16 research outputs found

    Forecasting Indoor Environment using Ensemble-based Data Assimilation Algorithms

    Get PDF
    Forecasting simulations of building environment have attracted growing interests since more and more applications have been explored. Occupant’s thermal comfort, safety and energy efficiency are reported to directly benefit from accurate predicted building physical conditions. Among all available research regarding forecasting indoor environment, there are substantially fewer studies relating to occupant safety and emergency forecasting and response than that of comfort and energy savings. This may due to the nature that the forecasting simulations associated with life safety concerns demand higher accuracy. Although the tasks of forecasting potential threats in the indoor environment are especially challenging, the benefits can be significant. For example, toxic contaminants such as carbon monoxide from fire smoke can be monitored and removed before the concentration reaches a harmful level. The sudden release of hazardous gases or the smoke generated from an accidental fire can also be detected and analyzed. Then, based on the results of forecasting simulations, the building control system can provide an efficient evacuation plan for all occupants in the building. However, by using traditional simulation tools that utilize one set of initial inputs to forecast future physical states, the predicted physical conditions may depart from reality as the simulation progresses over time. In this thesis, forecasting simulations of building safety management are improved by applying the theory of data assimilation where the simulation results are aided by the sensor measurements. Instead of studying methods that require high computational resources, this research focuses on affordable approaches, ensemble-based algorithms, to forecast indoor environment to solve various safety problems including forecasting indoor contaminant and smoke transport. The resulting models are able to provide predictions with noticeable accuracy by only using affordable computer resources such as a regular PC. Finally, a scaled compartment fire experiment is conducted to verify the real-time predictability of the model. The results indicate that the proposed method is able to forecast real-time fire smoke transport with significant lead time. Overall, the method of Ensemble Kalman Filter (EnKF) is efficient to apply to forecasting indoor contaminant and smoke transport problems. In the end of this thesis, suggestions are summarized to help those who would like to apply EnKF to solve other building simulation problems

    Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    Full text link
    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on semi-empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.Comment: Minor revision, except description of the model expanded. 29 pages, 9 figures, 53 reference

    Valencia bridge fire tests: Validation of simplified and advanced numerical approaches to model bridge fire scenarios

    Full text link
    [EN] Bridge fires are a major concern and the subject of many studies that use numerical models. However, experimental studies are still required to test the validity of these numerical models and improve their accuracy. This paper uses temperature results of the Valencia bridge fire tests carried out at the Universitat Politecnica de Valencia, in Valencia (Spain) to calibrate the fire models that constitute the first step in modeling any bridge fire event. The calibration is carried out by both a simplified approach (Heskestad and Hamada's correlation) and advanced numerical models (Computational Fluid Dynamics models built with the Fire Dynamics Simulator -FDS- software). The Valencia bridge fire tests involved four fire scenarios under a composite bridge with Heat Release Rate (HRR) values between 361 and 1352 kW. The results show that applying Heskestad and Hamada's correlation gave good results when used within its limits of application (HRR < 0.764 MW) but did not work well beyond them, which means it would be suitable for planning reduced scale bridge fire tests but not in the analysis of real bridge fires. On the other hand, FDS provides good predictions of the temperatures and can be used to study bridge fire responses. This work is therefore an important step forward in the study of bridge fires and towards the improvement of the resilience of infrastructure networks vis-a-vis fire hazards. It also highlights the problems that can arise in fire tests in the open air, the influence of the wind being of critical importance.Funding for this research was provided by the Spanish Ministry of Science and Innovation (Research Project BIA 2011-27104). The authors are grateful to the Infrastructure and Safety departments of the Universitat Politecnica de Valencia and the City of Valencia Fire Department (Cuerpo de Bomberos de Valencia), which provided crucial support in conducting the tests.Alós-Moya, J.; Paya-Zaforteza, I.; Hospitaler Pérez, A.; Loma-Ossorio, E. (2019). Valencia bridge fire tests: Validation of simplified and advanced numerical approaches to model bridge fire scenarios. Advances in Engineering Software (Online). 128:55-68. https://doi.org/10.1016/j.advengsoft.2018.11.003S556812

    A New Bayesian Inference Calibration Platform for Building Energy and Environment Predictions

    Get PDF
    Buildings account for nearly 40% of total global energy consumption. It is predicted that by 2050 the combined energy consumptions of the residential and commercial sectors will have increased to 22% of the world's total delivered energy. Moreover, requirements for indoor health, safety, thermal comfort, and air quality have become more demanding due to more intensive and frequent extreme climate events, such as heatwaves and cold waves. Such issues have become challenging for the building energy and environment field, especially during the COVID-19 pandemic. Computer simulations play a crucial role in achieving a safe, healthy, comfortable, and sustainable indoor environment. As an integral step in the development of the building models, model calibration can significantly affect simulation results, model accuracy, and model-based decision-making. Conventional calibration methods, however, are often deterministic. As a result, the uncertainties that have been investigated for a building computer model, and those from the inputs have not been given adequate attention and are thus worth studying in more depth. Bayesian Inference is one of the most effective approaches to calibrating computer models with uncertainties. Several studies have explored its application in building energy modeling, but a comprehensive application in the general field of building energy and environment has not been adequate. This thesis started with a comprehensive literature review of Bayesian Inference calibration focusing on building energy modeling. Then, a systematic Bayesian calibration workflow and a new platform were developed. As well as a general study of its application for the predictions of building energy performance, the thesis investigated how to use the platform to calibrate thermal models of buildings and indoor air quality models. To solve the issue of the computing cost of Bayesian Inference, another calibration and prediction method, Ensemble Kalman Filter (EnKF), was proposed and applied to the estimation of ventilation performance and predictions of free cooling load. The conclusion includes a summary of the contributions of this thesis and suggestions for future work

    Analysis of the fire resistance of timber jack arch flooring systems used in historical buildings

    Full text link
    [EN] Conservation of built heritage, at present, is a major task and a great challenge because it requires adapting the performance of existing buildings to current code requirements, when very often these were built before codes existed. Timber jack arch flooring systems can be found in many historical buildings around the world. The system is formed by timber joists and brick vaults spanning the distance between two adjacent joists and has an undoubtable aesthetic and cultural value. However, given its geometry, there is no methodology to verify its fire resistance, which has prevented the preservation of many buildings using this system. Within this context, this paper proposes a methodology based on the ¿Reduced cross-section method¿ included in Eurocode 5 (EN 1995-1-2) for the determination of the fire resistance of historical timber jack arch flooring systems subjected to different fire exposures. The methodology is based on the use of the 135-degree and the 300-degree isotherms to obtain the positions of the zero-strength layer and the charring depths, and is supported by both advanced numerical thermal models experimentally validated for standard fire exposure and advanced mechanical models. The methodology has been applied to a wide number of flooring systems covering different span lengths, timber static bending strengths, and fire exposures to evaluate the influence of these parameters on fire resistance. Results show that historical buildings do not always meet the requirements set by current codes and, therefore, performing these analyses is essential to ensure the fire resistance of these timber structures. By doing so, this work also contributes to cultural heritage conservation and to more sustainable construction in alignment with the fulfilment of United Nations 2030 Agenda¿s eleventh goal: "Sustainable cities and communities".The authors wish to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided through Project BIA 2014-59036R. This research is also supported by the Spanish Ministry of Science, Innovation and Universities through the PhD grant FPU18/00726 awarded to the first author. Finally, the au-thors want to thank Prof. Dr. Juan Patricio Hidalgo for his help and MSc Enrique Serra for his assistance in the experimental test.Garcia-Castillo, E.; Paya-Zaforteza, I.; Hospitaler Pérez, A. (2021). Analysis of the fire resistance of timber jack arch flooring systems used in historical buildings. Engineering Structures. 243:1-20. https://doi.org/10.1016/j.engstruct.2021.112679S12024

    Data Driven Forecast for Fire

    Get PDF
    Being able to forecast the evolution of a fire is essential for fire safety design and fire response strategies. Despite advances in understanding fire dynamics and improvements in computational capability, the ability to predict the evolution of a fire remains limited due to large uncertainties associated to multiple scales and the non-linearities. The data-driven approach provides a viable technique from models corrected by observations. However, the complicated coupling between gaseous and condensed phases has, in the past, limited proper prediction with a positive leading time. This work proposes and investigates a series of approaches to data-driven hybrid modelling that integrate analytical and numerical descriptions to address the coupling effects. The data-driven hybrid model is developed for different scenarios covering various complexity and scales. Different approaches are evaluated to reflect the dominant physics; nevertheless, they are structured by differentiating the condensed and gas phases. The initial scenario corresponds to one-dimensional convective-diffusive droplet combustion in micro and normal gravity. Then, concurrent flame spread in micro and normal gravity where a two-dimensional boundary layer combustion approach is implemented. Finally, the Malveira fire test represents a large-scale, three-dimensional, travelling fire. Coefficients assimilated with their experimental observations are used to alter analytical formulations describing the gas and condensed phases. By separating the phases, the data-driven hybrid model can forecast various types of variables while reducing processing resources. Convergence of the assimilated coefficients is used as an indicator for an appropriate representation of the model and therefore is suitable for predictions. The proposed methodology still requires ongoing research, however. This work provides evidence for specific approaches and of areas where additional attention is necessary. It has become apparent that to adequately predict real-scale fire, it is necessary for more sophisticated explanations of heat and mass transfer and descriptions of the interactions between fire and its environment

    Proceedings of Abstracts 10th International Conference on Air Quality Science and Application

    Get PDF
    This 10th International Conference in Air Quality - Science and Application is being held in the elegant and vibrant city of Milan, Italy. Our local hosts are ARIANET and ARPA Lombardia both of whom play a leading role in assessing and managing air pollution in the area. The meeting builds upon the series that began at the University of Hertfordshire, UK in July 1996. Subsequent meetings have been held at the Technical University of Madrid, Spain (1999), Loutraki, Greece (2001), Charles University, Prague, Czech Republic (2003), Valencia, Spain (2005), Cyprus (2007), Istanbul, Turkey (2009) Athens, Greece (2012) and Garmisch-Partenkirchen, Germany (2014). Over the last two decades controls to limit air pollution have increased but the problem of poor air quality persists in all cities of the world. Consequently, the issue of the quality of air that we breathe remains at the forefront of societal concerns and continues to demand the attention of scientists and policy makers to reduce health impacts and to achieve sustainable development. Although urbanisation is growing in terms of population, transport, energy consumption and utilities, science has shown that impact from air pollution in cities is not restricted to local scales but depends on contributions from regional and global scales including interactions with climate change. Despite improvements in technology, users still demand robust management and assessment tools to formulate effective control policies and strategies for reducing the health impact of air pollution. The topics of papers presented at the conference reflect the diversity of scales, processes and interactions affecting air pollution and its impact on health and the environment. As usual, the conference is stimulating cross-fertilisation of ideas and cooperation between the different air pollution science and user communities. In particular, there is greater involvement of city, regional and global air pollution, climate change, users and health communities at the meeting. This international conference brings together scientists, users and policy makers from across the globe to discuss the latest scientific advances in our understanding of air pollution and its impacts on our health and environment. In addition to the scientific advances, the conference will also seek to highlight applications and developments in management strategies and assessment tools for policy and decision makers. This volume presents a collection of abstracts of papers presented at the Conference. The main themes covered in the Conference include: Air quality and impact on regional to global scales Development/application/evaluation of air quality and related models Environmental and health impact resulting from air pollution Measurement of air pollutants and process studies Source apportionment and emission models/inventories Urban meteorology Special session: Air quality impacts of the increasing use of biomass fuels Special session: Air quality management for policy support and decisions Special session: Air pollution meteorology from local to global scales Special session: Climate change and human health Special Session: Modelling and measuring non-exhaust emissions from traffic Special session: Transport related air pollution - PM and its impact on cities and across EuropeFinal Published versio

    The WWRP Polar Prediction Project (PPP)

    Get PDF
    Mission statement: “Promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hours to seasonal”. Increased economic, transportation and research activities in polar regions are leading to more demands for sustained and improved availability of predictive weather and climate information to support decision-making. However, partly as a result of a strong emphasis of previous international efforts on lower and middle latitudes, many gaps in weather, sub-seasonal and seasonal forecasting in polar regions hamper reliable decision making in the Arctic, Antarctic and possibly the middle latitudes as well. In order to advance polar prediction capabilities, the WWRP Polar Prediction Project (PPP) has been established as one of three THORPEX (THe Observing System Research and Predictability EXperiment) legacy activities. The aim of PPP, a ten year endeavour (2013-2022), is to promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on hourly to seasonal time scales. In order to achieve its goals, PPP will enhance international and interdisciplinary collaboration through the development of strong linkages with related initiatives; strengthen linkages between academia, research institutions and operational forecasting centres; promote interactions and communication between research and stakeholders; and foster education and outreach. Flagship research activities of PPP include sea ice prediction, polar-lower latitude linkages and the Year of Polar Prediction (YOPP) - an intensive observational, coupled modelling, service-oriented research and educational effort in the period mid-2017 to mid-2019

    Análisis de la respuesta frente al fuego de puentes mixtos multijácena

    Full text link
    Tesis por compendio[ES] El diseño de puentes, a diferencia de lo que ocurre con el diseño de edificios o con el diseño de túneles ha dejado de lado la consideración de la acción del fuego hasta la fecha. Este vacío normativo, combinado con la gran repercusión económica y social de colapsos de puentes en el pasado como consecuencia de incendios, ha motivado un rápido incremento del número de estudios relativos a la ingeniería frente al fuego en el ámbito de los puentes. Aunque la acción del fuego no resulta del todo desconocida en el ámbito de las estructuras, sí que existen una serie de singularidades que impiden la trasposición directa de recomendaciones o de modelos de fuego simplificados ya desarrollados en otros campos que ya incorporan la acción del fuego en el diseño. En este contexto, el trabajo que a continuación se expone parte de un incendio ocurrido en el estado de Alabama en 2002, cuyas consecuencias fueron la demolición de un puente mixto de 37 metros de vano central, para plantear y validar una metodología que aborda el problema de forma numérica mediante tres modelos acoplados secuencialmente: modelo de incendios, modelo térmico y modelo mecánico Realizada una validación a nivel general se descubre que, aunque la configuración geométrica final obtenida se ajustan bastante a la realidad, la definición del incendio ha supuesto un gran número de hipótesis. Es por ello que se decide, en una segunda parte, realizar una campaña experimental que permita registrar la potencia del fuego, las temperaturas del gas y del acero y las flechas en un puente construido ad-hoc en el campus de la Universitat Politècnica de València. Este puente experimental tenía un vano único de 6 m de luz y fue sometido a cargas de fuego de hasta 1.3 MW. Mediante el empleo de los registros realizados en la campaña experimental se ha validado el modelo de incendio, el modelo térmico y el modelo mecánico. Con todo ello se ha puesto en evidencia la importancia del viento en la acción del fuego, la magnitud de los gradientes térmicos espaciales y la urgencia de desarrollar procedimientos simplificados que permitan la incorporación del fuego como acción en el ámbito de los puentes Las validaciones específicas de cada modelo han permitido además llegar a una serie de conclusiones de gran interés para la realización de futuras campañas experimentales en puentes a mayor escala.[CA] El disseny de ponts, a diferència del que passa amb el disseny d'edificis o amb el disseny de túnels ha deixat de banda la consideració de l'acció del foc. Aquest buit normatiu, combinat amb la gran repercussió econòmica i social de col·lapses de ponts com a conseqüència d'incendis, ha motivat un ràpid increment del nombre d'estudis relatius a l'enginyeria del foc del foc en l'àmbit dels ponts. Encara que l'acció del foc no resulta del tot desconeguda en l'àmbit de les estructures, sí que hi ha una sèrie de singularitats que impedeixen la transposició directa de recomanacions o de models de foc simplificats ja desenvolupats en altres camps que ja incorporen l'acció del foc al disseny. En aquest context, el treball que a continuació s'exposa part d'un incendi ocorregut a l'estat d'Alabama en 2002 i que va provocar la demolició d'un pont mixt de 37 metres de va, per plantejar i validar una metodologia que aborda el problema de forma numèrica mitjançant tres models acoplats seqüencialment: model d'incendis, model tèrmic i model mecànic Realitzada una validació a nivell general es descobreix que, encara que la configuració geomètrica final obtinguda s'ajusta en gran mesura a la realitat, la definició de l'incendi ha suposat un gran nombre d'hipòtesis. És per això que es decideix, en una segona part, realitzar una campanya experimental que permeta registrar la potència del foc, les temperatures del gas i de l'acer i les fletxes en un pont construït ad hoc al campus de la Universitat Politècnica de València. Aquest pont experimental presenta un va únic de 6 m de llum i va ser sotmès a càrregues de foc de fins a 1.3 MW. Mitjançant l'ús dels registres realitzats a la campanya experimental s'ha validat el model d'incendi, el model tèrmic i el model mecànic. Amb tot això s'ha posat en evidència la importància del vent en l'acció del foc, la magnitud dels gradients tèrmics espacials i la urgència de desenvolupar procediments simplificats que permetin la incorporació del foc com a acció en l'àmbit dels ponts Les validacions específiques de cada model han permès a més arribar a una sèrie de conclusions de gran interès per a la realització de futures campanyes experimentals en ponts a major escala.[EN] To date, the fire action has been left aside in the bridge design despite this action has been widely considered in other structures such as building and tunnels. This regulatory vacuum, combined with the great economic and social impact of bridge collapses in recent times as a result of fires, has led to a rapid increase in the number of studies related to fire engineering in the field of bridges. Although the action of fire is not entirely unknown in the field of structures, there are a number of singularities that prevent the direct transposition of recommendations or simplified fire models from such fields. In this context, the study started by using a real fire which occurred in the state of Alabama in 2002 and led to the demolition of the 37-meter main span of a composite concrete and steel bridge to introduce and validate a methodology that numerically addresses the problem by uncoupling the problem in three different models: fire model, thermal model and mechanical model. Once the validation was accomplished at a general level, it was discovered that, although the geometrical data were quite adjusted to reality, the definition of the fire had involved a large number of hypotheses. That is why carrying out an experimental campaign to record the power of the fire, the gas and steel temperatures and the vertical deflections of a bridge built ad-hoc on the campus of the Universitat Politècnica de València became a priority. This 6-meter single span experimental bridge was subjected to fire loads of up to 1.3 MW. Through the use of the information recorded during the experimental campaign, the fire model, the thermal model and the mechanical model were validated. Moreover, the importance of wind in the action of fire, the magnitude of spatial thermal gradients and the urgency of developing simplified procedures which allow the consideration of fire as an action in the field of bridges were also highlighted. Last but not least, the validation of the different models allowed the author to include useful guidelines in order to define future experimental campaigns with more powerful fires and longer span bridges.Alós Moya, J. (2018). Análisis de la respuesta frente al fuego de puentes mixtos multijácena [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/116625TESISCompendi
    corecore