks, can be characterised by a

single point. The patterns are decomposed by a linear combination of the mean

pattern, p0, and the two eigenpatterns, (p1,p2),

p(λ1, λ2) = p0 + λ1p1 + λ2p2 (5.1)

and hence in the PCA space, the pattern is defined by the track parameters

(λ1, λ2). Given the jth hit in the ith layer, hij, the PCA model defines a line in

this parameter space by,

λ2 = −p1i
p2i
λ1 +

1

p2i
(hij − p0i) (5.2)

This situation is then analogous to that of the classical Hough Transform where

we have straight lines drawn in the Hough space corresponding to points in the

so-called "pattern space". With this general framework, we can perform a sector-

(a) In an event with only muon hits. (b) In an event with pile-up = 200.

Figure 5.1: Hough Transform on superstrip hits in the PCA space.
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based Hough Transform in the PCA parameter space to produce images like those

in Figure 5.1.

By transforming the superstrip information into the PCA space, the process of

pattern matching for track finding is replaced by a peak detection task in Hough

images. In principle, the pattern matching criteria of 7/8 hits found (discussed in

Section 2.5.2) can be replaced by the detection of a peak in the Hough image with

magnitude of at least 7, for example, indicating that at least 7 different hits cast

their votes for this peak. The approximate location of the peak provides values

for (λ1, λ2) which, using the following equation:

hij = p0i + λ1p1i + λ2p2i (5.3)

can be used to predict the hit position in the ith layer and reconstruct tracks

from the image. While the position of such a peak may be intuitively obvious

when there are only hits from a single muon, such as in Figure 5.1a, the situation

becomes more difficult when the hit density of the event is much higher. Figure

5.1b shows the Hough image for the same muon in an event with µ = 200, where in

each particular sector the number of hits is usually 4-5 times greater. The greater

population of hits in the detector translate to a dense field of interconnecting lines

in the Hough image, for which we must find the most prominent intersections.

Furthermore, there needs to be a way of distinguishing true peaks resulting from

muon tracks, or, indeed, pile-up tracks, from artefacts caused by the hit density.

It is a known drawback of the classical Hough transform that false peaks can

arise, in which votes are cast to the same bin from different parts of the image

that do not correspond to the same instance of a shape. Additionally, due to the

inherently quantised nature of the transform, all of the pixels from a particular

shape-instance may not vote for the same exact bin in the Hough space. The

following section outlines some solutions to these problems.
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5.2 Peak Formation - Explaining Away

In image processing, it is a common problem to recognise certain shapes and

objects within the image. Some may be mathematically identified, such as edge

detection, by using the Gaussian derivative to find significant local changes in

the image’s intensity [61]. Another technique used for image patch recognition is

known as template matching [62], in which the object being detected is defined as

a set of pixels with particular intensities, and the image itself is scanned for local

occurrences of such a template. However, there are many problems associated

with the metrics that are used to assess the similarity of the image structures

to the templates. Pixel-wise comparison does not allow for robust performance

when there are occlusions and deformations in the image and using a low global

threshold on the similarity can produce a high number of false positives. M.W.

Spratling [63] showed that a pixel-level analysis can be used where the templates

compete with each other to be matched to the image structure. This concept of

competition between matches is precisely what explaining away is based on. Each

bin in the accumulator space is competing for the votes cast by the superstrip hits,

and through an iterative process the noise in the Hough image can be whittled

down so that only the bins that best explain the presence of these hits remain

active.

Figure 5.2 shows how a single iteration of how the votes are updated in the

case of the Hough tracking algorithm. Starting with an image such as that in 5.1b,

the hits belonging to each layer are processed independently. A threshold, tline, is

applied to the maximum value of each line, such that lines with insufficiently high

values are removed (i.e., all the values in the line set to zero). For the remaining

lines, the values are normalised with respect to the maximum value, before a

second threshold, tpixel, is applied to the individual pixels along the line, setting

any pixel below the threshold to zero. The combined effect of these operations does
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Figure 5.2: Flow chart illustrating the iterative explaining away proce-
dure. The process is repeated for each layer to build a layer-wise image
with updated votes (i.e. number of entries in a bin). The layer-wise
images are then summed to produce a new Hough image for the next
iteration. tline and tpixel are hyperparameter thresholds that are used to
"switch off" lines or individual pixels that are considered noise.

two things. The thresholds suppress any part of the image which is insufficiently

likely to contain a peak, while the normalisation enhances the regions where a

peak is most likely. Note also that due to the normalisation, the votes cast by

each hit can be non-integers, but will still be between 0 and 1. The updated votes

from each hit are used to produce a new image representing the next iteration of

the explaining away. In Figure 5.3, an illustration of the explaining away method

on the same pile-up Hough image shown in Figure 5.1 is presented. It can be seen

that after i = 3 iterations, most of the noise in the image has disappeared and after

7 iterations, the only votes that remain are in agreement on one clearly defined
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region. It should be noted that for illustrative purposes some of the thresholds

were reduced to slow down the peak condensation in these images and that the

convergence can be reached in fewer than 7 iterations. When deciding the

number of iterations and values of tline and tpixel, the aim is to set the thresholds

sufficiently high so that the explaining away occurs quickly and the number of

iterations can be minimised, but not so high as to suppress the formation of real

muon peaks. This is achieved qualitatively by checking that, for some test images

like those in Figure 5.3, a clear peak is formed that corresponds to a muon track.

In practice, a stricter algorithm requirement could be used - for example, requiring

a certain number of hits to have been consolidated in a particular region of the

image. However, it is sufficient for this work that a fixed number of iterations is

used, so long as it is high enough to produce strong peaks.

(a) n = 1 (b) n = 3

(c) n = 5 (d) n = 7

Figure 5.3: The Hough-transformed superstrips after n iteration of ex-
plaining away.
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5.3 Dilation & Residual Line Widths

In image processing, morphological filters are a set of operations that can alter the

features of an image based on their shapes. The operations are non-linear and can

be used for a variety of purposes to produce an image of the same size with some

of the features distorted in some way. In any morphological filtering technique, a

sliding window known as the structuring element is applied to the image which de-

fines a neighbourhood around each pixel. Two common morphological operations

apply minimum and maximum operations within the structuring element and are

known as erosion and dilation, respectively.

Figure 5.4 presents an example of these operations. While an erosion filter

suppresses bright regions in the image, a dilation filter enhances them. In these

examples, a circular structuring element (or window) is used to perform the filter-

ing. In the case of the superstrip Hough images, the principle of dilating bright

Figure 5.4: The effects of dilation and erosion filters on an example image.
[64]
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spots can be used in a couple of ways. One is the traditional dilation filter that

has just been described and it can be applied at the end of each iteration of the

explaining away procedure. In order to detect a potential track, a pixel would need

to be found containing votes from 7 or 8 superstrips. This is unlikely to happen

for many real tracks without some kind of dilation since the superstrip positions,

as well as the eigenvectors used in the transform, are approximated through PCA.

The result is likely an intersection of a group of superstrips through a broader

region of the Hough space, as opposed to a single pixel.

Another method for "dilating" the bright spots in the image is more statis-

tically motivated and based specifically on the PCA approximation. It should

first be mentioned that this is not, strictly speaking, a form of dilation in the

morphological sense, but the effects on the ability to condense peaks in the Hough

space is similar. It was outlined in Section 2.5.2 that the 2-dimensional PCA space

used for Hough-tracking is defined on a sector-by-sector basis. There are unique

eigenpatterns and mean patterns that define the space and each of these have an

associated uncertainty per layer. The uncertainty is modelled by compressing the

patterns into the PCA space and then transforming back into the pattern space

Figure 5.5: Residual plots illustrating the uncertainty in superstrip mea-
surements due to PCA for each layer in sector.
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Figure 5.6: Transformed superstrips with PCA approximation uncer-
tainty factored in.

and plotting the difference in the superstrip measurements in a series of residual

plots. Such plots are shown in Figure 5.5. The widths of each residual plot can

be used to determine how many pixels wide the superstrip lines should be drawn.

With the uncertainty included, the intersection becomes much clearer to see; an

example of this is shown in Figure 5.6. Compared with Figure 5.1b, the lines

are far wider and there are many more dense regions in the image. A potential

downside of this is that more prominent intersections representing "fake tracks"

(a) With traditional dilation filter. (b) With extra PCA residual line
widths included.

Figure 5.7: Single muon peak detected in pile-up event after 5 iterations.
The distinction between the two is in the values on the colour-bar -
additional votes are captured in the peak in (b) compared with (a).
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may exist and remain in the image after the iterative explaining away. The bal-

ance between detecting muons and minimising the detection of fake tracks will be

discussed throughout Chapter 6, but as Figure 5.7 shows, in this particular in-

stance only the muon track is found. If such an image were produced with neither

the residual line widths nor the traditional dilation included, and assuming the

number of iterations and thresholds were kept constant, the result would be an

empty image. This is because the initial density of hits is too low in any particular

region at the start of the iterations and each line ends up being switched off. The

inclusion of dilation to the algorithm sees a clear muon peak emerge, albeit with

a maximum value of only 5.

However, as the colour-bar shows in Figure 5.7, once the residual line widths

are also accounted for, the peak contains votes from at least 7 layers, making it

potentially a viable track candidate. Additionally, no other spurious peaks are

detected at the same time. Should there be additional tracks in a given sector,

we would need the ability to detect any number of peaks in the image. This is

discussed in the following section.
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5.4 Blob Detection

As with the process of edge detection, there are many different methods for detect-

ing objects known as "blobs". Generally a blob can be defined as a collection of

pixels forming a large object that is distinguishable from the image’s background.

Several techniques exist for identifying such features in images, some of which are

outlined in Figure 5.8, and each have their own benefits and drawbacks making

them appropriate for different contexts. In each case, a filter (also referred to as

a convolution or kernel) is applied to the image to identify regions of the image

which differ from its surroundings. Here, we will describe the three blob detection

techniques shown in Figure 5.8, each based on different derivative filters (i.e. filters

derived from derivative functions): The Laplacian of Gaussian (LoG), Difference

of Gaussian (DoG) and the Determinante of Hessian (DoH).

Figure 5.8: Example illustrations of blob detection performed using
Laplacian of Gaussian, Difference of Gaussian and Determinant of Hes-
sian filters [65].

Lapacian of Gaussian Consider the two-dimensional Gaussian distribution:

f(x, y, σ) =
1

2πσ2
exp

(
−(x2 + y2)

2σ2

)
. (5.4)
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By applying the Laplacian operator,

L(x, y) =
∂2f

∂x2
+
∂2f

∂y2
(5.5)

we arrive at the Laplacian of Gaussian filter, which has the form:

LoG(x, y, σ) = − 1

πσ4

[
1− x2 + y2

2σ2

]
exp

(
−(x2 + y2)

2σ2

)
. (5.6)

Figure 5.9 shows the shape of this filter. The LoG filter calculates the second

derivative so in flat regions of the image (i.e. with constant intensity) the response

is zero. However, it is sensitive to regions with changing intensity, such as in the

vicinity of a blob. In order to use this filter for blob detection, the relative scale

of the blobs is required which is determined by σ, the standard deviation of the

Gaussian kernel. The filter is able to detect blobs with radius roughly equal to
√

2σ, so in order to detect blobs of arbitrary size a range of values for σ are

scanned. One drawback to this method is that detecting larger blobs in the image

Figure 5.9: Shape of the Laplacian of Gaussian (LoG) filter. [66]
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Figure 5.10: Difference of Gaussian (DoG) v Laplacian of Gaussian (LoG)
functions. The LoG function uses standard deviation σ, and the suc-
cessive Gaussians in the DoG function are 2σ and σ. [67]

is slower due to the larger Gaussian kernel that is required.

Difference of Gaussian The Difference of Gaussian (DoG) method is an ap-

proximation to the LoG method and can be executed much more quickly. This

filter involves taking the difference between two Gaussian images with different

values of σ. Unlike the LoG filter, which essentially applies the Gaussian filter fol-

lowed by Laplacian filter, the DoG only applies the Gaussian filter at each value

of σ and subtracts the less blurred image. A comparison of the two functions is

shown in Figure 5.10, which illustrates that the DoG is an approximation of the

LoG filter. As the same Gaussian kernel is used, the method is still time-intensive

for detecting larger blobs.

Determinant of Hessian The Hessian matrix is defined as a square matrix of

second-order partial derivatives, and for a 2D scalar function is given by:
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H =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2



The eigenvectors (e1, e2) of this matrix then correspond to the directions of highest

and lowest curvature of the function with magnitudes given by the eigenvalues

(α1, α2), respectively. For a Gaussian function, such as the one shown in Figure

5.11, at the peak of the function both of the eigenvalues would be at a maximum

and due to the symmetry of the function, |α1| = |α2|. Elsewhere in the domain,

where the function is at a zero-value, there is no curvature both eigenvalues are

zero. Hence, the determinant of the Hessian matrix calculated by:

det(H) = α1 · α2 (5.7)

can represent the combined level of curvature in both directions for a 2D function

(or image). This means that the Determinant of Hessian (DoH) filter can detect

blobs of both circular and elliptical shape. As with the other techniques for blob

detection, a scale-space representation using σ needs to be built to detect blobs

Figure 5.11: Example of a 2D Gaussian function.
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of different sizes, although this method fails to detect very small blobs effectively.

However, unlike the previous methods, the DoH does not take longer for larger

blobs since there is no convolution or filter applied to the image based on the value

of σ.

Example of blob detection on HT superstrip images Since the DoG filter

is quick and simple to apply, Figure 5.12 shows an example of some track candi-

dates in a Hough image and how the DoG blob detection method can be used.

Two track candidates are clearly visible in the image and the coordinates of the

maximum pixels can be extracted for an estimate of the eigenvalues of the track

candidates. For the ease of application and given that the DoG filter is able to

easily detect the peaks in these Hough images, it has been chosen as the baseline

blob detection method for the studies and results presented in this thesis.

Figure 5.12: Two track candidates detected using Difference of Gaussian
filter.
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5.5 Track Fitting

The final stage of the tracking pipeline takes the initial estimates of the PCA

track parameters, (λ1, λ2), produced from the peak detection and computes the

best possible estimate through some kind of fit. It was outlined in Section 2.3.2

that, in ATLAS track fitting, a global χ2 fit is often used which is defined by:

χ2 =
N∑
i=1

(
r2i
σi

)2

(5.8)

where ri are the residuals in each layer (the difference between the predicted and

measured superstrip position) and σi are their uncertainties, determined by the

width of the residual plots in Figure 5.5. In conventional tracking algorithms, this

function is minimised to produce the best possible estimates of the global track

parameters defined in Section 2.3.2. In the case of the HT-based tracking, the

same function is used to precisely estimate (λ1, λ2) and produce a score for the

quality of the track. A cut on the value of χ2 can then be applied to improve the

fake track rate for each sector. In comparison with the HTT pattern matching,

this additional track fitting step is included within the pattern recognition stage.

That is to say, the outputs of the pattern matching algorithm are comparable

with those from the HT tracking algorithm after this track fitting stage. In both

cases, the resulting tracks are passed onto the global track fitting to obtain the

best estimates of the global ATLAS track parameters.
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Chapter 6

Implementation and Performance

In this chapter, we will provide the full details of the implementation and the

performance evaluation of our HT-based tracking algorithm. The description and

preparation of the event data used is covered before detailing the production of

the Hough images themselves. The latter will include the line drawing algorithm,

handling of hit position uncertainties and the full mathematical formulation for the

iterative explaining away. The propagation of the MC truth information through

the use of hit-maps is also explained. Next, we discuss the extraction of tracks

from the peaks in Hough images cleaned by explaining away, and subsequent track

fitting to select the highest quality tracks. Finally, we report the preliminary

results of the algorithm performance, optimisation efforts, and comparisons with

existing pattern matching frameworks.
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6.1 Data Preparation

6.1.1 Event Data

To assess the performance of the HT tracking algorithm, we use a sample of 600

Monte Carlo (MC) simulated events with <µ> = 200. In each event, there is

one true muon with pT > 4 GeV for which MC truth information is available.

200 of these events are used to optimise the algorithm’s hyperparameters (such

as the number of iterations, thresholds for explaining away, and window size for

determining peaks) and a further 400 events are used as a test set to validate

the results. As has been outlined in Section 5, the Hough space used for tracking

corresponds to the compressed 2-dimensional PCA space produced for each sector.

6.1.2 Sector Scanning

The proposed Hough-based tracking is performed on a sector-by-sector basis, due

to the properties of the PCA space being sector-specific. Hence, to perform track-

ing in this space for a given event, we first need to find the sectors that contain

a sufficient number of hits to build track candidates from. First, we set a mini-

mum threshold on the number of patterns in the sector used to generate the PCA

parameters. Figure 6.1 helps to illustrate why this is necessary, when compared

with Figure 5.5. While the residual plots in Figure 5.5 are the result of using over

1500 patterns for the PCA training, those in 6.1 used only 5 patterns. With so

few patterns, the precision of the resulting transforms is much lower than for a

high-population sector and the uncertainty of the superstrip positions for some

of the layers lie outside the range allowed by DC-bits. Hence, we only search for

muons in sectors with sufficient pattern population. To ensure good precision of

PCA parameters, the threshold on the number of patterns in a sector, pmin, is

initially set to 30.
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Figure 6.1: Residual plots illustrating the uncertainty in superstrip mea-
surements due to PCA for each layer within a sector. In this case, only
5 patterns are used to train the PCA model and the residuals are cal-
culated from a further set of 500 patterns in the same sector.

Next, we record every detector element in which any superstrip has fired and

its corresponding layer index. Any sector is then added to a list of "active sectors"

if at least 6 detector elements (out of 8) are found in the record of active detector

elements. The reason for the 6/8 criteria is the presence of double-wildcard sectors,

which only have 6 known detector elements. For each active sector, the proceeding

steps are dependent on how many wildcards there are, and whether or not one of

them is in the pixel layer. Note that from here on out, the layers will be referred

to by their position in the pattern bank, i.e., L0 = pixel layer, L7 = last strip

layer.

As explained in 4.2.2, the 2-dimensional measurement in the pixel layer (L0)

necessitates that the sectors be split into two subsectors - one for each of the col-

umn measurements in the pixel. Due to this, there are three possible outputs when

generating Hough images that are determined by the location of the wildcards, as

illustrated in Figure 6.2. First, if there is indeed a wildcard in the pixel layer the

situation is the simplest. There is only one subsector so the mean pattern and

eigenpatterns corresponding to this sector can be selected and used to transform
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Figure 6.2: Flowchart demonstrating the algorithmic pathways for han-
dling wildcard sectors. The content of each sub-image is purely illustra-
tive and is meant only to show that a separate Hough image is generated
for each scenario, based on the column value (or lack thereof) in the
pixel layer.

all hits present in the sector, resulting in a single Hough image. The number of

layers contributing to the image will be 8 − nwildcards. If there is no wildcard in

L0, then the column measurement is active again and there may be two subsec-

tors to search in. Similarly, if there are wildcards in other layers, then the layer

indices must be accounted for to make sure no hits in these layers are projected

into the image. Then the subsequent steps are essentially the same whether there

are wildcards or not. Hits from all layers beyond L0 are present in both subsec-

tor images, but when considering the pixel layer hits only those with the correct

column measurement are projected into the corresponding subsector image. The

output for each pathway ensures that the correct (and most precise) PCA param-

eters are used to transform each superstrip and to ensure only the correct hits are
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present in each image. To summarise, for each active sector with hits in at least

6 different layers, we generate one or two images, depending on whether or not

there is a wildcard in the pixel layer.
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6.2 Hough Imaging

This section will cover the part of the pipeline responsible for creating and han-

dling the Hough images. The details of the initial transformations, error propa-

gation, iterative image processing and propagation of truth information through

the algorithm will be covered.

6.2.1 Bresenham Line Drawing

As outlined in the previous section, the mean pattern and eigenpatterns are se-

lected based on the details of the sector’s wildcards and can be used to perform the

Hough Transform on the superstrip positions, providing us with a pair of eigen-

values (λ1, λ2). Since the Hough space is discrete (with integer spacing, for ease of

implementation), the Bresenham line algorithm [68] (or some modification thereof)

is required to determine exactly which pixels a given line will pass through. This

can be achieved with ease using the Python Imaging Library (PIL) [69] ImDraw

package. The line parameters are known from the Hough transform calculation,

from which the coordinates at the edges of the image can be calculated and used

to draw the lines. The boundaries of the image are chosen using the typical dis-

tributions of patterns in the η-φ region.

λ1 range λ2 range No. bins

0.1 < η < 0.3 [−29, 40] [−13, 21] 2346
0.7 < η < 0.9 [−29, 39] [−13, 17] 2040
1.2 < η < 1.4 [−58, 69] [−13, 17] 3810
2.0 < η < 2.2 [−115, 148] [−17, 18] 9205

Table 6.1: Range of values for λ1 and λ2 and total number of bins required
in images for each η region, in order to cover all possible patterns from
the pattern bank. Note that integer spacing between bins was chosen
for simplicity, but the number of bins could be reduced by increasing
bin size.
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(a) 0.1 < η < 0.3 (b) 0.7 < η < 0.9

(c) 1.2 < η < 1.4 (d) 2.0 < η < 2.2

Figure 6.3: The same distributions of patterns in each η region as shown
in Figure 4.5. In each case the scale has been adjusted to illustrate
the requirements for the image boundaries in each region. The red box
surrounding each distribution shows the minimum image boundaries
needed to detect all available patterns.

Figure 6.3 presents the distributions for each η−φ region (also shown in Figure

4.5) with the scales adjusted to easily see the extremal values of (λ1, λ2). From

this, we see that for high-η regions the image boundaries must allow for the larger

range in λ1. The range of values and total number of bins required to perform

the Hough tracking for each η region are summarised in Table 6.1 As shown,

for the 0.1 < η < 0.3 region, a minimum image size of 69x34 (determined by

the range of values for (λ1, λ2)) would be required so as to be able to detect all

muons contained within the sector from the pattern bank. This corresponds to
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a minimum of 2346 bins in each image. While this gives an indication of the

computational complexity of the task, the focus of this work is not to optimise

the execution time of the algorithm, but to demonstrate its performance in track

finding efficiency and fake track rate. Hence, for the purpose of clear illustration

we will use 80x80 images for the remainder of this work. The Hough images are

constructed layer-by-layer, as shown in Figure 6.4, which presents an illustrative

example of partial images. Building the image in this way prevents any overlap of

hits within the same layer, which are not uncommon especially if the precision of

the PCA parameters is quite low and/or the hit occupancy is high - this is because

the lines are drawn with a predetermined width motivated by the PCA residual

distributions, which will be discussed in 6.2.2.

Figure 6.4: An illustrative example of line drawing using PIL and addi-
tion of layer-wise arrays. The three component images are comprised
of hits from the first, fifth and sixth strip layers (L1, L5 and L6), re-
spectively.
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6.2.2 Residual Error Propagation

It has already been mentioned that the compression of patterns to a 2-dimensional

space comes with some uncertainty that needs to be correctly modelled in the

Hough-based tracking. Accounting for this uncertainty is both necessary from a

statistical point of view and quite beneficial in terms of our ability to consolidate

hits in a small region of the image. The first step is to assess what the uncertainty

in superstrip position is before looking at how this maps to the Hough space. For

each sector in the dictionary described in Section 4.1, all the patterns belonging to

the sector are compressed into the 2-dimensional PCA space and then the inverse

transformation is applied, in order to derive the estimated superstrip positions at

each layer, as shown in Eq. 5.3, shown again here for convenience.

hij = p0i + λ1p1i + λ2p2i

The differences between the estimated superstrip positions and original positions

for each pattern are organised by layer index and the resulting histograms are

Figure 6.5: Residual plots illustrating the uncertainty in superstrip mea-
surements due to PCA for each layer in the most populous sector. The
uncertainty in each layer is contained within the range allowed by the
DC-bits.
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(a) Hough superstrips for positions
14, 15 and 16.

(b) Hough superstrip for position
15 drawn with width = 5.

Figure 6.6: Comparison of three adjacent superstrips vs one central su-
perstrip drawn with additional width. All superstrips belong to L4.

shown in Figure 6.5. In each layer, we have an approximate Gaussian distribution

of residuals with very few estimated hits that are more than ±1 from the original

value. The shape of these distributions is fairly consistent across sectors and

has little dependence on the number of patterns in the sector. Since the Hough

accumulator space is discrete, the width of the superstrip lines and uncertainty in

position must be an integer. The distributions also have sharp boundaries, so to

calculate the layer-wise uncertainty we use:

wr = ceil(rmax − rmin) (6.1)

where rmax and rmin are the maximum and minimum values in the residual dis-

tribution, respectively, and wr is the residual width used to determine the Hough

line width. The mapping of this uncertainty to the Hough space is then illus-

L0 L1 L2 L3 L4 L5 L6 L7

Residual Width (rmax − rmin) 3 2 2 2 2 2 2 2
Line Width (2wr + 1) 7 5 5 5 5 5 5 5

Table 6.2: Maximum width of residual plots for each layer and the
corresponding line width used in the filling of Hough histograms.
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trated in Figure 6.6. By transforming three adjacent superstrips in a particular

layer we can see the distance between them in the image. From Figure 6.6a it

is clear that the superstrips are not completely adjacent in this space and that

there are "empty lines" between them. Figure 6.6b then shows that, for 3 adja-

cent superstrips, in order to obtain the same coverage in the Hough space with a

single, central superstrip we require a width of 5. To account for the empty space

between superstrips, then, in general, the width of the line must be 2wr + 1. The

residual widths and resulting line widths for this particular sector are summarised

in Table 6.2. The widths for each layer are stored for every sector and then used

with the PCA parameters to generate each of the initial Hough images.

Max-Pooling Filter While the broadening of lines to account for the PCA

uncertainty acts as a form of dilation, in order to ensure that each hit from a given

track passes through the same pixel, it may be necessary to apply an additional

dilation filter to the image (see Section 5.3). The type of dilation filter used here

is a max-pooling filter, where a sliding window passes through the image and sets

all pixels in the window to the maximum value within the window. This filter is

applied at each iteration of the explaining away.

6.2.3 Hit-Map Pooling

Until this point in the description of the Hough-based tracking, we have only

considered the images themselves and the absolute number of votes present in the

accumulator space. From a final Hough image it is possible to see well-defined

peaks and attribute a certain number of votes to them. However, it has not yet

been discussed how the hit information is propagated through the algorithm such

that we can extract the superstrip positions, detector elements and MC truth

information from the peaks. This is important to be able to do for two reasons.

Since a successful match can involve only 6 or 7 hits, the same combination of hits
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can be found in multiple sectors. By extracting defined hit-sets from the peaks

we can avoid double counting the same combination of hits that may appear in

different sectors, and we can also use the truth information to determine exactly

how many muon hits are present in any peak. This can then be used to determine

whether tracks are fake and assess the efficiency of the tracking algorithm.

To include this functionality, we define a hit map which relates the relevant hit

information (layer index, superstrip position, MC truth) to the coordinates of the

bins in which it has voted. In other words, the hit map summarises the hit-to-bin

association. When the initial Hough image is produced, the hit map is filled out

quite simply according to the initial bins that correspond to each hit. In parallel

with the explaining away and max-pooling filter, the hit map is updated at each

iteration in the following way:

• The difference between the max-pooled image and the original image is taken

which then consists of all the bins whose values changed during the filtering.

This step essentially prevents the need to scan through the whole image

(a) The difference between the Hough
image before and after applying
max-pooling. The resulting image

shows which pixels were affected by the
pooling and gives the values they were

changed to.

(b) An example of a 3x3 window
surrounding one of the altered

pixels in (a). This window is taken
from the original image (before
pooling) to demonstrate which
neighbouring pixel had the

maximum value.

Figure 6.7: Illustrative examples of the steps in expanding hit-maps ac-
cording to the max-pooling filter applied to the Hough image.
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with the next steps and targets only the necessary bins. An example image

is shown in Figure 6.7(a).

• Since the updated bins have been isolated, any hit that contains these in

the hit map will need to be updated as well. For each bin, the surrounding

3x3 window is checked in the original image. Again, an example is shown

in Figure 6.7(b). The maximum pixel(s) in this sub-image shares its votes

with the central pixel during the max-pooling.

• Using the coordinates of this maximum pixel, the hit map is updated by

first finding any hit entry in the map that contains the coordinates. To

any hit containing the coordinates, the coordinates of the central pixel are

added since the hit has essentially extended its reach to this pixel. Once this

is done for every altered pixel, the hit-to-bin association has been updated

according to the "sharing" of values between pixels.

The output of this part of the algorithm consists of a series of fully-processed

Hough images containing blobs for each sector with associated hit maps to extract

the hit information. The next section will focus on forming track candidates

and obtaining more precise estimates of the track parameters, (λ1, λ2), with track

fitting.
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6.3 Track Reconstruction

6.3.1 Hit-to-Peak Association

The association of hits to each peak in the Hough image is central to building

track candidates and assessing the efficiency of the Hough-based tracking. First,

the peaks must be identified using the blob detection method outlined in Section

5.4. Any number of blobs may be detected in a single image assuming they are

within the range allowed by the value of σ, the standard deviation of the Gaussian

kernel. Once the blobs are detected, we extract the central window of pixels (the

size of which is determined by a hyperparameter referred to as the peak window)

and compare these with the corresponding hit map for the image. If any hit in

the hit map contains any of the window pixels that are being searched for, the

hit and its associated layer index are added to a track candidate dictionary. This

dictionary records, for each layer, all the hits present in the peak. Once all the hits

that were initially projected into the image have been checked, the track candidate

dictionary may contain several possible branches depending on how many hits

there are in each layer. For any layer with more than one hit, the values of (λ1, λ2)

are used to estimate the superstrip position and select one of the branches. The

PCA compression equation from Eq. 4.8 is used to calculate estimates for the

superstrip position in each layer, and whichever measured superstrip is closest to

the estimate is chosen. Finally, a hit-count threshold is applied to the number

of layers that contain hits. This threshold is initially set to 8, ensuring that the

track candidate must have hits in all 8 layers. However, the threshold may be

changed depending on whether the relevant sector contains any wildcards. If so,

the threshold is set to 8− nwildcards to allow for track candidates with fewer hits.
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6.3.2 Track Fitting

The final stage in assessing whether or not a track is declared to have been found

is performing a fit for the track candidate and setting a threshold on the sum of

the χ2 values across layers. In this way, only high quality track candidates are

selected and low quality tracks (ideally, only fake tracks) are omitted. To perform

the fitting, we once again use the Eq. 4.9:

p(λ1, λ2) = p0 + λ1p1 + λ2p2.

The mean pattern and eigenpatterns for the sector as well as the measured

superstrip positions in the track candidate are used to update the estimates of

(λ1, λ2). This is achieved using the curve fit function in the scipy Python package

[70]. With the more precise eigenvalues, the superstrip positions are recalculated

and used to calculate the χ2 value for each layer:

χ2
i =

(
hi − hmeas

σi

)2

(6.2)

where σi is the uncertainty in the superstrip position in the i-th layer. Finally,

the total normalised χ2 for the track candidate is obtained using:

χ2 =
∑
i

χ2
i

ndof
(6.3)

where ndof is the number of degrees of freedom in the candidate. This is dependent

on the number of wildcards in the sector, or simply the number of hits in the track

and given by nhits − 2. A cut is then applied to the normalised χ2 values for each

track candidate to distinguish true muon tracks from fake tracks. Finally, the

pipeline concludes with a duplicate-removal step, which avoids counting the same

set of hits in multiple tracks. The remaining tracks of sufficiently high quality are

sorted by χ2 value and, starting from the highest quality track, any subsequent
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track sharing four or more hits with a preceding track is considered a clone and

removed.
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6.4 Results

6.4.1 Performance Evaluation

In this section, the performance of the tracking algorithm will be evaluated and

the results discussed. To do so, we first outline how the efficiency is defined and lay

out the default settings used. Several regimes will be used to extract the results

and an optimisation of the hyperparameters will also be carried out. The final

settings will be then tested on an independent set of events.

In order to define the efficiency, we use 200 Monte Carlo muon reference tracks

from the 0.1 < η < 0.3 region with pT > 2 GeV. The tracks are generated with a

pile-up of < µ > = 200. As has been outlined in Section 4.2, the Hough space used

for tracking corresponds to the compressed 2-dimensional PCA space produced for

each sector. As was explained in 6.1.2, any sector that contained fewer than 30

patterns is omitted from the analysis on the basis that the precision of the PCA

parameters is likely to be poor. The length of a track candidate is required to be

8 (requiring hits in all 8 layers) unless the sector contains wildcards, in which case

the minimum length is given by 8− nwc. The HTT TDR [36] defines a successful

match as any sufficiently high-quality track candidate containing at least 80% MC

truth muon hits. Rounding to the nearest integer, Table 6.3 then summarises how

many muon hits are required in our implementation depending on the number of

layers containing hits in the track candidate.

Equally, to avoid defining tracks that are known to consist of a mix of muon

6-layers 7-layers 8-layers

No. muons required 5 6 6

Table 6.3: The number of true muon hits required for track candidates
with hits in n-layers in order to be considered a successful match.
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and pile-up hits, a fake track is defined using the same criteria. For a given

event, a successful match is declared if any track candidate passes these hit-count

thresholds, the global χ2 threshold, and contains the sufficient number of muon

hits according to the truth information. The number of additional "fake" tracks

for the event is also recorded. The efficiency can then be calculated using:

Efficiency =
Number of events with at least one successful muon track

Total number of events
(6.4)

The uncertainty in the efficiency calculated from Bayesian statistics to be:

SEeff =

√
(k + 1)(k + 2)

(n+ 2)(n+ 3)
− (k + 1)2

(n+ 2)2
(6.5)

where k is the number of succesful events (i.e. where the muon was detected) and

n is the total number of events. Similarly, the average number of fake tracks can

be is calculated using the mean with the uncertainty modelled by:

SEft =
σ√
n

(6.6)

where σ is the standard deviation for the set of fake track values. In order to choose

the default settings for the various hyperparameters, before investigating more

optimal settings, we first ensure that the algorithm converges in a qualitative sense

and that there are visible peaks in the images. Since the function of tline and tpixel,

defined in 5.2, is essentially to reduce the number of iterations required, we want to

find the highest possible values for these that allow for fast convergence without

sacrificing the quality of the image peaks. With a fixed number of iterations

(i = 5) and tpixel = 0.5, some possible values of tline are tested. As Figure 6.8

shows, greater values of tline allow regions of density in the image to be explained

away more quickly. However, above tline = 5 the same image becomes empty
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(a) tline = 2 (b) tine = 3

(c) tline = 4 (d) tline = 5

Figure 6.8: The Hough-transformed superstrips after 5 iterations of ex-
plaining away.

because all lines end up being switched off. To ensure images with fewer than

8 muon hits don’t vanish, an intermediate value such as tline = 4 is a sensible

choice as it is unlikely to switch all lines off and still shows fast convergence. A

similar scan of possible tpixel values produces similar images, but the time taken

for the calculation is longer when tline is low. This is because this threshold is not

responsible for removing any hits from the image but only individual pixels from

lines.

Additional variable parameters include the size of the max-pooling filter as well

as the peak window. This window (e.g. 3x3) is used once the peaks have been

detected and the central pixel identified. This pixel and its neighbours, decided

by the size of the window, are then indexed in the hit-map to find which hits

contribute to the peak. A greater window allows for more potential hits to be

included in the track finding. Finally, there is the threshold for the minimum
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Hyperparameter Default Setting

No. iterations 5

tline 4

tpixel 0.5

Nearest neighbours for max-pool filter 1

Peak Window 3x3

Minimum pattern threshold (pmin) 30

Table 6.4: Summary of the hyperparameters and thresholds used in the
imaging pipeline and their default settings.

number of patterns in a sector, set to pmin = 30. The default settings used are

shown in the Table 6.4. Using this setup and the criteria for track candidates and

successful tracks, we aim to detect the 200 muon reference tracks and investigate

any failures, before testing the improved settings on a further 400 reference tracks.

First, the distribution of χ2 values for muon track and fake track candidates is

shown in Figure 6.9a. For each event, only the lowest-χ2 muon track candidate is

kept, since only one track is required for a successful match. Removing other low

quality clones results in a clearer separation between the track types. As expected,

muon tracks mostly occupy a low-χ2 region and fake tracks have a much wider

range of χ2 values. Several thresholds could be implemented to obtain various

efficiencies and average fake track rates. This trade-off can be seen in Figure 6.9b,

which shows that the maximum available efficiency is 96.5 ± 1.4% for which an

average of 16.1±1.0 fake tracks are detected per event. It should be restated that,

although we refer to these as fakes, some of the tracks, especially those with low-

χ2, may well be real pile-up tracks. With these settings, the tracking algorithm

fails to produce any track candidates for 7 out of the 200 muons in the initial

sample. As the distribution above shows, these would not be detected by any

higher χ2 threshold as the lowest quality muon can be seen at χ2 = 1.1. The next

section will focus on optimising the hyperparameters of the tracking algorithm to
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obtain a higher efficiency.

6.4.2 Analysis and Optimisation

There are several variable parameters to consider when trying to boost the effi-

ciency, and so a general scan of each would be time-intensive and would lack any

insight into the improvements that could be made. A more productive approach

would be a targeted investigation to find the point in the pipeline where each

muon is lost, and to make the necessary adjustments. It is helpful to work back-

wards and begin by checking whether any track candidates were made in the true

muon sector, that is, the sector whose detector elements are shared exactly with

the muon hits. If the muon is missing one or two hits because it passed through

an inactive part of the detector, then the true sector will have wildcards in those

layers. The purpose of this is to see whether an image with any good quality

peaks were generated in this sector, in which case the issue is in the peak-to-hit

(a) Distribution of χ2 values for
fake track and muon track

candidates. For the muons, only
the highest quality track

candidate per event is kept.

(b) Trade-off between muon efficiency and
average fake track detection for a range of

χ2 thresholds.

Figure 6.9: Preliminary results for Hough-based tracking using the hy-
perparameter settings outlined in Table 6.4.
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association. There may then be track candidates formed from the peak, but with

an insufficient number of muon hits. If there are no track candidates in the sector,

then we can check whether any image exists at all.

By looking at the image before the track finding process begins, we can gain

insight as to whether the explaining away worked and whether or not any sub-

stantial peaks were formed. An example of such a case would be if a peak with

maximum magnitude of 6 were present in a complete sector that should contain

8 muon hits. The length of the track candidates extracted from an image like

this may not meet the minimum requirement and the muon would be lost here.

This could be the case if the precision of the PCA parameters for the sector were

low or if the presence of other fake tracks lowered the probability of votes being

correctly cast for the muon peak. Finally, if no image exists in the sector at all

then this must be an issue with the sector itself, namely, that there were likely no

eigenpatterns to extract and use to perform the Hough transform. This would be

because either the sector did not exist in the training data for the PCA space or

because the number of patterns in the sector was too low (i.e. below the threshold

pmin).

With this method of analysis, three reasons for efficiency loss were identified

in the initial 200 muon sample:

• In one event, a track candidate is found in the true muon sector that con-

tained only 5 MC truth muon hits. In total, the event contains 7 MC truth

muon hits, and the sector has a single wildcard, so the 80% muon hit re-

quirement is not met. In this case, it is likely that some combination of

pile-up hits and muon hits yielded a lower χ2 than muon-only hits in the

track fitting stage.

• In five other events, it was found that the number of patterns in the true

muon sector was less than the threshold of 30 patterns required in a sector
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in order to perform the PCA, hence there were no images produced.

• In one event, the true muon sector was contained in a sector that did not

exist in the sector dictionary (i.e., there were

Based on these findings, two changes were made: the minimum patterns thresh-

old was lowered to pmin = 15 and the peak window extended to 9x9. The first

change is motivated by the sectors in which no image was produced, and including

them in the calculation should yield better results. For the second change, a 9x9

window around the central pixel in each peak is used to extract hit information,

instead of a 3x3 window, to try and prevent track candidates being formed with

one or two missing muon hits. The muon images are likely to intersect in a broad

region and if the max-pooling did not manage to consolidate the hits previously,

then casting a wider net to extract the hits from the peak may help. For the

other hyperparameters, there is no reason to assume the default choice was not

already sensible. Finally, any event for which the true muon sector is not present

in the sector dictionary can be removed from the efficiency calculation, since this

is caused by insufficient training data and we are interested in the efficiency with

respect to muons that are detectable. In summary, the updated hyperparameters

are shown in the Table 6.5, with the bold text indicating a change. The optimised

Hyperparameter Default Setting

No. iterations 5

tline 4

tpixel 0.5

Nearest neighbours for max-pool filter 1

Peak Window 9x9

Minimum pattern threshold (pmin) 15

Table 6.5: Summary of the optimised hyperparameters and thresholds
- the updated parameters are in bold font.
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(a) Efficiency as a function of the χ2

threshold.
(b) Average number of fake tracks per

event as a function of the χ2

threshold.

Figure 6.10: Summary of performance for Hough tracking algorithm.
The preliminary sample consists of 200 muon reference tracks. These
are used to perform some tuning of hyperparameters before testing on
the test events sample, which consists of 400 different muon reference
tracks.

efficiency and rate of fake track detection are displayed in Figure 6.10.

As the figure shows, there is an increase in efficiency of 1.5% - 3% across

the threshold values, at the expense of an increase of 6 - 10 fake tracks per event,

depending on the value of χ2. At the maximal available efficiency, this corresponds

to 4 out of the 200 event test sample in which the muon was not detected. In each

of these cases, it is the presence of pile-up hits that either disrupt the formation of

clear muon peaks or are selected in favour of muon hits in the track fitting stage.

(Note that this is not including any events for which the true muon sector does

not exist in the sector dictionary). In summary, a maximal efficiency of 99± 0.6%

is possible with an average fake track rate per event of 25.8± 0.7. Any remaining

loss of efficiency is caused by either lowering the χ2 threshold to reduce the fake

track rate, or due an insufficient training set (pattern bank) used to construct

the sector dictionary and PCA space. A brute force approach to improve the

performance of the tracking algorithm would simply be to generate larger Monte



6.4. Results 117

Carlo pattern banks and widen the coverage of detector space by the training

patterns. Other forms of data augmentation on the existing pattern bank could

be applied to avoid computationally expensive pattern bank generation, such as

exploiting the rotational symmetry of the detector. The detector is symmetric

with respect to the azimuthal angle, φ, so for any sector containing too few or no

patterns at all, the set of detector elements that correspond to the same η and

opposite φ should contain the same distribution of patterns. Hence, if a sector is

empty and no Hough images are produced, the ’opposite’ sector could be selected

and the PCA parameters drawn from there.

6.4.3 Comparison of Performance

While the application of the Hough transform itself to charged particle tracking is

not novel, our choice of parameterisation through the PCA training is. We have

already demonstrated in Section 3.3 that the data-driven approach of finding the

principal components that can define a pattern produces well separated Hough

images in each layer. It was qualitatively shown that this parameterisation is

well suited to the HT, but we must now compare the results with those from

the existing pattern matching framework. Table ?? contains the results from

the ATLAS-TDR-029 for the pattern matching performance of the Associative

Memory (AM) step. Since we have only been investigating the HT tracking for

Table 6.6: Pattern-matching performance for the AM step simulated on
minimum bias < µ > = 200 pile-up events (η × φ = 0.2 × 0.2 regions,
pT > 4 GeV) from the ATLAS-TDR-029 [36].
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Muon Eff. Avg. tracks per event

Pattern Matching 99.1% 31
HT Tracking 99.0 ±0.6% 25.8 ±0.7

Table 6.7: Comparison of muon efficiency and average fake tracks per
event for pattern matching vs HT-tracking algorithm.

the 0.1 < η < 0.3 region, only the results for this region can be used for comparison.

We are interested in comparing the muon reconstruction efficiency as well as the

"mean matches pile-up", which is equivalent to the average number of fake tracks

in Figure 6.10 and describes the mean number of tracks per event matched to

pile-up. The efficiency in this region is 99.1% with a mean number of matches

of 31 tracks per event. Table 6.7 contains these results in comparison with the

analogous HT results. With our tracking algorithm, there are at least 4.5 fewer

tracks per event and the pattern matching efficiency is within the error range of

the HT efficiency. While there is a track fitting stage in the HT algorithm, this

is not the same as the track fit that these tracks are then passed into after the

pattern matching. Hence, the lower track rate from the HT results in significantly

fewer track fits being computed at the next stage. An even greater drop in average

tracks per event could be obtained if efficiency were somewhat sacrificed or if the

additional events whose true muon sector could not be looked up in the sector

dictionary could be included.
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Chapter 7

Summary and Outlook

The aim of this work was to develop a novel tracking methodology for multi-

element silicon detectors using the popular computer vision technique, the Hough

Transform (HT). While there have been many attempts to use the HT in high

energy physics experiments for this purpose before, we present a more statistically

motivated method that circumvents many of the previous drawbacks. There are

two significant distinctions that we present; the first is to divide the detector

volume into detector element groups called sectors, derived from most the most

probable trajectories of Monte Carlo simulated muon tracks. The second is to use

these large pattern banks of muon tracks to train a Principal Component Analysis

(PCA) model and extract a compressed, 2-dimensional representation of tracks in

a sector. Through both the lossless sector dictionary-based compression and the

PCA compression, we can reduce the memory requirements for any pattern-based

track finding algorithm by approximately a factor of 5, sacrificing a negligible

loss in track finding efficiency. In our case, the compressed representation is then

used as a statistically motivated parameterisation for the application of the Hough

Transform. By applying the transform at the sector-level, the occupancy of the

resulting images, even with high levels of pile-up, is low enough to efficiently

isolate single muon tracks. Furthermore, using PCA to parameterise the tracks (as
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opposed to some ad-hoc parameterisation) leads to very little correlation between

the track parameters and produces well-defined, circularly symmetric peaks. This

leads to advantages and simplifications in the subsequent steps of the pattern

recognition, such as the simpler application of blob detection and hit-to-peak

association.

We find that, compared with current pattern matching methods for tracking,

our HT-based tracking algorithm achieves comparable muon detection efficiency

and requires, on average, fewer track candidates to process in the subsequent

track fitting stage. The small, observed loss in efficiency beyond this is the result

of insufficient training data for the PCA. To improve the training of the PCA

parameters, it is required that the pattern banks include rarer corner cases of

tracks. This could be achieved by using larger MC generated pattern banks or

by exploiting the symmetry of the detector to provide PCA parameters to sectors

which had little to no available training data in the current study. Additionally,

while this project does demonstrate the potential of the techniques employed,

further work would need to be carried out to reduce the computational complexity

of the algorithm and optimise execution time for any specific hardware, such as

GPUs.

As levels of pile-up increase in ATLAS over the coming years, it is essential

to maintain efficient tracking capabilities and reduce the reconstruction walltime

per event. The findings from this work present a promising direction that can be

taken in ATLAS to achieve this goal. Outside the field of high energy physics,

the novel application of PCA compression for Hough Transform parameterisation

could be leveraged for many object detection tasks for which sufficient training

data is available.
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