11,542 research outputs found

    Exploding the myths: An introduction to artificial neural networks for prediction and forecasting

    Get PDF
    Artificial Neural Networks (ANNs), sometimes also called models for deep learning, are used extensively for the prediction of a range of environmental variables. While the potential of ANNs is unquestioned, they are surrounded by an air of mystery and intrigue, leading to a lack of understanding of their inner workings. This has led to the perpetuation of a number of myths, resulting in the misconception that applying ANNs primarily involves "throwing" a large amount of data at "black-box" software packages. While this is a convenient way to side-step the principles applied to the development of other types of models, this comes at significant cost in terms of the usefulness of the resulting models. To address these issues, this inroductory overview paper explodes a number of the common myths surrounding the use of ANNs and outlines state-of-the-art approaches to developing ANNs that enable them to be applied with confidence in practice

    An evaluation framework for input variable selection algorithms for environmental data-driven models

    Get PDF
    Abstract not availableStefano Galelli, Greer B. Humphrey, Holger R. Maier, Andrea Castelletti, Graeme C. Dandy, Matthew S. Gibb

    Development of machine learning models for short-term water level forecasting

    Get PDF
    The impact of precise river flood forecasting and warnings in preventing potential victims along with promoting awareness and easing evacuation is realized in the reduction of flood damage and avoidance of loss of life. Machine learning models have been used widely in flood forecasting through discharge. However the usage of discharge can be inconvenient in terms of issuing a warning since discharge is not the direct measure for the early warning system. This paper focuses on water level prediction on the Storå River, Denmark utilizing several machine learning models. The study revealed that the transformation of features to follow a Gaussian-like distribution did not improve the prediction accuracy further. Additional data through different feature sets resulted in increased prediction performance of the machine learning models. Using a hybrid method for the feature selection improved the prediction performance as well. The Feed-Forward Neural Network gave the lowest mean absolute error and highest coefficient of determination value. The results indicated the difference in prediction performance in terms of mean absolute error term between the Feed-Forward Neural Network and the Multiple Linear Regression model was 0.003 cm. It was concluded that the Multiple Linear Regression model would be a good alternative when time, resources, or expert knowledge is limited

    Hydroinformatics and diversity in hydrological ensemble prediction systems

    Get PDF
    Nous abordons la prévision probabiliste des débits à partir de deux perspectives basées sur la complémentarité de multiples modèles hydrologiques (diversité). La première exploite une méthodologie hybride basée sur l’évaluation de plusieurs modèles hydrologiques globaux et d’outils d’apprentissage automatique pour la sélection optimale des prédicteurs, alors que la seconde fait recourt à la construction d’ensembles de réseaux de neurones en forçant la diversité. Cette thèse repose sur le concept de la diversité pour développer des méthodologies différentes autour de deux problèmes pouvant être considérés comme complémentaires. La première approche a pour objet la simplification d’un système complexe de prévisions hydrologiques d’ensemble (dont l’acronyme anglais est HEPS) qui dispose de 800 scénarios quotidiens, correspondant à la combinaison d’un modèle de 50 prédictions météorologiques probabilistes et de 16 modèles hydrologiques globaux. Pour la simplification, nous avons exploré quatre techniques: la Linear Correlation Elimination, la Mutual Information, la Backward Greedy Selection et le Nondominated Sorting Genetic Algorithm II (NSGA-II). Nous avons plus particulièrement développé la notion de participation optimale des modèles hydrologiques qui nous renseigne sur le nombre de membres météorologiques représentatifs à utiliser pour chacun des modèles hydrologiques. La seconde approche consiste principalement en la sélection stratifiée des données qui sont à la base de l’élaboration d’un ensemble de réseaux de neurones qui agissent comme autant de prédicteurs. Ainsi, chacun d’entre eux est entraîné avec des entrées tirées de l’application d’une sélection de variables pour différents échantillons stratifiés. Pour cela, nous utilisons la base de données du deuxième et troisième ateliers du projet international MOdel Parameter Estimation eXperiment (MOPEX). En résumé, nous démontrons par ces deux approches que la diversité implicite est efficace dans la configuration d’un HEPS de haute performance.In this thesis, we tackle the problem of streamflow probabilistic forecasting from two different perspectives based on multiple hydrological models collaboration (diversity). The first one favours a hybrid approach for the evaluation of multiple global hydrological models and tools of machine learning for predictors selection, while the second one constructs Artificial Neural Network (ANN) ensembles, forcing diversity within. This thesis is based on the concept of diversity for developing different methodologies around two complementary problems. The first one focused on simplifying, via members selection, a complex Hydrological Ensemble Prediction System (HEPS) that has 800 daily forecast scenarios originating from the combination of 50 meteorological precipitation members and 16 global hydrological models. We explore in depth four techniques: Linear Correlation Elimination, Mutual Information, Backward Greedy Selection, and Nondominated Sorting Genetic Algorithm II (NSGA-II). We propose the optimal hydrological model participation concept that identifies the number of meteorological representative members to propagate into each hydrological model in the simplified HEPS scheme. The second problem consists in the stratified selection of data patterns that are used for training an ANN ensemble or stack. For instance, taken from the database of the second and third MOdel Parameter Estimation eXperiment (MOPEX) workshops, we promoted an ANN prediction stack in which each predictor is trained on input spaces defined by the Input Variable Selection application on different stratified sub-samples. In summary, we demonstrated that implicit diversity in the configuration of a HEPS is efficient in the search for a HEPS of high performance

    Probabilistic Models for Droughts: Applications in Trigger Identification, Predictor Selection and Index Development

    Get PDF
    The current practice of drought declaration (US Drought Monitor) provides a hard classification of droughts using various hydrologic variables. However, this method does not yield model uncertainty, and is very limited for forecasting upcoming droughts. The primary goal of this thesis is to develop and implement methods that incorporate uncertainty estimation into drought characterization, thereby enabling more informed and better decision making by water users and managers. Probabilistic models using hydrologic variables are developed, yielding new insights into drought characterization enabling fundamental applications in droughts

    Invited and Selected Paper Abstracts; WAEA Annual Meetings, Denver, Colorado, July 11-15, 2003

    Get PDF
    Teaching/Communication/Extension/Profession,
    corecore