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Abstract: Input Variable Selection (IVS) is an essential step in data-driven modelling and is particularly 
relevant in environmental applications, where potential input variables are often collinear and 
redundant. While methods for IVS continue to emerge, each has its own advantages and limitations and 
no single method is best suited to all datasets and modelling purposes. Rigorous evaluation of IVS 
methods would allow their effectiveness to be properly identified in various circumstances. However, 
such evaluations are largely neglected due to the lack of guidelines to facilitate consistent and 
standardised assessment. This work proposes a new evaluation framework, which consists of 
benchmark datasets with the typical properties of environmental data, a recommended set of 
evaluation criteria and a website for sharing data and code. The framework is demonstrated on four 
IVS algorithms commonly used in environmental modelling studies. The results indicate interesting 
differences in the algorithms' performance that have not been identified previously. 
 
Response to Reviewers: Editor 
 
I have now received reviews of the above paper and these lead me to recommend that revision 
according to all the reviewers' comments is necessary. I may not send it back to reviewers, trusting 
that you will cut it down, otherwise few people will not bother reading it. 
 
Response to Editor comment No. 1. We significantly reduced the manuscript length by mostly focusing 
on Section 2 and 3, as also suggested by reviewer #2. Where possible, we also tried to reduce Section 5. 
Overall, we obtained a reduction of about 6 pages (from the introduction to the conclusion) with 
respect to the previous version of the manuscript. Furthermore, we removed Appendix A, since this 
material can be directly accessed from the framework website. This gives an overall reduction of 21 
pages. 
 
Another issue is that I'd like it to fit better with EMS being a generic journal and so link to our key 
outputs. Most citations to EMS papers are to the authors themselves! Just one way to do this is to link 
with/refer to other key modelling concepts and issues in the journal. For example see the next 
paragraph. 



 
On model evaluation: that it is credible and addressed well. In this connection, I would like you to 
justify, and if pertinent expand or comment upon, your choice of evaluation metrics and methods 
among the ones, for example, in the recent EMS Position paper of Bennett et al (2013) on performance 
evaluation (they propose a 5-step procedure for evaluating the performance of models).  You could 
also add/comment on visual methods and quantitative measures used to examine model quantities 
and residuals, including visual inspection. There are several other evaluation issues you could 
address/compare as well and the paper by Robson and cited below presents an excellent example in 
Section 13 of that paper.  One of our aims for EMS is to strengthen the credibility and relevance of the 
modelling reported and do this whatever the environmental problem sector.  That way your paper is 
more suited to our journal. 
 
Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, Marsili-Libelli S, Newham 
LTH, Norton JP, Perrin C, Pierce SA, Robson B, Seppelt R, Voinov AA, Fath BD and Andreassian V (2013) 
Characterising performance of environmental models. Environmental Modelling & Software 40: 1-20. 
 
Robson, Barbara J (in press) State of the art in modelling of phosphorus in aquatic systems: Review, 
criticisms and commentary. Environmental Modelling & Software, In Press, Corrected Proof, Available 
online 6 February 2014. 
 
Response to Editor comment No. 2. We linked our work with other key contributions in EMS by 
discussing about evaluation metrics and other issues related to the use of IVS algorithms in 
environmental modelling problems (as also suggested by reviewer #1). This discussion is contained in 
the newly added Section 6.3: 
 
“Unlike the synthetic data here considered, a key aspect of real-world environmental modelling 
problems is that the true underlying function is unknown, and IVS is thus used to reduce the 
uncertainty in the model development process by selecting a subset of relevant and non-redundant 
input variables. This opens some relevant theoretical and practical issues that are highlighted below: 
 
• Most of the IVS algorithms currently available select a unique subset of input variables, 
although the structural uncertainty in the inputs to be used often results in the possibility of choosing 
different, but equally informative, subsets. An attempt to account for this issue was recently made by 
Sharma and Chowdhury (2011), who proposed a PMI-based heuristic approach to select five different 
subsets of predictors in the context of medium-term hydro-climatic forecasting. The approach ensures 
that the cross-dependence between these subsets is limited, while the predictions of the resulting 
models are eventually combined with ensemble averaging. 
• In many practical situations, input variables can be characterised by errors, due, for example, 
to the interpolation of data in space and time or to the conversion of point measurement into areal 
values. Whilst methods exist for assessing the impact of input errors on parameter estimation 
procedures (Chowdhury and Sharma, 2007; Woldemeskel et al., 2012), IVS algorithms cannot take into 
account the change in the uncertainty associated with the different inputs. 
• A benefit of IVS is the improvement in the performance of the model being identified. Although 
the manner in which such performance is characterised depends on the specific domain of interest and 
the model objectives (Jakeman et al., 2006), two important aspects should always be considered when 
dealing with quantitative testing. First, the use of observational data for comparison must rely on 
appropriate data-division methods, such as cross-validation or bootstrapping, that allow for testing the 
ability of the model to generalise. Data division can account for both temporal and spatial dimensions, 
so it is suitable for spatial modelling as well (see Chowdhury and Sharma (2009) for an application to 
hydrological modelling problems). Second, an exhaustive quantitative evaluation should rely on a set of 
metrics focussing on different aspects in order to test the ability of the model in reproducing all the 
important features of the system. The reader is referred to Bennett et al. (2013) for a comprehensive 



review of techniques available for both data-division and quantitative evaluation, and to Robson 
(2014) for a more general assessment of environmental models.” 
 
In preparing the review we used the following rules: references to line numbers, equations and figures 
are all to the original manuscript; authors’ reply are in blue. 
 
 
Reviewer #1 
 
It was a joy reading this paper - very nicely put together. I just had four additions to include to what 
has been written here. 
 
l72 - I think one other issue needs to be added here. Most of these algorithms assume a unique input 
variable set exists. In my experience, a natural system can be equally well described using alternate 
predictor sets. This represents the structural uncertainty in specifying any one predictive model. I have 
attempted to highlight this issue in an invited seasonal forecasting paper (Sharma, A., and S. 
Chowdhury (2011), Coping with model structural uncertainty in medium-term hydro-climatic 
forecasting, Hydrology Research, 42(2-3), 113, doi:10.2166/nh.2011.104.) where we select 5 plausible 
predictor sets, but ensure the cross-dependence between them is not too high (so they can be argued 
to represent independent predictive models). These when combined using some model averaging 
rationale, lead to significant improvements in the stability of the predictive model. My argument is - for 
a practical problem when you wouldn’t like the model to issue unstable predictions, I would pursue 
this option any day over selecting a single unique model. The input variable selection problem never 
allows for reference datasets where multiple predictive models are plausible. One of these needs to be 
included in any evaluation framework that is proposed (maybe just as a mixture model having two 
different (psuedo-independent) predictor sets. 
 
Response to Reviewer comment No. 1. As explained in our reply to the Editor’s comments, we 
introduced a new section to discuss the most important issues related to the use of IVS algorithms in 
real-world environmental modelling problems (Section 6.3). In this case, the true underlying function 
is unknown and different, but equally informative, subsets could indeed exist. We highlighted this 
aspect in Section 6.3, where we also referred to the paper mentioned above.  
 
“Most of the IVS algorithms currently available select a unique subset of input variables, although the 
structural uncertainty in the inputs to be used often results in the possibility of choosing different, but 
equally informative, subsets. An attempt to account for this issue was recently made by Sharma and 
Chowdhury (2011), who proposed a PMI-based heuristic approach to select five different subsets of 
predictors in the context of medium-term hydro-climatic forecasting. The approach ensures that the 
cross-dependence between these subsets is limited, while the predictions of the resulting models are 
eventually combined with ensemble averaging.” 
 
l458 - I would add another dataset to this list that we needed to create to highlight the importance of 
the predictive algorithm when coupled to input variable selection in Sharma and Mehrotra 2014 - I 
suggest this as the typical datasets listed would not be able to differenciate between situations where 
the partial weights associated with each predictor variable are dramatically different - something that 
was pointed out to us in the review process of the above mentioned paper. Please see equation 22 of 
the paper. 
 
Response to Reviewer comment No. 2. Since we preferred not to highlight the importance of the 
predictive algorithm (and the corresponding predictive performance), we decided not to include the 
dataset within the framework. Furthermore, we notice that datasets 6-8 and 11-18 are characterized 
by similar properties. 



 
l500 - I think the selection metrics being considered could be expanded. For instance, if I am 
developing a predictive model to make predictions in space, the assessment can be done by leaving 
data points out one at a time (the usual leave-one out cross-validation) or entire blocks (I think this is 
called block cross-validation but not sure). If model is making prediction over time, the same thing 
applies along with an independent sample, the blocks here representing longer periods of time to 
account for persistence that may create bias with L1CV measures. An example of this is in one of my 
seasonal forecasting papers - Chowdhury, S., and A. Sharma (2009), Multisite seasonal forecast of arid 
river flows using a dynamic model combination approach, Water Resources Research, 45(10), 
doi:10.1029/2008wr007510. What I like most about this paper is the very extensive cross-validation 
that was performed towards the end, which showed the differences when using one cross-validation 
measure versus another. 
 
Response to Reviewer comment No. 3. As explained in Section 3.2.1, we believe that the predictive 
performance should not be used when dealing with synthetic data (such as those proposed in this 
framework), since the accuracy depends on different factors, e.g. choice of the model or calibration 
method. This said, we understand that the predictive accuracy becomes important in case of real-world 
applications, so we included a discussion about this aspect in Section 6.3. 
 
“A benefit of IVS is the improvement in the performance of the model being identified. Although the 
manner in which such performance is characterised depends on the specific domain of interest and the 
model objectives (Jakeman et al., 2006), two important aspects should always be considered when 
dealing with quantitative testing. First, the use of observational data for comparison must rely on 
appropriate data-division methods, such as cross-validation or bootstrapping, that allow for testing the 
ability of the model to generalise. Data division can account for both temporal and spatial dimensions, 
so it is suitable for spatial modelling as well (see Chowdhury and Sharma (2009) for an application to 
hydrological modelling problems). Second, an exhaustive quantitative evaluation should rely on a set of 
metrics focussing on different aspects in order to test the ability of the model in reproducing all the 
important features of the system. The reader is referred to Bennett et al. (2013) for a comprehensive 
review of techniques available for both data-division and quantitative evaluation, and to Robson 
(2014) for a more general assessment of environmental models.” 
 
Last point - I have not published this yet - but my PMI code also takes into account the change in the 
uncertainty associated with the predictor variable over time. Again - this was included as typical 
seasonal forecasting problems have markedly different standard errors depending on when the data 
was collected. A good example of implications of this changing error on predictions is in Chowdhury, S., 
and A. Sharma (2007), Mitigating Parameter Bias in Hydrological Modelling due to Uncertainty in 
Covariates, Journal of Hydrology, 340(doi:10.1016/j.jhydrol.2007.04.010), 197-204. But a better 
example of how these standard errors can be ascertained (varying over space and time, in this case for 
GCM simulations) is in Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra (2012), An error 
estimation method for precipitation and temperature projections for future climates, Journal of 
Geophysical Research-Atmospheres, 117, doi:Artn D22104Doi 10.1029/2012jd018062. Strongly feel 
predictor identification needs to offer a sensible basis of including such variations in data quality over 
time. This should be stated somewhere in this paper. 
 
Response to Reviewer comment No. 4. This aspect is discussed in Section 6.3. 
 
“In many practical situations, input variables can be characterised by errors, due, for example, to the 
interpolation of data in space and time or to the conversion of point measurement into areal values. 
Whilst methods exist for assessing the impact of input errors on parameter estimation procedures 
(Chowdhury and Sharma, 2007; Woldemeskel et al., 2012), IVS algorithms cannot take into account the 
change in the uncertainty associated with the different inputs.” 



 
On the whole, this is a great paper, that can be quite useful to people who identify predictor variables 
for use in different prediction problems. Well done folks! 
 
Response to Reviewer comment No. 5. We thank the reviewer for the comment. 
 
 
Reviewer #2 
 
The authors propose a framework in three points to evaluate input variable selection (IVS) algorithms: 
1) 26 benchmark synthetic datasets 
2) a set of evaluation criteria 
3) website for sharing data and results 
 
Four IVS algorithms are compared and evaluated according to the proposed framework and discussed 
thoroughly. The idea is really interesting and I think frameworks of this type are more and more 
developed and are necessary to help research scientist be more systematic in their evaluation and 
comparison of new and existing methodologies. The paper is generally well written but is very long (91 
pages with appendices and 56 pages before the reference section). I think it could be shorten without 
diminishing its coherence. I will suggest some possible ways to shorten it below. 
 
Response to Reviewer comment No. 1. We understand that the paper is a bit lengthy, so we shortened 
it by removing some marginal elements (while improving some specific aspects). The revised version is 
21 pages shorter (including the appendices).  
 
I have one major disappointment:  I could not find the website at the address mentioned on p. 31 
(www.ivs4em.deib.polimi.it) only www.deib.polimi.it works but from there, I cannot find the 
framework webpage. I also tried some Google searches unsuccessfully. I think this is a limitation of the 
paper, if one does not have access to the benchmark datasets and cannot have a look at the web page, 
the whole paper remains at the stage of a good idea. Also, I think the paper could include snapshot 
images of the website to illustrate its functionalities for sharing results for instance. I would also expect 
the authors to include a functionality in the website which would allow the computation of the 
recommended criteria automatically. If not directly in the website, some R code could be shared to 
compute the criteria easily and people could contribute to new criteria. 
 
Response to Reviewer comment No. 2. We fixed this problem. The website is now accessible, and the 
updated url (http://ivs4em.deib.polimi.it) is included in the revised version of the manuscript. From 
the website it is possible to download the 26 datasets (with their corresponding description), the 
source code of each IVS algorithm and an R script to compute the evaluation criteria. We have also 
included a functionality to upload algorithms, datasets and evaluation criteria. 
 
We agree with the reviewer that the paper could include snapshot images of the website; however, we 
decided not to include them in order to limit the manuscript length.  
 
Other comments 
Section 2 describes the background on IVS methods. I found this section both a little long and not so 
easy to understand. I had to read the Guyon and Elisseeff (2003) paper to understand more clearly the 
three IVS categories. In particular, filters method are basically ranking methods (as described in Guyon 
and Elisseeff (2003)) and I think it’s more intuitive to present them by mentioning ranks.  
 



Response to Reviewer comment No. 3. Following the reviewer’s suggestion, we shortened Section 2 
and we clarified all the unclear aspects. Furthermore, we included at the beginning of Section 2.2.1 a 
brief explanation of filters that explicitly refers to ranking methods.  
 
I would suggest to start the description of each class of IVS by a typical algorithm from this class. This 
would help to understand the definition of the class. For the filters, the method of ranking in terms of 
correlation between one input and the ouput, for instance. For wrapper, the GA-ANN method used in 
the application of the framework could be described rapidly here. And for embedded algorithms, I 
would think of the LASSO algorithm which is quite popular.  
 
Response to Reviewer comment No. 4. We agree with the reviewer that a simple description of each 
class of IVS would simplify the understanding of Section 2.2. Hence, we included a brief explanation of 
filters, wrappers and embedded algorithms at the beginning of Section 2.2.1, 2.2.2 and 2.2.3, 
respectively. We think that this approach is more effective than describing a typical algorithm for each 
class. 
 
P. 10, lines 202-204: I have some trouble to understand why the ACF and PACF are useful for input 
selection. As far as I know, these techniques are used for time series analyses to choose the proper 
coefficients in an ARMA model. I would suggest to mention here the partial correlaction and partial 
mutual information which are used in the application of the framework later.  
 
Response to Reviewer comment No. 5. ACF and PACF can be used to measure the (linear) correlation 
between inputs and output, and then rank the former according to the pairwise correlation. As such, 
they can be seen as filters. Following the reviewer’s suggestion, we also mentioned the Partial 
Correlation Input Selection algorithm. 
 
P. 12 lines 245-250: the description of the Gamma near-neighbour test was not clear to me. I am 
wondering if it is useful since this method is not used in the comparison of IVS algorithms and the 
purpose of the paper is not to review the state-of-the-art on IVS algorithms.  
 
Response to Reviewer comment No. 6. The description of the Gamma near-neighbour test was 
shortened as suggested. 
 
Section 3 describes the evaluation framework. Basically, as far as I am concerned, two things are 
missing: some real datasets and a performance criterion based on predictive accuracy. I understand 
the point made by the authors for the synthetic datasets: it is the only way to know the "true" inputs 
and their performance criteria SA are based on this knowledge. However, from a practical point of 
view, I am, most of the time, mainly interested to evaluate if the model selection I performed yield the 
best model in terms of predictive power. I think that some real datasets along with a predictive 
accuracy criterion would be complementary to the framework. This could be similar in spirits with the 
Delve datasets mentioned by the authors: some datasets are used for development and other for 
assessment. The real datasets could serve the later goal.  
 
Response to Reviewer comment No. 7. We understand the reviewer’s suggestion, but we believe that 
including some real datasets and one, or more, performance of predictive accuracy may be 
counterproductive. This opinion is supported by the following reasons: 1) There exists a variety of 
filters that do not rely on any underlying model (induction or learning algorithm), so it is not possible 
to evaluate the accuracy of such algorithms in terms of predictive accuracy. This would be against the 
rationale of the IVS framework, which is aimed at supporting the quantitative (and qualitative) 
evaluation of any input selection algorithm; 2) The predictive accuracy is ‘biased’ by several factors, 
such as the choice of the underlying model and calibration (and validation) algorithm. Minimizing such 
bias would require introducing an exhaustive comparison of different models (e.g. neural networks, 



regression trees, linear models, support vector machines etc.) and calibration methods, but this would 
dramatically affect the length of the manuscript; 3) The same reasoning applies to the inclusion of 
some real datasets. Indeed, the comparison of different input selection algorithms on some real 
datasets could only be run by comparing the predictive accuracy of some underlying models; 
furthermore 4) The inclusion of a few real datasets prevents an exhaustive assessment of the IVS 
algorithms against the statistical properties described in Section 3.1.   
 
P. 18 lines 399-402. The sentence "Finally, the use of synthetic data enable previously unalysed 
datasets ... would provide very little information about algorithm performance" is not clear to me.  
 
Response to Reviewer comment No. 8. The sentence has been removed. 
 
P. 19 line 417 : "a universal approximator", like an artificial neural network ? or the authors have 
something else in mind ?  
 
Response to Reviewer comment No. 9. Yes, a feed-forward neural network (with a single hidden layer 
containing a finite number of neurons) could indeed serve as a universal approximator (Cybenko, 
1989). We clarified this aspect in the revised version of the manuscript. 
 
“The amount of noise in the output is defined as the fraction of the variance that would remain 
unexplained if a universal approximator, such as an artificial neural network (Cybenko, 1989), were 
used on an infinite training set.” 
 
Section 3.2.1. Selection accuracy: do we really need SA in addition to SAe and SAc? I find the later two 
sufficient since SA is computed from them. Moreover, SA requires to set a parameter which controls 
the tradeoff between SAe and SAc and it seems not necessary to make such a choice. 
 
Response to Reviewer comment No. 10. We believe that the three scores (i.e. SA, SAc and SAe) are 
important, since they serve two different purposes: 1) The Selection Accuracy (SA) makes the 
comparison between different algorithms quite fast and straightforward, since it quantifies the degree 
to which a model has been correctly or incorrectly specified. Furthermore, the presence of the 
parameter γ allows the user to weight the importance of missing a relevant input against choosing an 
extraneous one; 2) The SAc and SAe allow for a more in-depth analysis, since they quantify the 
proportion of correct and extraneous inputs that have been selected.  
The single SA score also allows a simple and direct trade-off between selection accuracy and runtime. 
 
Computational efficiency: I have a tendency to think that the total runtime is enough as a measure of 
computational efficiency. I understand it is not directly comparable across platforms and programming 
languages but I am not sure if that really matters that much. What basically matters is the order of 
magnitude: does it take a couple of seconds or a couple of days? 
 
Response to Reviewer comment No. 11. The total runtime provides simple, ‘practical’ information that 
is certainly useful to most users and practitioners. For this reason, the results in terms of runtime are 
reported within the text, while the analysis of computational complexity is reported in Appendix C 
(now Appendix B). Although only few readers may be interested in it, we believe that such analysis can 
have both theoretical (e.g. determining the growth rate of the runtime) and practical (e.g. planning the 
execution of several IVS experiments) implications, particularly as enables platform independent 
comparisons of the computational efficiency of different IVS algorithms. This will become increasingly 
important as researchers will add the performance of different algorithms to the website, as these 
measures will enable computational efficiency to be compared in an objective manner.   
 



P. 29 lines 657-658: how does the framework provides a theoretical measure of computational 
complexity? as far as I know, this has to be computed for each IVS algorithm by considering the 
computation steps involved. This would be a kind of O(NP) classification for instance, am I right ? 
 
Response to Reviewer comment No. 12. Yes, the theoretical measure of computational complexity is 
determined for each algorithm by evaluating the computational steps involved at each iteration (see 
Appendix C). This concept has been further clarified in the revised version of the manuscript.  
 
“In particular, the analysis of computational complexity is determined for each algorithm by evaluating 
the computational steps involved at each iteration, and it is aimed at producing a theoretical 
classification that estimates the increase in run-time as a function of the input dimensionality N and P.” 
 
Experimental setup 
I found it difficult to follow the explanations on the IVS algorithms and on their performance without 
further explanations on their mechanisms which are given in the appendix. This is why I am suggesting 
to use the space in the section 2 to already introduce the IVS algorithms which will be compared.  
 
Response to Reviewer comment No. 13. We understand that Section 4 may appear unclear without 
reading the appendix, but, at the same time, we think that Section 2 should contain a general 
description of IVS approaches and not a detailed description of the IVS algorithms adopted in this 
study. In order to solve this problem, we included a brief description of each algorithm in Section 4, 
and we tightened the connection between Section 4 and the appendix.   
 
I am wondering if it is useful to include 4 IVS algorithms since this means that all of them should be 
described in details for the reader to understand what is going on. For instance, p. 32 line 743, I am 
wondering how the Gaussian reference bandwith is set and line 749, how do you compute the 
"correlation between inputs and output and a multiple linear regression". 
 
Response to Reviewer comment No. 14. The presence of four algorithms is critical to demonstrate why 
the framework can be useful to identify the pros and cons of different types and classes of IVS 
algorithms. For example, the comparison between PCIS and PMIS shows the effect due to the presence 
of nonlinearities, while the one between PMIS and IIS is used to discuss the effects of non-Gaussian 
data. Furthermore, the comparison between filters (PCIS, PMIS and IIS) and wrappers (GA-ANN) 
allows discussing the computational demands of different methodologies. Limiting the comparison to 
two algorithms would not allow for this exhaustive analysis. This said, we understand the reviewer’s 
concern, so we clarified all these technical aspects in Section 4 (please refer to the previous reply as 
well).  
 
It would probably be possible to retain 2 distinct IVS algorithms and to compare them in order to 
illustrate the framework. The paper would be easier to read then since the goal is not so much to 
inform on IVS algorithms than to present to framework. 
 
Response to Reviewer comment No. 15. Please refer to the previous reply. 
 
Other questions on IVS algorithms: p. 33 line 755 what are SISO models? I found the explanation later 
in the appendix. In general, the explanation of the IIS algorithm was fairly obscure to me.  
 
Response to Reviewer comment No. 16. The description of the IIS algorithm has been improved as 
suggested. 
 



p. 33 lines 767: a 1 hidden unit neural network do not have much non-linear capability. I understand it 
takes time to tune the number of hidden units of a neural network but otherwise, they do not have 
much predictive power.  
 
Response to Reviewer comment No. 17. Yes, we totally agree with this remark (which is indeed 
commented on in Section 6.1). The adoption of such architecture, however, can easily serve our 
purpose: we aim at practically demonstrating the pros and cons of wrappers (and filters), rather than 
providing a definitive answer as to which of the algorithms performs best.   
 
p. 33  line 771: since the number of hidden units is fixed, what is the use of k-fold cross-validation? 
 
Response to Reviewer comment No. 18. The k-fold cross-validation is used to quantify the accuracy of 
the ANN. We clarified this aspect in the revised version of the manuscript.  
 
“The accuracy of the ANN is measured in terms of out-of-sample AIC, computed using a k-fold cross- 
validation (with k = 5).” 
 
p.36 lines 841-842 : " ... all four combinations of SAc and SAe were obtained for the combination of IVS 
algorithm and datasets..." this sentence needs to be rephrased. 
 
Response to Reviewer comment No. 19. The sentence has been rephrased as suggested. 
 
“Furthermore, Figure 4 shows that different values of SAc and SAe were obtained for the combination 
of IVS algorithms and datasets considered.” 
 
Regarding Figs 4-5 and Figs 6-7, I think they could be re-organized; as it is, they are redundant. The 
authors could either choose to show the SA scores for datasets which yield contrasted results for the 
four IVS algorithms or to group datasets according to their properties (as it is done in the text in 
section 5.1.2).  
 
Response to Reviewer comment No. 20. Following the reviewer’s comment, we removed Figure 4 and 
6, since the most of the information in Figure 4 (or 6) is available from Figure 5 (or 7). The reason for 
maintaining Figure 5 and 7 is that they allow organizing the results by dataset (Figure 5) and by 
algorithm (Figure 7). The former highlights the performance of the four IVS algorithms on the same 
modelling conditions, while the latter provides insight into the way different dataset properties impact 
on the behavior of a specific algorithm.  
 
The discussion on the results could be more condensed:  p.44 lines 1021-1033: I found pretty evident 
that larger N helps model selection, I would suggest to shorten lines 1024-1033. 
 
Response to Reviewer comment No. 21. Section 5.1.3 (‘Effect of N and P on algorithm performance’) 
has been revised and shortened. In general, the entire Section 5 has been thoroughly revised and 
condensed. 
 
Computational efficiency 
I found it difficult to follow the discussion on where the computations take more time for each IVS 
algorithm since I was not very familiar with them. I kept wondering: what is exactly Extra-trees, GRNN, 
PCIS, IIS... By retaining just 2 IVS algorithms and providing more detailed explanations would probably 
help to benefit from the kind of discussion in this section. 
 
Response to Reviewer comment No. 22. Section 5.2 gives two different types of information about 
‘Computational efficiency’. The first is based on the total runtime (Table 2) and it is built on the concept 



that filter algorithms (such as PMIS, PCIS and IIS) are computationally efficient, while wrappers (such 
as the GA-ANN algorithm) require more computing resources. This information is directly accessible 
by any reader, and does not require being familiar with the algorithms considered. The second 
information, which is based on the analysis of complexity (Table 3), requires an in-depth knowledge of 
the algorithms, so we believe that the improvements to Section 4 (plus the presence of a dedicated 
appendix) will allow the interested readers in understanding the technical aspects of such analysis.  
 
I found the qualitive criteria section quite long. I understand the interest in these type of criteria but it 
could probably be shortened.  
 
Response to Reviewer comment No. 23. The section was shortened as recommended.  
 
 
Reviewer #3 
 
The objective of this paper is to create a framework for evaluating and comparing input subset 
selection (IVS) algorithms for environmental modeling applications.  IVS for environmental systems 
modeling is an extremely challenging task because of the vast number of possible explanatory 
variables given the space/time correlation of the processes being modeling.  However, for the same 
reason there is also the possibility for significant colinearity of input variables.  For this reason IVS is 
an important first step for any environmental modeling project. Unfortunately, as noted by the authors, 
there has been little research into what makes a "good" IVS algorithm, as most IVS algorithm research 
has been focused at a particular dataset or modeling task.  The proposed framework would create a 
repository of data sets and algorithms that would permit comparison of the existing or newly proposed 
IVS algorithms to identify which perform well in general, thus providing guidance on which algorithm 
to select for new modeling projects. 
 
This is a well written paper describing project of great interest to the environmental modeling 
community.  The discussion of existing IVS methods is thorough given the scope and length of the 
paper, and the explanation of the evaluation criteria and the benchmark synthetic data sets is 
thorough.  I recommend this paper be published as-is by Environmental Modelling and Software. 
 
Response to Reviewer comment No. 1. We thank the reviewer for the comment. 
 
 
 
References 
 
Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., ... & Andreassian, 
V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 
40, 1-20. 
 
Chowdhury, S., & Sharma, A. (2007). Mitigating parameter bias in hydrological modelling due to 
uncertainty in covariates. Journal of Hydrology, 340(3), 197-204. 
 
Chowdhury, S., & Sharma, A. (2009). Multisite seasonal forecast of arid river flows using a dynamic 
model combination approach. Water resources research, 45(10). 
 
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, 
signals and systems, 2(4), 303-314. 
 



Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation 
of environmental models. Environmental Modelling & Software, 21(5), 602-614. 
 
Robson, B. J. (2014). State of the art in modelling of phosphorus in aquatic systems: Review, criticisms 
and commentary. Environmental Modelling & Software. 
 
Sharma, A., & Chowdhury, S. (2011). Coping with model structural uncertainty in medium-term hydro-
climatic forecasting. Hydrology Research, 42(2-3), 113-127. 
 
Sharma, A., & Mehrotra, R. (2014). An information theoretic alternative to model a natural system 
using observational information alone. Water Resources Research, 50(1), 650-660. 
 
Woldemeskel, F. M., Sharma, A., Sivakumar, B., & Mehrotra, R. (2012). An error estimation method for 
precipitation and temperature projections for future climates. Journal of Geophysical Research: 
Atmospheres (1984–2012), 117(D22). 
 



 

 
 
 

20 Dover Drive 
Singapore 138682 
T  +65 6303 6600 
 
www.sutd.edu.sg 

August 14, 2014 
 
 
A.J. Jakeman (Editor in Chief) 
 
 
Dear Tony, 
 
We would like to thank you and the reviewers for the thorough and very helpful review. 
We took all the suggestions into consideration and revised the manuscript accordingly. 
 
In particular, we improved the manuscript by focusing on three main aspects: 
 

• We reduced the manuscript length by about 6 pages (from the introduction to the 
conclusion) by shortening Section 2, 3 and 5. Furthermore, we removed Appendix 
A. This gives an overall reduction of 21 pages with respect to the previous version 
of the manuscript;  

• We linked our work with other key contributions in EMS, and included a 
discussion about the challenges related to the use of IVS algorithms in 
environmental modelling problems (see Section 6.3); 

• We updated the link to the website url (http://ivs4em.deib.polimi.it). The website 
is now complete, and it also includes the scripts for calculating the evaluation 
criteria, as suggested by reviewer #2. 

 
Further details and relevant information can be found in our response to the reviewers' 
comments.  
 
Should you need further information, please do not hesitate to contact me. 
 
Sincerely, 
 
Stefano Galelli, PhD 
(Corresponding author) 
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Editor 
 
I have now received reviews of the above paper and these lead me to recommend that 
revision according to all the reviewers' comments is necessary. I may not send it back 
to reviewers, trusting that you will cut it down, otherwise few people will not bother 
reading it. 
 
We significantly reduced the manuscript length by mostly focusing on Section 2 and 
3, as also suggested by reviewer #2. Where possible, we also tried to reduce Section 
5. Overall, we obtained a reduction of about 6 pages (from the introduction to the 
conclusion) with respect to the previous version of the manuscript. Furthermore, we 
removed Appendix A, since this material can be directly accessed from the 
framework website. This gives an overall reduction of 21 pages. 
 
Another issue is that I'd like it to fit better with EMS being a generic journal and so 
link to our key outputs. Most citations to EMS papers are to the authors themselves! 
Just one way to do this is to link with/refer to other key modelling concepts and issues 
in the journal. For example see the next paragraph. 
 
On model evaluation: that it is credible and addressed well. In this connection, I 
would like you to justify, and if pertinent expand or comment upon, your choice of 
evaluation metrics and methods among the ones, for example, in the recent EMS 
Position paper of Bennett et al (2013) on performance evaluation (they propose a 5-
step procedure for evaluating the performance of models).  You could also 
add/comment on visual methods and quantitative measures used to examine model 
quantities and residuals, including visual inspection. There are several other 
evaluation issues you could address/compare as well and the paper by Robson and 
cited below presents an excellent example in Section 13 of that paper.  One of our 
aims for EMS is to strengthen the credibility and relevance of the modelling reported 
and do this whatever the environmental problem sector.  That way your paper is more 
suited to our journal. 
 
Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, 
Marsili-Libelli S, Newham LTH, Norton JP, Perrin C, Pierce SA, Robson B, Seppelt 
R, Voinov AA, Fath BD and Andreassian V (2013) Characterising performance of 
environmental models. Environmental Modelling & Software 40: 1-20. 
 
Robson, Barbara J (in press) State of the art in modelling of phosphorus in aquatic 
systems: Review, criticisms and commentary. Environmental Modelling & Software, 
In Press, Corrected Proof, Available online 6 February 2014. 
 
We linked our work with other key contributions in EMS by discussing about 
evaluation metrics and other issues related to the use of IVS algorithms in 
environmental modelling problems (as also suggested by reviewer #1). This 
discussion is contained in the newly added Section 6.3: 
 
“Unlike the synthetic data here considered, a key aspect of real-world environmental 
modelling problems is that the true underlying function is unknown, and IVS is thus 
used to reduce the uncertainty in the model development process by selecting a subset 
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of relevant and non-redundant input variables. This opens some relevant theoretical 
and practical issues that are highlighted below: 
 

• Most of the IVS algorithms currently available select a unique subset of input 
variables, although the structural uncertainty in the inputs to be used often 
results in the possibility of choosing different, but equally informative, subsets. 
An attempt to account for this issue was recently made by Sharma and 
Chowdhury (2011), who proposed a PMI-based heuristic approach to select 
five different subsets of predictors in the context of medium-term hydro-
climatic forecasting. The approach ensures that the cross-dependence between 
these subsets is limited, while the predictions of the resulting models are 
eventually combined with ensemble averaging. 

• In many practical situations, input variables can be characterised by errors, 
due, for example, to the interpolation of data in space and time or to the 
conversion of point measurement into areal values. Whilst methods exist for 
assessing the impact of input errors on parameter estimation procedures 
(Chowdhury and Sharma, 2007; Woldemeskel et al., 2012), IVS algorithms 
cannot take into account the change in the uncertainty associated with the 
different inputs. 

• A benefit of IVS is the improvement in the performance of the model being 
identified. Although the manner in which such performance is characterised 
depends on the specific domain of interest and the model objectives (Jakeman 
et al., 2006), two important aspects should always be considered when dealing 
with quantitative testing. First, the use of observational data for comparison 
must rely on appropriate data-division methods, such as cross-validation or 
bootstrapping, that allow for testing the ability of the model to generalise. 
Data division can account for both temporal and spatial dimensions, so it is 
suitable for spatial modelling as well (see Chowdhury and Sharma (2009) for 
an application to hydrological modelling problems). Second, an exhaustive 
quantitative evaluation should rely on a set of metrics focussing on different 
aspects in order to test the ability of the model in reproducing all the 
important features of the system. The reader is referred to Bennett et al. 
(2013) for a comprehensive review of techniques available for both data-
division and quantitative evaluation, and to Robson (2014) for a more general 
assessment of environmental models.” 

 
In preparing the review we used the following rules: references to line numbers, 
equations and figures are all to the original manuscript; authors’ reply are in blue. 
 
 
Reviewer #1 
 
It was a joy reading this paper - very nicely put together. I just had four additions to 
include to what has been written here. 
 
l72 - I think one other issue needs to be added here. Most of these algorithms assume 
a unique input variable set exists. In my experience, a natural system can be equally 
well described using alternate predictor sets. This represents the structural uncertainty 
in specifying any one predictive model. I have attempted to highlight this issue in an 
invited seasonal forecasting paper (Sharma, A., and S. Chowdhury (2011), Coping 
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with model structural uncertainty in medium-term hydro-climatic forecasting, 
Hydrology Research, 42(2-3), 113, doi:10.2166/nh.2011.104.) where we select 5 
plausible predictor sets, but ensure the cross-dependence between them is not too high 
(so they can be argued to represent independent predictive models). These when 
combined using some model averaging rationale, lead to significant improvements in 
the stability of the predictive model. My argument is - for a practical problem when 
you wouldn’t like the model to issue unstable predictions, I would pursue this option 
any day over selecting a single unique model. The input variable selection problem 
never allows for reference datasets where multiple predictive models are plausible. 
One of these needs to be included in any evaluation framework that is proposed 
(maybe just as a mixture model having two different (psuedo-independent) predictor 
sets. 
 
As explained in our reply to the Editor’s comments, we introduced a new section to 
discuss the most important issues related to the use of IVS algorithms in real-world 
environmental modelling problems (Section 6.3). In this case, the true underlying 
function is unknown and different, but equally informative, subsets could indeed 
exist. We highlighted this aspect in Section 6.3, where we also referred to the paper 
mentioned above.  
 
“Most of the IVS algorithms currently available select a unique subset of input 
variables, although the structural uncertainty in the inputs to be used often results in 
the possibility of choosing different, but equally informative, subsets. An attempt to 
account for this issue was recently made by Sharma and Chowdhury (2011), who 
proposed a PMI-based heuristic approach to select five different subsets of predictors 
in the context of medium-term hydro-climatic forecasting. The approach ensures that 
the cross-dependence between these subsets is limited, while the predictions of the 
resulting models are eventually combined with ensemble averaging.” 
 
l458 - I would add another dataset to this list that we needed to create to highlight the 
importance of the predictive algorithm when coupled to input variable selection in 
Sharma and Mehrotra 2014 - I suggest this as the typical datasets listed would not be 
able to differenciate between situations where the partial weights associated with each 
predictor variable are dramatically different - something that was pointed out to us in 
the review process of the above mentioned paper. Please see equation 22 of the paper. 
 
Since we preferred not to highlight the importance of the predictive algorithm (and 
the corresponding predictive performance), we decided not to include the dataset 
within the framework. Furthermore, we notice that datasets 6-8 and 11-18 are 
characterized by similar properties. 
 
l500 - I think the selection metrics being considered could be expanded. For instance, 
if I am developing a predictive model to make predictions in space, the assessment 
can be done by leaving data points out one at a time (the usual leave-one out cross-
validation) or entire blocks (I think this is called block cross-validation but not sure). 
If model is making prediction over time, the same thing applies along with an 
independent sample, the blocks here representing longer periods of time to account 
for persistence that may create bias with L1CV measures. An example of this is in 
one of my seasonal forecasting papers - Chowdhury, S., and A. Sharma (2009), 
Multisite seasonal forecast of arid river flows using a dynamic model combination 
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approach, Water Resources Research, 45(10), doi:10.1029/2008wr007510. What I 
like most about this paper is the very extensive cross-validation that was performed 
towards the end, which showed the differences when using one cross-validation 
measure versus another. 
 
As explained in Section 3.2.1, we believe that the predictive performance should not 
be used when dealing with synthetic data (such as those proposed in this framework), 
since the accuracy depends on different factors, e.g. choice of the model or calibration 
method. This said, we understand that the predictive accuracy becomes important in 
case of real-world applications, so we included a discussion about this aspect in 
Section 6.3. 
 
“A benefit of IVS is the improvement in the performance of the model being identified. 
Although the manner in which such performance is characterised depends on the 
specific domain of interest and the model objectives (Jakeman et al., 2006), two 
important aspects should always be considered when dealing with quantitative 
testing. First, the use of observational data for comparison must rely on appropriate 
data-division methods, such as cross-validation or bootstrapping, that allow for 
testing the ability of the model to generalise. Data division can account for both 
temporal and spatial dimensions, so it is suitable for spatial modelling as well (see 
Chowdhury and Sharma (2009) for an application to hydrological modelling 
problems). Second, an exhaustive quantitative evaluation should rely on a set of 
metrics focussing on different aspects in order to test the ability of the model in 
reproducing all the important features of the system. The reader is referred to Bennett 
et al. (2013) for a comprehensive review of techniques available for both data-
division and quantitative evaluation, and to Robson (2014) for a more general 
assessment of environmental models.” 
 
Last point - I have not published this yet - but my PMI code also takes into account 
the change in the uncertainty associated with the predictor variable over time. Again - 
this was included as typical seasonal forecasting problems have markedly different 
standard errors depending on when the data was collected. A good example of 
implications of this changing error on predictions is in Chowdhury, S., and A. Sharma 
(2007), Mitigating Parameter Bias in Hydrological Modelling due to Uncertainty in 
Covariates, Journal of Hydrology, 340(doi:10.1016/j.jhydrol.2007.04.010), 197-204. 
But a better example of how these standard errors can be ascertained (varying over 
space and time, in this case for GCM simulations) is in Woldemeskel, F. M., A. 
Sharma, B. Sivakumar, and R. Mehrotra (2012), An error estimation method for 
precipitation and temperature projections for future climates, Journal of Geophysical 
Research-Atmospheres, 117, doi:Artn D22104Doi 10.1029/2012jd018062. Strongly 
feel predictor identification needs to offer a sensible basis of including such variations 
in data quality over time. This should be stated somewhere in this paper. 
 
This aspect is discussed in Section 6.3. 
 
“In many practical situations, input variables can be characterised by errors, due, for 
example, to the interpolation of data in space and time or to the conversion of point 
measurement into areal values. Whilst methods exist for assessing the impact of input 
errors on parameter estimation procedures (Chowdhury and Sharma, 2007; 
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Woldemeskel et al., 2012), IVS algorithms cannot take into account the change in the 
uncertainty associated with the different inputs.” 
 
On the whole, this is a great paper, that can be quite useful to people who identify 
predictor variables for use in different prediction problems. Well done folks! 
 
We thank the reviewer for the comment. 
 
 
Reviewer #2 
 
The authors propose a framework in three points to evaluate input variable selection 
(IVS) algorithms: 
1) 26 benchmark synthetic datasets 
2) a set of evaluation criteria 
3) website for sharing data and results 
 
Four IVS algorithms are compared and evaluated according to the proposed 
framework and discussed thoroughly. The idea is really interesting and I think 
frameworks of this type are more and more developed and are necessary to help 
research scientist be more systematic in their evaluation and comparison of new and 
existing methodologies. The paper is generally well written but is very long (91 pages 
with appendices and 56 pages before the reference section). I think it could be shorten 
without diminishing its coherence. I will suggest some possible ways to shorten it 
below. 
 
We understand that the paper is a bit lengthy, so we shortened it by removing some 
marginal elements (while improving some specific aspects). The revised version is 21 
pages shorter (including the appendices).  
 
I have one major disappointment:  I could not find the website at the address 
mentioned on p. 31 (www.ivs4em.deib.polimi.it) only www.deib.polimi.it works but 
from there, I cannot find the framework webpage. I also tried some Google searches 
unsuccessfully. I think this is a limitation of the paper, if one does not have access to 
the benchmark datasets and cannot have a look at the web page, the whole paper 
remains at the stage of a good idea. Also, I think the paper could include snapshot 
images of the website to illustrate its functionalities for sharing results for instance. I 
would also expect the authors to include a functionality in the website which would 
allow the computation of the recommended criteria automatically. If not directly in 
the website, some R code could be shared to compute the criteria easily and people 
could contribute to new criteria. 
 
We fixed this problem. The website is now accessible, and the updated url 
(http://ivs4em.deib.polimi.it) is included in the revised version of the manuscript. 
From the website it is possible to download the 26 datasets (with their corresponding 
description), the source code of each IVS algorithm and an R script to compute the 
evaluation criteria. We have also included a functionality to upload algorithms, 
datasets and evaluation criteria. 
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We agree with the reviewer that the paper could include snapshot images of the 
website; however, we decided not to include them in order to limit the manuscript 
length.  
 
Other comments 
Section 2 describes the background on IVS methods. I found this section both a little 
long and not so easy to understand. I had to read the Guyon and Elisseeff (2003) 
paper to understand more clearly the three IVS categories. In particular, filters method 
are basically ranking methods (as described in Guyon and Elisseeff (2003)) and I 
think it’s more intuitive to present them by mentioning ranks.  
 
Following the reviewer’s suggestion, we shortened Section 2 and we clarified all the 
unclear aspects. Furthermore, we included at the beginning of Section 2.2.1 a brief 
explanation of filters that explicitly refers to ranking methods.  
 
I would suggest to start the description of each class of IVS by a typical algorithm 
from this class. This would help to understand the definition of the class. For the 
filters, the method of ranking in terms of correlation between one input and the ouput, 
for instance. For wrapper, the GA-ANN method used in the application of the 
framework could be described rapidly here. And for embedded algorithms, I would 
think of the LASSO algorithm which is quite popular.  
 
We agree with the reviewer that a simple description of each class of IVS would 
simplify the understanding of Section 2.2. Hence, we included a brief explanation of 
filters, wrappers and embedded algorithms at the beginning of Section 2.2.1, 2.2.2 and 
2.2.3, respectively. We think that this approach is more effective than describing a 
typical algorithm for each class. 
 
P. 10, lines 202-204: I have some trouble to understand why the ACF and PACF are 
useful for input selection. As far as I know, these techniques are used for time series 
analyses to choose the proper coefficients in an ARMA model. I would suggest to 
mention here the partial correlaction and partial mutual information which are used in 
the application of the framework later.  
 
ACF and PACF can be used to measure the (linear) correlation between inputs and 
output, and then rank the former according to the pairwise correlation. As such, they 
can be seen as filters. Following the reviewer’s suggestion, we also mentioned the 
Partial Correlation Input Selection algorithm. 
 
P. 12 lines 245-250: the description of the Gamma near-neighbour test was not clear 
to me. I am wondering if it is useful since this method is not used in the comparison 
of IVS algorithms and the purpose of the paper is not to review the state-of-the-art on 
IVS algorithms.  
 
The description of the Gamma near-neighbour test was shortened as suggested. 
 
Section 3 describes the evaluation framework. Basically, as far as I am concerned, 
two things are missing: some real datasets and a performance criterion based on 
predictive accuracy. I understand the point made by the authors for the synthetic 
datasets: it is the only way to know the "true" inputs and their performance criteria SA 
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are based on this knowledge. However, from a practical point of view, I am, most of 
the time, mainly interested to evaluate if the model selection I performed yield the 
best model in terms of predictive power. I think that some real datasets along with a 
predictive accuracy criterion would be complementary to the framework. This could 
be similar in spirits with the Delve datasets mentioned by the authors: some datasets 
are used for development and other for assessment. The real datasets could serve the 
later goal.  
 
We understand the reviewer’s suggestion, but we believe that including some real 
datasets and one, or more, performance of predictive accuracy may be 
counterproductive. This opinion is supported by the following reasons: 1) There exists 
a variety of filters that do not rely on any underlying model (induction or learning 
algorithm), so it is not possible to evaluate the accuracy of such algorithms in terms of 
predictive accuracy. This would be against the rationale of the IVS framework, which 
is aimed at supporting the quantitative (and qualitative) evaluation of any input 
selection algorithm; 2) The predictive accuracy is ‘biased’ by several factors, such as 
the choice of the underlying model and calibration (and validation) algorithm. 
Minimizing such bias would require introducing an exhaustive comparison of 
different models (e.g. neural networks, regression trees, linear models, support vector 
machines etc.) and calibration methods, but this would dramatically affect the length 
of the manuscript; 3) The same reasoning applies to the inclusion of some real 
datasets. Indeed, the comparison of different input selection algorithms on some real 
datasets could only be run by comparing the predictive accuracy of some underlying 
models; furthermore 4) The inclusion of a few real datasets prevents an exhaustive 
assessment of the IVS algorithms against the statistical properties described in Section 
3.1.   
 
P. 18 lines 399-402. The sentence "Finally, the use of synthetic data enable previously 
unalysed datasets ... would provide very little information about algorithm 
performance" is not clear to me.  
 
The sentence has been removed. 
 
P. 19 line 417 : "a universal approximator", like an artificial neural network ? or the 
authors have something else in mind ?  
 
Yes, a feed-forward neural network (with a single hidden layer containing a finite 
number of neurons) could indeed serve as a universal approximator (Cybenko, 1989). 
We clarified this aspect in the revised version of the manuscript. 
 
“The amount of noise in the output is defined as the fraction of the variance that 
would remain unexplained if a universal approximator, such as an artificial neural 
network (Cybenko, 1989), were used on an infinite training set.” 
 
Section 3.2.1. Selection accuracy: do we really need SA in addition to SAe and SAc? 
I find the later two sufficient since SA is computed from them. Moreover, SA requires 
to set a parameter which controls the tradeoff between SAe and SAc and it seems not 
necessary to make such a choice. 
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We believe that the three scores (i.e. SA, SAc and SAe) are important, since they 
serve two different purposes: 1) The Selection Accuracy (SA) makes the comparison 
between different algorithms quite fast and straightforward, since it quantifies the 
degree to which a model has been correctly or incorrectly specified. Furthermore, the 
presence of the parameter γ allows the user to weight the importance of missing a 
relevant input against choosing an extraneous one; 2) The SAc and SAe allow for a 
more in-depth analysis, since they quantify the proportion of correct and extraneous 
inputs that have been selected.  
The single SA score also allows a simple and direct trade-off between selection 
accuracy and runtime. 
 
Computational efficiency: I have a tendency to think that the total runtime is enough 
as a measure of computational efficiency. I understand it is not directly comparable 
across platforms and programming languages but I am not sure if that really matters 
that much. What basically matters is the order of magnitude: does it take a couple of 
seconds or a couple of days? 
 
The total runtime provides simple, ‘practical’ information that is certainly useful to 
most users and practitioners. For this reason, the results in terms of runtime are 
reported within the text, while the analysis of computational complexity is reported in 
Appendix C (now Appendix B). Although only few readers may be interested in it, 
we believe that such analysis can have both theoretical (e.g. determining the growth 
rate of the runtime) and practical (e.g. planning the execution of several IVS 
experiments) implications, particularly as enables platform independent comparisons 
of the computational efficiency of different IVS algorithms. This will become 
increasingly important as researchers will add the performance of different algorithms 
to the website, as these measures will enable computational efficiency to be compared 
in an objective manner.   
 
P. 29 lines 657-658: how does the framework provides a theoretical measure of 
computational complexity? as far as I know, this has to be computed for each IVS 
algorithm by considering the computation steps involved. This would be a kind of 
O(NP) classification for instance, am I right ? 
 
Yes, the theoretical measure of computational complexity is determined for each 
algorithm by evaluating the computational steps involved at each iteration (see 
Appendix C). This concept has been further clarified in the revised version of the 
manuscript.  
 
“In particular, the analysis of computational complexity is determined for each 
algorithm by evaluating the computational steps involved at each iteration, and it is 
aimed at producing a theoretical classification that estimates the increase in run-time 
as a function of the input dimensionality N and P.” 
 
Experimental setup 
I found it difficult to follow the explanations on the IVS algorithms and on their 
performance without further explanations on their mechanisms which are given in the 
appendix. This is why I am suggesting to use the space in the section 2 to already 
introduce the IVS algorithms which will be compared.  
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We understand that Section 4 may appear unclear without reading the appendix, but, 
at the same time, we think that Section 2 should contain a general description of IVS 
approaches and not a detailed description of the IVS algorithms adopted in this study. 
In order to solve this problem, we included a brief description of each algorithm in 
Section 4, and we tightened the connection between Section 4 and the appendix.   
 
I am wondering if it is useful to include 4 IVS algorithms since this means that all of 
them should be described in details for the reader to understand what is going on. For 
instance, p. 32 line 743, I am wondering how the Gaussian reference bandwith is set 
and line 749, how do you compute the "correlation between inputs and output and a 
multiple linear regression". 
 
The presence of four algorithms is critical to demonstrate why the framework can be 
useful to identify the pros and cons of different types and classes of IVS algorithms. 
For example, the comparison between PCIS and PMIS shows the effect due to the 
presence of nonlinearities, while the one between PMIS and IIS is used to discuss the 
effects of non-Gaussian data. Furthermore, the comparison between filters (PCIS, 
PMIS and IIS) and wrappers (GA-ANN) allows discussing the computational 
demands of different methodologies. Limiting the comparison to two algorithms 
would not allow for this exhaustive analysis. This said, we understand the reviewer’s 
concern, so we clarified all these technical aspects in Section 4 (please refer to the 
previous reply as well).  
 
It would probably be possible to retain 2 distinct IVS algorithms and to compare them 
in order to illustrate the framework. The paper would be easier to read then since the 
goal is not so much to inform on IVS algorithms than to present to framework. 
 
Please refer to the previous reply. 
 
Other questions on IVS algorithms: p. 33 line 755 what are SISO models? I found the 
explanation later in the appendix. In general, the explanation of the IIS algorithm was 
fairly obscure to me.  
 
The description of the IIS algorithm has been improved as suggested. 
 
p. 33 lines 767: a 1 hidden unit neural network do not have much non-linear 
capability. I understand it takes time to tune the number of hidden units of a neural 
network but otherwise, they do not have much predictive power.  
 
Yes, we totally agree with this remark (which is indeed commented on in Section 
6.1). The adoption of such architecture, however, can easily serve our purpose: we 
aim at practically demonstrating the pros and cons of wrappers (and filters), rather 
than providing a definitive answer as to which of the algorithms performs best.   
 
p. 33  line 771: since the number of hidden units is fixed, what is the use of k-fold 
cross-validation? 
 
The k-fold cross-validation is used to quantify the accuracy of the ANN. We clarified 
this aspect in the revised version of the manuscript.  
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“The accuracy of the ANN is measured in terms of out-of-sample AIC, computed 
using a k-fold cross-	
  validation (with k = 5).” 
 
p.36 lines 841-842 : " ... all four combinations of SAc and SAe were obtained for the 
combination of IVS algorithm and datasets..." this sentence needs to be rephrased. 
 
The sentence has been rephrased as suggested. 
 
“Furthermore, Figure 4 shows that different values of SAc and SAe were obtained for 
the combination of IVS algorithms and datasets considered.” 
 
Regarding Figs 4-5 and Figs 6-7, I think they could be re-organized; as it is, they are 
redundant. The authors could either choose to show the SA scores for datasets which 
yield contrasted results for the four IVS algorithms or to group datasets according to 
their properties (as it is done in the text in section 5.1.2).  
 
Following the reviewer’s comment, we removed Figure 4 and 6, since the most of the 
information in Figure 4 (or 6) is available from Figure 5 (or 7). The reason for 
maintaining Figure 5 and 7 is that they allow organizing the results by dataset (Figure 
5) and by algorithm (Figure 7). The former highlights the performance of the four IVS 
algorithms on the same modelling conditions, while the latter provides insight into the 
way different dataset properties impact on the behavior of a specific algorithm.  
 
The discussion on the results could be more condensed:  p.44 lines 1021-1033: I 
found pretty evident that larger N helps model selection, I would suggest to shorten 
lines 1024-1033. 
 
Section 5.1.3 (‘Effect of N and P on algorithm performance’) has been revised and 
shortened. In general, the entire Section 5 has been thoroughly revised and condensed. 
 
Computational efficiency 
I found it difficult to follow the discussion on where the computations take more time 
for each IVS algorithm since I was not very familiar with them. I kept wondering: 
what is exactly Extra-trees, GRNN, PCIS, IIS... By retaining just 2 IVS algorithms 
and providing more detailed explanations would probably help to benefit from the 
kind of discussion in this section. 
 
Section 5.2 gives two different types of information about ‘Computational efficiency’. 
The first is based on the total runtime (Table 2) and it is built on the concept that filter 
algorithms (such as PMIS, PCIS and IIS) are computationally efficient, while 
wrappers (such as the GA-ANN algorithm) require more computing resources. This 
information is directly accessible by any reader, and does not require being familiar 
with the algorithms considered. The second information, which is based on the 
analysis of complexity (Table 3), requires an in-depth knowledge of the algorithms, 
so we believe that the improvements to Section 4 (plus the presence of a dedicated 
appendix) will allow the interested readers in understanding the technical aspects of 
such analysis.  
 
I found the qualitive criteria section quite long. I understand the interest in these type 
of criteria but it could probably be shortened.  
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The section was shortened as recommended.  
 
 
Reviewer #3 
 
The objective of this paper is to create a framework for evaluating and comparing 
input subset selection (IVS) algorithms for environmental modeling applications.  IVS 
for environmental systems modeling is an extremely challenging task because of the 
vast number of possible explanatory variables given the space/time correlation of the 
processes being modeling.  However, for the same reason there is also the possibility 
for significant colinearity of input variables.  For this reason IVS is an important first 
step for any environmental modeling project. Unfortunately, as noted by the authors, 
there has been little research into what makes a "good" IVS algorithm, as most IVS 
algorithm research has been focused at a particular dataset or modeling task.  The 
proposed framework would create a repository of data sets and algorithms that would 
permit comparison of the existing or newly proposed IVS algorithms to identify 
which perform well in general, thus providing guidance on which algorithm to select 
for new modeling projects. 
 
This is a well written paper describing project of great interest to the environmental 
modeling community.  The discussion of existing IVS methods is thorough given the 
scope and length of the paper, and the explanation of the evaluation criteria and the 
benchmark synthetic data sets is thorough.  I recommend this paper be published as-is 
by Environmental Modelling and Software. 
 
We thank the reviewer for the comment. 
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Abstract

Input Variable Selection (IVS) is an essential step in the development of data–

driven models and is particularly relevant in environmental modelling. While

new methods for identifying important model inputs continue to emerge, each

has its own advantages and limitations and no single method is best suited to

all datasets and modelling purposes. Rigorous evaluation of new and existing

input variable selection methods would allow the effectiveness of these algo-

rithms to be properly identified in various circumstances. However, such eval-

uations are largely neglected due to the lack of guidelines or precedent to facil-

itate consistent and standardised assessment. In this paper, a new framework

is proposed for the evaluation and inter–comparison of IVS methods which

takes into account: (1) a wide range of dataset properties that are relevant to
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real world environmental data, (2) assessment criteria selected to highlight

algorithm suitability in different situations of interest, and (3) a website for

sharing data, algorithms and results (http://ivs4em.deib.polimi.it/). The

framework is demonstrated on four IVS algorithms commonly used in en-

vironmental modelling studies and twenty-six datasets exhibiting different

typical properties of environmental data. The main aim at this stage is to

demonstrate the application of the proposed evaluation framework, rather

than provide a definitive answer as to which of these algorithms has the best

overall performance. Nevertheless, the results indicate interesting differences

in the algorithms’ performance that have not been identified previously.

Keywords: Input variable selection, Data-driven modelling, Evaluation

framework, Large environmental datasets, Artificial neural networks

Software and data availability1

Software2

Name of software: PMIS PCIS, IIS, GA ANN.3

Developers (PMIS PCIS, GA ANN): Greer B. Humphrey, Holger R. Maier,4

Graeme C. Dandy, Matthew S. Gibbs.5

Developers (IIS): Stefano Galelli, Andrea Castelletti.6

Year first available: 2014.7

Hardware required: PC or MAC.8

Software required: R (PMIS PCIS and GA ANN), MatLab (IIS).9

Program language: R (PMIS PCIS and GA ANN), MatLab (IIS).10

Program size: 41 KB (PMIS PCIS), 135 KB (IIS), 172 KB (GA ANN).11
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Data12

Name of dataset: IVS Framework datasets.13

Developers: Greer B. Humphrey.14

Form of repository: zipped files.15

Size of archive: 239.3 MB.16

Access form: public Dropbox folder.17

18

Contact address: Pillar of Engineering Systems and Design, Singapore Uni-19

versity of Technology and Design, 20 Dover Drive, Singapore 138682.20

Telephone: + 65 6499 4786.21

E-mail: stefano galelli@sutd.edu.sg.22

Url: http://ivs4em.deib.polimi.it.23

Availability: software and data are available on the IVS framework website.24

Cost: free of charge.25

1. Introduction26

In data-driven modelling, such as the application of Artificial Neural Net-27

works (ANNs), determining which inputs are most useful for predicting a28

variable of interest can be one of the most critical decisions in the model29

development process. The input variables (or predictors) contain the infor-30

mation necessary for defining, albeit, in a simplified manner, the underlying31

process that generated the data. However, the set of candidate inputs usu-32

ally includes variables which might be either irrelevant to the problem or33

redundant. Irrelevant input variables are uninformative about the underly-34

ing process and only serve to add noise and complexity into the model, while35

3
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the inclusion of redundant, but relevant, inputs increases the dimensionality36

of the model identification problem without providing any additional predic-37

tive benefit. The omission of relevant input variables, on the other hand,38

leads to an inaccurate model, where part of the output behaviour remains39

unexplained by the selected input variables. Thus, the appropriate selection40

of both relevant and non-redundant inputs can mean the difference between41

a reliable and parsimonious model, which generalises well to the underlying42

process, and a model that produces nonsensical outputs (garbage in, garbage43

out), is slower to run, and more difficult to interpret. The challenge of Input44

Variable Selection (IVS) is, therefore, to select the fewest input variables that45

best characterise the underlying input-output relationship while minimising46

variable redundancy (Guyon and Elisseeff, 2003).47

48

While the task of IVS is not unique to environmental modelling, it can49

be a particularly difficult one when it comes to environmental systems, since50

many of the underlying processes are often partially understood. Further-51

more, as environmental systems vary in space and time, potentially important52

inputs may include observations of causal variables at different locations and53

time lags, as well as lagged observations of the dependent variable of interest54

(Maier and Dandy, 2000). As a result, the number of potentially important55

inputs can be very large; a problem which has been exacerbated in recent56

years by the emergence of new types of data, including remotely sensed, GIS57

and reanalysis data. To further complicate matters, the correlated nature of58

such input variables induces redundancy and collinearity in the input pool59

(Galelli and Castelletti, 2013b), while the non-linearity and inherent com-60
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plexity associated with environmental systems make it ineffective to apply61

well established analytical variable selection methods, such as correlation62

analysis (May et al., 2011). As such, the development and adaptation of63

IVS methods for environmental modelling applications is an important and64

active field of research, which has further been stimulated by reviews of envi-65

ronmental modelling procedures discussing the need for improved and more66

rigorous IVS (see, for example, Araújo and Guisan (2006); Elith and Leath-67

wick (2009); Maier et al. (2010); Abrahart et al. (2012); Wu et al. (2014)).68

69

However, despite recent efforts to improve IVS in environmental mod-70

elling, studies in this field tend to draw overly general conclusions about the71

performance of the IVS approaches used. They are usually conducted with a72

single focus (e.g. to select the inputs for a particular case study of interest)73

and the evaluation of IVS methods is summarised accordingly (e.g. based on74

the predictive performance of the resulting model). Such evaluations make75

it difficult to determine how the performance of one IVS method, either new76

or existing, compares with that of another, and, ultimately, are of limited77

value to users wishing to select an IVS method that is most appropriate for78

a particular problem. As noted by Elshorbagy et al. (2010) in relation to the79

development of data-driven modelling techniques in hydrology, “one of the80

fundamental means to assess a modelling technique is to evaluate it against81

other modelling techniques”, yet “comparative studies are usually impaired82

due to the less-than-comprehensive approach adopted”. The same can be83

said about the assessment and comparison of IVS methods, where current84

studies tend to:85
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• select a limited number of data sets which do not adequately encompass86

the range of properties typical of environmental data (e.g. nonlinear,87

non-Gaussian, high redundancy);88

• select case studies for which the “true” inputs are unknown and thus89

do not enable selection accuracy to be properly assessed;90

• consider limited assessment criteria, often based on the predictive per-91

formance of the constructed model, which is complicated by the chosen92

functional form of the model and calibration performance;93

• lack rigorous implementation (e.g. no repeated experiments), thus pre-94

venting the statistical significance of any observed results to be evalu-95

ated; and96

• only consider a single algorithm without comparison with other algo-97

rithms.98

In order to address these shortcomings, a generic framework for the stan-99

dardised and rigorous comparative analysis of IVS algorithms is introduced100

in this paper. The framework is comprised of three main components: (1)101

a set of benchmark data; (2) a recommended set of evaluation criteria; and102

(3) a website for sharing data and results. The datasets are synthetically103

generated to have, to different degrees, the typical properties of real envi-104

ronmental data, while the evaluation criteria are designed to quantitatively105

and comprehensively assess selection accuracy and computational complex-106

ity. To demonstrate the application of the framework, four IVS algorithms107

commonly adopted in environmental modelling exercises and representative108

6
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of different IVS approaches are comparatively analysed. It is hoped that this109

framework will facilitate collaboration by researchers developing new IVS al-110

gorithms and modellers wishing to select an appropriate IVS method.111

112

The remainder of this paper is structured as follows: Section 2 provides113

a background on IVS methods, with particular focus on those used to date114

in environmental modelling studies. In Section 3, the proposed IVS evalua-115

tion framework is presented, while Section 4 describes the application of the116

framework to four IVS algorithms. Results of these evaluations and compar-117

isons are presented in Section 5, while discussion and conclusions are given118

in Sections 6 and 7.119

2. Background on IVS Methods in Environmental Modelling120

In recent years, the use of automatic and systematic IVS algorithms has121

been shown to improve prediction accuracy and produce more parsimonious122

models in numerous applications when compared with empirical IVS methods123

or the inclusion of all available input data (e.g. Bowden et al. (2005b);124

D’heygere et al. (2006); Yang and Ong (2011); Wan Jaafar et al. (2011);125

Tirelli and Pessani (2011)). Comprehensive discussions on the taxonomy of126

such IVS methods can be found in Blum and Langley (1997), Liu and Motoda127

(1998), Guyon and Elisseeff (2003) and May et al. (2011). A brief overview128

is provided here for the purpose of highlighting the relative differences and129

merits of the various IVS approaches. Figure 1 is adapted from Dash and130

Liu (1997), who outline the basic steps of any automatic IVS algorithm. As131

can be seen, such methods involve three main steps: (1) generating a subset132
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of inputs from the candidate input pool; (2) evaluating the subset of inputs133

in terms of their ability to predict the output; and (3) assessing whether the134

selected set of inputs is optimal using a pre-specified stopping criterion.135

2.1. Input subset generation136

The generation of input subsets is determined by the method used to137

search the space of all possible input subsets. An exhaustive search of the138

space is generally infeasible, as there exist 2P − 1 possible subsets of input139

variables, where P is the dimension of the candidate input pool. Instead,140

search strategies applied to IVS algorithms seek to balance the trade-off141

between finding the optimal subset of input variables and computational142

efficiency. These strategies may be classified as global, where many combi-143

nations of input subsets are considered; or local, where the search begins144

at a defined starting point and moves through the search space sequentially145

(Maier et al., 2010). For example, local search strategies that begin with an146

empty input set and successively add individual variables are called forward147

selection, while those that start with all possible input variables and succes-148

sively remove them are known as backward elimination (Blum and Langley,149

1997). Both of these search strategies are greedy, in that they make locally150

optimal decisions with the hope that a globally optimum solution will be151

found; and once such a decision has been made, it cannot be undone (i.e. an152

input added (eliminated) in the early stages of the search can not later be153

eliminated (added)). Stepwise selection involves the successive addition or154

elimination of input variables, but allows an earlier decision to be retracted,155

potentially allowing more optimal subsets to be identified. However, deci-156

sions made at each step are still only locally optimal and are conditioned157

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

on the already selected inputs. Random or probabilistic search strategies are158

more adept at finding (near) globally optimum input subsets through their159

combined use of random subset generation with some mechanism to increase160

the focus of the search in regions of the search space that lead to good solu-161

tions. However, due to their random nature, these strategies search through162

many more solutions than their sequential counterparts and are, thus, less163

efficient than sequential search algorithms (Kohavi and John, 1997), yet still164

provide no guarantee that a globally optimal solution will be found.165

2.2. Input subset evaluation166

The evaluation step in Figure 1 involves determining which inputs should167

be added to the ‘selected’ input set and which should be discarded, based168

on their relevance. Automatic IVS algorithms can be broadly categorised as169

filter, wrapper or embedded approaches according to the way in which this170

input relevance is measured (Guyon and Elisseeff, 2003). Filter IVS methods171

are described as being model-free, as the entire IVS process is independent of172

the chosen induction or learning algorithm. Both embedded and wrapper IVS173

approaches, on the other hand, are model-based, relying on the performance174

of a predetermined underlying model to select the most appropriate inputs.175

2.2.1. Filter algorithms176

Filter techniques rely on the intrinsic properties of the data (e.g. dis-177

tance, information, dependency, or consistency) to measure the relevance of178

the input variables, which are then ranked according to some a-priori defined179

criteria (Liu and Motoda, 1998). As such, filters tend to be computationally180

simple and scale easily to high-dimensional datasets. However, as filters are181
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independent of the learning algorithm, they have the disadvantage of disre-182

garding how the selected variable subset will affect the performance of the183

resulting model (Miller, 2002). In addition, they are typically univariate,184

which has the disadvantage that the relevance between each potential input185

and the output variable is considered separately (Saeys et al., 2007). Not186

only does this necessitate that each input-output relationship be evaluated,187

but it also means that input variable interactions are ignored. Consequently,188

an input may be found individually to be irrelevant when, in fact, it is very189

relevant when combined with other inputs.190

191

Linear correlation-based filter algorithms are among the most commonly192

used IVS methods in environmental studies (see Maier et al. (2010) and193

Wu et al. (2014) for a review). An example of such an approach is used in194

the popular Box-Jenkins time-series analysis methodology (Box and Jenk-195

ins, 1976), where identification of the most important auto-regressive and196

moving-average parameters is based on the autocorrelation and partial au-197

tocorrelation function. Another popular linear correlation-based approach198

is the Partial Correlation Input Selection (PCIS) introduced by May et al.199

(2008a). Yet, despite their popularity and simplicity, such methods are likely200

to be inappropriate for nonlinear systems.201

In recent years, information theoretic-based dependency measures, such as202

mutual information, have become more popular in IVS, since such measures203

make no assumptions regarding the structure of the dependence between204

two variables (i.e. they can estimate both linear and nonlinear dependence)205

(May et al., 2008a). For example, the Partial Mutual Information (PMI)206

10
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based IVS method developed by Sharma (2000) and modified by Bowden207

et al. (2005a); May et al. (2008a); Fernando et al. (2009) has been applied in208

several studies for identifying the most relevant inputs for predicting rainfall209

(Sharma et al., 2000), streamflow (Wu et al., 2013), salinity (Bowden et al.,210

2005b; Fernando et al., 2009), water quality (Kingston et al., 2006; May et al.,211

2008b) and stormwater runoff (He et al., 2011). Other PMI-based metrics212

have been recently proposed by Chen et al. (2013) and Sharma and Mehrotra213

(2014). Another well established filter IVS technique based on mutual infor-214

mation is the minimum redundancy maximum relevance (mRMR) algorithm215

developed by Peng et al. (2005). A more computationally efficient version216

of this algorithm was proposed by Hejazi and Cai (2009), who applied it to217

selecting the most significant inputs to predict daily reservoir releases. Re-218

cently, Galelli and Castelletti (2013b) proposed the Iterative Input variable219

Selection (IIS) algorithm, where a tree-based ranking method is used in place220

of an information-theoretic measure to estimate the information gained from221

the data. This algorithm has been employed to select the most relevant in-222

put variables for daily streamflow prediction (Galelli and Castelletti, 2013b),223

prediction of phytoplankton biovolume (Fornarelli et al., 2013), prediction of224

spatially distributed hydro-ecological data (Surridge et al., 2014) and model225

reduction problems (Castelletti et al., 2012).226

Another popular filter method is the Gamma (or near-neighbour) test (Konc̆ar,227

1997; Stefánsson et al., 1997), which uses distance, rather than variable de-228

pendence or information gain, in the evaluation of input relevance. This229

method was first employed by Chuzhanova et al. (1998) and has recently230

become more popular for IVS in the field of environmental modelling. The231
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Gamma test has been used, for example, to select the best inputs for solar232

radiation prediction (Remesan et al., 2008; Ahmadi et al., 2009), runoff mod-233

elling (Remesan et al., 2009), flood regionalisation (Wan Jaafar et al., 2011;234

Wan Jaafar and Han, 2012) and downscaling climate variables for precipita-235

tion forecasting (Ahmadi and Han, 2013).236

2.2.2. Wrapper algorithms237

Wrapper methods use the learning algorithm itself as part of the IVS238

procedure, treating the model as a black box, while searching for the subset239

of inputs that yields the best model performance (Kohavi and John, 1997).240

Unlike filter methods, wrapper approaches take into account interactions241

and dependencies between input variables. However, since the learning al-242

gorithm must be called (and calibrated) for each input subset considered,243

wrapper methods can be very computationally intensive (Blum and Lan-244

gley, 1997). They are also more susceptible to overfitting than filters, as245

most of these approaches focus on finding inputs that maximise predictive246

performance, rather than those that are both relevant and nonredundant.247

Consequently, it is particularly important when employing wrapper IVS al-248

gorithms to adopt an objective function or optimality criterion that penalises249

model complexity and, hence, overfitting. Wrapper IVS methods tend to be250

defined by the search strategy employed to generate input subsets. By far251

the most commonly used wrapper IVS methods in environmental modelling252

studies are those that involve the sequential (forward, backward or stepwise)253

selection of inputs (see Olden and Jackson (2000), Mac Nally (2000) and254

Ssegane et al. (2012) and references therein). In recognising the limitations255

of sequential search techniques, a number of relatively recent studies have256

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

employed random search strategies, such as evolutionary algorithms. For ex-257

ample, Abrahart et al. (1999); Schleiter et al. (2001); Bowden et al. (2005b);258

D’heygere et al. (2006) and Tirelli et al. (2009) used a genetic algorithm to259

select the best inputs for rainfall-runoff modelling, water quality modelling260

and the prediction of species presence/absence using ANNs and decision trees261

as the induction algorithms.262

2.2.3. Embedded algorithms263

In embedded IVS techniques, the search for an optimal subset of inputs264

and calibration of the underlying model occurs concurrently. Thus, the en-265

tire IVS process is part of the model training procedure. The basic principle266

behind embedded IVS algorithms is to specify an objective function for con-267

structing a model consisting of both a goodness-of-fit term and a term that268

penalises model complexity (Guyon and Elisseeff, 2003). Similar to wrap-269

per methods, embedded techniques account for interactions between inputs270

and are specific to the chosen learning algorithm, meaning that they can271

yield high prediction accuracy (the inputs selected will be those that op-272

timise model performance), but at the cost of decreased generalisation on273

other learning algorithms (Guyon et al., 2006). Unlike wrapper methods,274

however, only a single model is trained, since the evaluation of input subsets275

occurs within the training algorithm. Thus, embedded methods are usually276

far less computationally intensive than wrapper methods (Guyon and Elis-277

seeff, 2003). Furthermore, embedded algorithms consider the impact of each278

individual input on the performance of the model, and adjust the associated279

model parameters accordingly. A disadvantage of embedded IVS approaches280

is the lack of algorithms available for directly minimising the number of input281

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

variables for nonlinear predictors (Guyon and Elisseeff, 2003). Embedded al-282

gorithms often rely on regularisation methods, which balance model fit and283

model complexity during the calibration of a model. Using such methods, the284

penalty term in the objective function is replaced by a regularisation term,285

which shrinks parameters associated with irrelevant inputs toward zero or sets286

them equal to zero (Tikka, 2009). There are a number of available regularisa-287

tion methods, which differ mainly in the way model complexity is measured288

and, hence, penalised. Ridge regression (Hoerl and Kennard, 1970) and the289

Lasso algorithm (least absolute shrinkage and selection operator, Tibshirani290

(1996)) are among the most popular. For an application of such methods to291

environmental modelling problems, see, for example, Reineking and Schröder292

(2006); Phatak et al. (2011); Dormann et al. (2013).293

2.3. Stopping criterion294

The definition of a suitable stopping criterion is another key consideration295

in IVS as it can significantly influence selection accuracy and computational296

efficiency. Stopping criteria may be related to either the search strategy or297

the evaluation method used in the IVS process. For example, stopping crite-298

ria related to the search strategy may include whether a predefined number of299

relevant variables has been selected or whether a predefined number of itera-300

tions has been reached (Dash and Liu, 1997). Stopping criteria based on the301

evaluation of input subsets may include whether the addition or elimination302

of any inputs produces a better (or worse) subset (using, for example, cross-303

validation error or parsimonious model selection criteria, such as Akaike’s304

information criterion (AIC) or the Bayesian information criterion (BIC)),305

or whether selected inputs are relevant, as defined by some threshold value306
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or significance level (using classical statistical tests, such as the t-test, F-307

test and chi-squared test or resampling methods such as bootstrapping, for308

example) (Dash and Liu, 1997).309

3. IVS Evaluation Framework310

The IVS evaluation framework proposed in this paper is designed such311

that it will be generally applicable to all IVS algorithms, producing easy312

to interpret and unbiased results and minimising any duplication of effort.313

As well as aiding comparative analyses of IVS approaches, it should also be314

useful for investigating parameter effects within individual IVS algorithms or315

selecting appropriate stopping criteria. As mentioned previously, the basic316

framework is comprised of three main components: (1) a set of benchmark317

data; (2) a recommended set of evaluation criteria; and (3) a website for318

sharing data and results. These are represented in Figure 2 and discussed in319

detail in the following sections.320

3.1. Benchmark datasets321

A total of 26 synthetic datasets, summarised in Table 1, were generated322

for benchmarking the performance of IVS algorithms. These datasets ex-323

hibit, to different degrees, the following properties, which are considered to324

reflect the features of real environmental data: nonlinearity in the underlying325

function, collinearity amongst input variables, non-Gaussian input/output326

variables, noise in the output, incomplete input information, and interde-327

pendence of input variables. The benchmark datasets were generated to328

have different sample sizes and dimensionalities to allow scalability and com-329

putational efficiency to be assessed on datasets of different sizes. This also330
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enables an investigation of the sensitivities of IVS methods to the relative331

proportion of irrelevant candidate inputs and of the abilities of IVS methods332

to identify important input-output relationships within datasets of varying333

lengths. In Table 1, sample size is denoted by N , K is the number of relevant334

inputs (those that contain important and non-redundant information about335

the output) and P is the total number of candidate inputs (the total pool of336

potentially relevant inputs from which to select from). The P −K candidate337

inputs that are included in the datasets but contain no (or only redundant)338

information about the outputs are primarily lagged values of the true inputs339

or inputs drawn from distributions resembling those of the true inputs. The340

ratio N/P is also given in Table 1, as this value is indicative of the risk of341

retaining irrelevant or redundant inputs (a small value of N/P suggests a342

greater likelihood of overfitting). This risk increases with increasing correla-343

tion between the candidate inputs.344

345

While synthetic data may be considered somewhat unrealistic and lack-346

ing in substance, their use for IVS algorithm benchmarking is necessary since347

such data provide the only means for adequately assessing the performance348

of IVS algorithms using quantitative approaches. Firstly, and most impor-349

tantly, the use of synthetic data enables selected inputs to be compared to350

the known set of “true” input variables. This allows ‘selection accuracy’ to be351

evaluated without relying on prediction accuracy, which can be complicated352

by a number of factors, including the choice of model, calibration method,353

error model and calibration criteria, among others. Secondly, with synthetic354

data it is relatively easy to systematically vary features such as those listed355
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above in order to achieve a balanced design for the comprehensive evaluation356

of IVS techniques. With real data this would be far more difficult and would357

rely on methods for quantifying the above properties without knowledge of358

the true underlying function. While synthetic data may be somewhat sim-359

plistic, it would be reasonable to assume that an IVS method which fails to360

select the correct inputs from data generated from a rather simplistic model361

would be unlikely to have good selection accuracy when applied to real data.362

However, in order to ensure that the true characteristics of real environmen-363

tal data were captured in the benchmark datasets at least to some extent,364

several of the benchmark sets are only partially synthetic, where the input365

data are real, while only the outputs are modelled. Whether a benchmark366

dataset is fully or partially synthetic is also indicated in Table 1.367

3.1.1. Properties of the datasets368

To define the degrees of noise and nonlinearity associated with the bench-369

mark data, the following DELVE (Rasmussen et al., 1996) definitions were370

used:371

• Noise: The amount of noise in the output is defined as the fraction of372

the variance that would remain unexplained if a universal approxima-373

tor, such as an artificial neural network (Cybenko, 1989), were used on374

an infinite training set. If this residual variance is less than 0.25% the375

noise is “low”. If it lies between 1% and 5% the noise is “moderate”.376

If it exceeds 25% the noise is “high”.377

• Nonlinearity: A dataset is classified as “fairly linear” if a linear method378

would leave less than 5% residual variance on an infinite training set.379
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It is “highly non-linear” if the linear method would leave more than380

40% residual variance.381

The degree of collinearity was simply defined according to the number of382

pairs of candidate inputs with correlation greater than 0.7. This is similar383

to the definition Amasyali and Ersoy (2009) used for defining the degrees384

of collinearity associated with their Friedman datasets, which they subse-385

quently donated to the WEKA project. For the purposes of the proposed386

IVS framework, a dataset is considered to have high collinearity if the num-387

ber of pairs of candidate inputs with correlation > 0.7 divided by the total388

number P of candidates is greater than or equal to one, i.e. there are at least389

as many pairs of highly correlated inputs as there are candidate inputs.390

391

A number of common synthetic data generators have been used for eval-392

uating IVS algorithms in previous environmental modelling studies (see, for393

example, Sharma (2000); Bowden et al. (2005a); May et al. (2008a); Hejazi394

and Cai (2009); Fernando et al. (2009) and Galelli and Castelletti (2013b)).395

These include two linear auto-regressive (AR) models, two nonlinear thresh-396

old autoregressive (TAR) models and a nonlinear (NL) model. For consis-397

tency, these test problems have been included within this framework. As398

can be seen in Table 1, the datasets corresponding to these test problems399

only cover a small subset of the possible combinations of the first four binary400

dataset properties (i.e. non-Gaussian outputs, nonlinearity, collinearity and401

noise). Furthermore, N , K and P are fairly uniform amongst these datasets.402

The extended set of benchmark datasets covers all possible combinations of403

these dataset properties and includes much greater variation in the size and404
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dimensionality of the datasets. It also covers two special cases where there is405

incomplete information about the target data and where there is interdepen-406

dence of inputs (i.e. there exist inputs that are only relevant when combined407

with other inputs). To account for any variability in algorithm performance408

that may result from variability in the data, 30 replicates of each benchmark409

dataset are provided. This enables the statistical significance of comparison410

results to be considered. These datasets are described in further detail on411

the framework website.412

3.2. Evaluation criteria413

There are a number of different factors to consider when evaluating and414

comparing IVS methods including, for example, accuracy; efficiency; scala-415

bility and ease of use. However, objective metrics that enable the general and416

standardised intercomparison of IVS methods are not necessarily straightfor-417

ward to define. Firstly, not all of the criteria that are useful for evaluating418

IVS algorithms can be expressed as quantitative, objective metrics; some419

can be also qualitative. Secondly, it is important that the number of met-420

rics used for intercomparisons be minimised, while the information gained421

from them is maximised. However, the metrics used for evaluation and com-422

parison must also provide sufficient information such that any differences in423

algorithm performance are discernible. Thirdly, the metrics should be sim-424

ple, easy to compute and interpret and have general applicability across a425

wide range of different IVS methods. Individual IVS methods may produce426

information specific to those techniques that can be useful for diagnosing427

algorithm performance. However, such information will have limited value428

when compared with algorithms that do not output the same information.429
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Finally, it is preferable that the metrics can be expressed probabilistically,430

such that the stability and robustness of algorithms can be assessed and the431

statistical significance of results computed.432

As mentioned, the majority of IVS algorithms seek to balance the trade-off433

between finding the optimal subset of input variables and computational effi-434

ciency. As such, it is important to be able to evaluate algorithms against these435

criteria in a quantitative and objective way. Details of the proposed quanti-436

tative performance measures are given in Section 3.2.1. In contrast, criteria437

related to an algorithm’s ease of use, flexibility or explanation capability, for438

example, are more difficult to define in such a manner and therefore it is rec-439

ommended that these be treated as qualitative evaluation criteria. Details of440

some of these qualitative criteria are given in Section 3.2.2. When assessing441

and comparing the performance of IVS algorithms, it is recommended that all442

of the proposed quantitative metrics be used, while the proposed qualitative443

criteria should be considered and remarked upon where appropriate.444

3.2.1. Quantitative metrics445

Selection accuracy446

A selection accuracy (SA) score which expresses the degree to which a447

selected input subset matches the true input subset is recommended for use448

in this framework. The proposed SA score is based on the similarity score449

proposed by Molina et al. (2002), but unlike the original version, it makes450

no distinction between irrelevant and redundant inputs and simply treats all451

unnecessary inputs as extraneous. The proposed SA score is given as follows:452

SA = γ
k

K
+ (1− γ)

(
1− p

P −K

)
(1)
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where K is the total number of relevant inputs; k is the number of relevant453

inputs selected; p is the number of extraneous (irrelevant or redundant) in-454

puts selected; P is the total number of inputs in the candidate input pool455

(hence P − K is the total number of extraneous inputs) and γ is a weight456

ranging from 0 to 1, which influences the penalty applied to the selection457

of extraneous inputs in relation to the gain achieved from each correctly se-458

lected input. This score can range from 0 to 1, where SA = 1 corresponds to459

a correctly specified model, while SA = 0 corresponds to a completely mis-460

specified model, with no relevant inputs and all extraneous inputs selected.461

An advantage of this score is that information about the degree to which a462

model has been correctly or incorrectly specified is combined into a single463

metric, which makes for the straightforward comparison of IVS algorithm464

selection accuracy.465

466

The SA score requires the choice of an appropriate value for γ. This467

choice is subjective and depends on how much one favours accuracy over468

parsimony, or vice versa. As suggested by Molina et al. (2002), a suitable469

value for γ should reflect the fact that choosing an extraneous input is usu-470

ally better than missing a relevant one, which can be achieved by selecting471

γ such that γ/K > (1 − γ)/(P − K). However, γ should not be so large472

that there is no appreciable penalty applied to unnecessary model complex-473

ity (for example, for γ = 1, the selection of extraneous inputs would not474

be penalised at all). Figure 3 illustrates the effect of γ on the SA score475

for a theoretical example with 10 inputs in the candidate input pool: 5476

relevant and 5 irrelevant (or redundant). As can be seen in Figure 3 (a),477
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when γ = 0.5 (i.e. γ/K = (1 − γ)/(P − K)), the penalty incurred for the478

selection of extraneous inputs is weighted equally to any improvement in479

accuracy gained from the selection of relevant inputs (as evidenced by the480

lack of variation in the SA score in the diagonal direction). This would481

usually be undesirable given that, in terms of prediction accuracy, the conse-482

quences of under-specification (greater bias) are generally more severe than483

those of over-specification (greater variance). Conversely, when γ = 0.9 (i.e.484

γ/K >> (1 − γ)/(P − K)), there is very little reduction in the SA score485

for increasing values of p, as can be seen in Figure 3 (c), indicating that un-486

necessary complexity is under penalised. As shown in Figure 3 (b), a value487

of γ = 0.7 results in the selection of extraneous inputs being appreciably488

penalised; however, missing a relevant input is assigned greater importance489

than the selection of an irrelevant or redundant input (as evidenced by the490

variability in the SA score in both the vertical and diagonal directions). For491

all of the benchmark datasets included in the proposed IVS evaluation frame-492

work, a value of γ = 0.7 satisfies γ/K > (1 − γ)/(P −K), while still being493

sufficiently less than 1 to appropriately penalise unnecessary complexity.494

495

While values of SA < 1 denote over- or under-specification, a limitation496

of the SA score is that it does not indicate where the selected input subset497

is deficient; for example, whether too many or too few inputs have been498

selected. To overcome this limitation, the SA score given by eq. 1 can be499

broken into two sub-scores:500

SAc =
k

K
(2)

501

SAe = 1− p

P −K
(3)
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where SAc indicates the proportion of correct inputs that have been selected502

and SAe is based on the proportion of extraneous inputs that has been se-503

lected. Unlike the overall SA score given by eq. 1, these sub-scores do not504

trade off one measure of accuracy against another; therefore, they do not505

require the γ parameter. Both of these terms can range from 0 to 1, where a506

value closer to 1 denotes a better model. In particular, the following combina-507

tions of SAc and SAe are relevant to the analysis of algorithm performance:508

• SAc = 1 and SAe = 1, i.e. perfect specification (SA = 1);509

• SAc = 1 and SAe < 1, i.e. over-specification of some extraneous inputs510

(SA < 1);511

• SAc < 1 and SAe = 1, i.e. under-specification of relevant inputs512

(SA < 1) (according to the definitions used by May et al. (2008a) and513

Galelli and Castelletti (2013b));514

• SAc < 1 and SAe < 1, i.e. under-specification of relevant inputs and515

over-specification of some extraneous inputs (SA < 1).516

The advantage of these scores is that they express the degree to which517

a model is over- or under-specified, which is important for differentiating518

between IVS algorithm results. Furthermore, the sub-scores can be useful519

for investigating parameter effects within individual IVS algorithms. For ex-520

ample, if a method consistently results in over- or under-specification over a521

range of different datasets, this may signify that the stopping criterion used522

to terminate the IVS method is inappropriately penalising model complexity523

or that the threshold or significance level used to determine the relevance of524
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an input has been inappropriately set or computed.525

526

Computational efficiency527

Under the proposed framework, two quantitative measures of computa-528

tional efficiency are recommended. The first is total run-time, namely the529

time required by an IVS algorithm to perform an input selection task. This530

metric provides a rough estimate of the time it may take to execute a particu-531

lar algorithm on a given dataset, but depends on the software implementation532

and the adopted hardware. For this reason, the framework also includes a533

thorough analysis of computational complexity, which provides a theoretical,534

platform-independent estimate of the resources needed by an IVS algorithm.535

In particular, the analysis of computational complexity is determined for each536

algorithm by evaluating the computational steps involved at each iteration,537

and is aimed at producing a theoretical classification that estimates the in-538

crease in run-time as a function of the input dimensionality N and P . This539

classification allows calculation of the time that would be required by an IVS540

algorithm to perform a certain task, and is thus useful when planning the541

execution of several IVS experiments. Moreover, it allows calculation of the542

growth rate of the run-time for the worst case scenario (for example, when a543

forward selection algorithm is run over P iterations to evaluate all candidate544

inputs).545

3.2.2. Qualitative criteria546

Where appropriate, it is suggested that the following qualitative assess-547

ment criteria be commented on when evaluating IVS algorithms; however, it548

is not recommended that they be used in the intercomparison of algorithm549
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performance.550

1. Ease of use and robustness551

The ease of use of an IVS algorithm relates to how many parameters552

need to be tuned and how robust the algorithm’s performance is, given553

a default set of parameter values. An IVS algorithm that can be applied554

without significant user expertise can be highly desirable, particularly555

for a potential user trying to select the most appropriate IVS algorithm556

for a problem at hand. Therefore, where possible, it is recommended557

that some information be provided about which parameters affect the558

performance of the algorithm and how readily robust values can be559

selected for these parameters.560

2. Explanation capability561

Forward selection IVS methods and algorithms that utilise an input562

ranking approach provide information about the order of input rele-563

vance (i.e. inputs are sorted from most to least relevant) and possibly564

the relative magnitude of the influence these inputs have on the out-565

put. Such information can provide useful insight into the underlying566

mechanisms by which the data were generated and can be said to have567

some explanation capability. On the other hand, methods that evalu-568

ate the relevance of an input subset as a whole generally do not provide569

information about the relevance of individual inputs. Thus, while such570

algorithms may return the optimum input subset for a particular prob-571

lem, it may be difficult to determine how the individual inputs relate572

to the output.573

3. Flexibility574
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An IVS algorithm represents a single combination of the three main575

components shown in Figure 1. However, if it is found that the perfor-576

mance of an algorithm is limited by only one of these components, it577

would be advantageous if this component could be easily substituted578

with an alternative. The flexibility of an IVS algorithm relates to the579

ease with which components of the algorithm can be interchanged with580

other methods to suit user preferences or to overcome identified short-581

comings.582

3.3. Framework website583

The website (http://ivs4em.deib.polimi.it) is an ‘open platform’ for shar-584

ing datasets, code and results. At the current stage, it contains all 26 bench-585

mark datasets (30 replicates of each), the source code for the four IVS algo-586

rithms used in this study and the code for performance evaluation. Moreover,587

the website includes a functionality for uploading new datasets, algorithms588

and results to build up a comprehensive database for IVS in environmental589

modelling.590

4. Experimental setup591

The proposed framework was used for the evaluation and comparison of592

four IVS algorithms. The aim was not to provide a definitive answer as593

to which of the algorithms performed best, but rather to demonstrate the594

application of the proposed framework and how the results obtained may be595

used for evaluating and gaining greater insight into algorithm performance.596

The family of filter methods is represented by the PMI-based input Selection597

(PMIS) algorithm (in the form modified by May et al. (2008a)), the IIS598
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algorithm (Galelli and Castelletti, 2013b) and the PCIS algorithm introduced599

by May et al. (2008a). The family of wrapper methods is represented by a600

GA-ANN algorithm, which adopts a Genetic Algorithm (GA) to select the601

subset of input variables that maximises the performance of an ANN. Each of602

the four IVS algorithms considered was implemented on 30 replicates of the603

26 benchmark datasets, resulting in 780 runs for each algorithm. For all four604

algorithms, the same parameter sets were used for all case studies. Details of605

the parameters used and how their values were determined are given below606

(the reader is referred to Appendix A for a more detailed description of the607

algorithms):608

• PMIS and PCIS algorithms. The PMIS algorithm adopts a forward609

selection strategy (i.e. one variable is selected at each iteration) based610

on the estimation of the PMI, which measures the partial dependence611

between each input variable and the output, conditional on the in-612

puts that have already been selected. To estimate the PMI, the algo-613

rithm adopts a kernel density estimator, whose accuracy depends on the614

value of a smoothing parameter (or bandwidth) λ. Similarly to Sharma615

(2000) and Bowden et al. (2005a), the Gaussian reference bandwidth616

(Scott, 1992) is adopted, because of its simplicity and computational617

efficiency. The calculation of PMI also requires estimation of residual618

information in the input variables once the effect of the already selected619

inputs has been taken in consideration: this is done through the iden-620

tification of a General Regression Neural Network (GRNN), which is621

a nonlinear and nonparametric regression method (Li et al., 2014). In622

addition to λ, the other parameter to be set is the stopping criterion,623
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which is based on the coefficient of determination R2: the PMIS algo-624

rithm is stopped when the selection of a further input variable leads to625

a decrease of R2 in the underlying GRNN being identified.626

The PCIS algorithm adopts the same structure as the PMIS algorithm,627

but it uses the Pearson correlation coefficient to estimate the strength628

of the relationship between inputs and output and a multiple linear re-629

gression based on least squares in place of PMI and GRNN, respectively.630

As such, the algorithm dos not require any tuning. PCIS is terminated631

when the selection of additional inputs no longer results in an improve-632

ment (increase) in the Bayesian information criterion (BIC), calculated633

based on the output variable residual, which provides a trade-off be-634

tween goodness-of-fit and model complexity.635

• IIS algorithm. Similarly to PMIS and PCIS, the IIS algorithm pro-636

ceeds by selecting one input variable at each iteration, but the partial637

dependence between each input variable and the output relies on a638

tree-based ranking method, instead of an information-theoretic mea-639

sure. Furthermore, the relative importance of the p ranked variables640

is refined through the identification of p Single-Input Single-Output641

(SISO) models, with the best performing input being added to the set642

of selected variables. The selection process continues until the accu-643

racy of an underlying Multi-Input Single-Output (MISO) model, eval-644

uated with a k-fold cross-validation, does not significantly improve.645

The number p and k of SISO models evaluated at each iteration and646

of the folds used in the k-fold cross-validation process is set to 5, while647

the algorithm tolerance ε is equal to 0.01, which was empirically found648
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to provide an appropriate balance between accuracy and over fitting649

(Galelli and Castelletti, 2013b). This means that the IIS algorithm is650

stopped when the selection of a further variable leads to an increase651

of R2 lower than 0.01. Extra-Trees, a regression based method intro-652

duced by Geurts et al. (2006), are used for both ranking and modelling.653

As for the Extra-Trees setting, default values for the parameters M ,654

K and nmin are set according to Galelli and Castelletti (2013a). The655

number M of trees in an ensemble is 500, the number K of alternative656

cut-directions is equal to the number of candidate inputs and nmin, the657

minimum cardinality for splitting a node, is 5.658

• GA-ANN algorithm. The ANN is a 1-hidden node multilayer percep-659

tron, with the transfer functions used at the hidden and output nodes660

being the hyperbolic tangent and linear functions, respectively, which661

are commonly adopted in environmental modelling problems (Maier662

and Dandy, 2000). The accuracy of the ANN is measured in terms663

of out-of-sample AIC, computed using a k-fold cross-validation (with664

k = 5). As for the GA algorithm, the population size and maximum665

number of generations are equal to 50 and 100,000, respectively. The666

algorithm is terminated based either on the maximum number of eval-667

uations or convergence of the fitness function (i.e. when the difference668

in the fitness between one generation and the next remains below a669

tolerance of 10−8 times the previous best value for 20 consecutive gen-670

erations).671

All experiments for PMIS, GA-ANN and PCIS are carried out in the R672

environment running on 12-core 2.6 GHz CPUs AMD with 2.7 GB RAM673
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per core, while the experiments for the IIS algorithm are carried out using a674

compiled C++ package running on 8-core 2.2 GHz CPUs Intel Xeon with 8675

GB RAM per core.676

5. Results677

The results obtained by evaluating the four IVS algorithms with the pro-678

posed framework are presented and discussed in this section, and organised in679

terms of selection accuracy, computational efficiency and qualitative criteria680

in accordance with the framework presented in Section 3.681

5.1. Selection accuracy682

Each of the proposed selection accuracy scores (i.e. SA, SAc and SAe)683

was computed as the average over the 30 replicates for each of the four IVS684

algorithm and 26 benchmark datasets.685

5.1.1. Overall accuracy686

The results for the SA metric reported in Figure 4 show that the PMIS,687

IIS and GA-ANN algorithms share a similar range of variation for the SA688

score, which varies from 1 (corresponding to correctly specified models) to689

about 0.4. On the other hand, the SA values for the PCIS algorithm vary690

from 1 to 0, where a value of 0 corresponds to a completely mis-specified691

model. The cases at the extreme ends of these ranges correspond to the692

AR1 and Miller datasets: all algorithms are capable of selecting the only693

relevant variable in the AR1 dataset without choosing any other extraneous694

input, while all algorithms have difficulties in selecting the correct inputs695

for the Miller dataset, with the PCIS algorithm unable to select any of the696
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correct inputs. Unsurprisingly, the performance of the four algorithms varies697

depending on dataset properties. For instance, even though the AR1 and698

AR9 500 datasets are characterised by high noise and high collinearity, the699

fact that there are only a few relevant inputs (one and three, respectively,700

see Table 1) and that the N/P ratio is high, makes the input selection task701

relatively simple for all algorithms, as indicated by the high SA scores (see702

Figure 4 (AR1)-(AR9 500)). However, a variation in just one of the proper-703

ties of the data, such as the N/P ratio in the AR9 70 dataset, which differs704

from the AR9 500 dataset in the number of observations (70 instead of 500),705

affects the performance of all algorithms.706

707

Furthermore, Figure 4 shows that different values of SAc and SAe were708

obtained for the combination of IVS algorithms and datasets considered.709

The case of perfect specification (i.e. SA = 1) was obtained for a number710

of different datasets, such as AR1, AR9 500, TAR1 and TAR2, for which711

all algorithms were capable of only selecting the relevant variables. As com-712

mented above, these datasets have high noise and high collinearity, which are713

somehow ‘compensated’ for by the N/P ratio, equal to 33.3 (see Table 1).714

This high ratio between the number of observations N and candidate inputs715

P allows all algorithms to limit the bias in the estimation of the strength716

of dependence between inputs and output due to the presence of noise in717

the observational dataset (regression dilution, Frost and Thompson (2000)).718

A decrease in the number of observations, as in the AR9 70 dataset, had719

a negative impact on algorithm performance, causing under-specification of720

relevant inputs (i.e. SAc < 1 and SAe = 1) or both under-specification721
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of relevant and over-specification of extraneous inputs (i.e. SAc < 1 and722

SAe < 1). For example, use of the PMIS and GA-ANN algorithms did not723

result in the selection of extraneous inputs (SAe = 1), but over the 30 repli-724

cates of the dataset, they show an average SAc score of about 0.65, indicating725

that the proportion of correct inputs that has been selected is 65%. This re-726

sults in a SA score of about 0.75, as shown in Figure 4 (AR9 70). For the727

same dataset, the IIS algorithm results in a SAc score of about 0.65, but the728

overall performance is affected negatively by the over-specification of some729

extraneous inputs, with SAe equal to 0.80, which means that the proportion730

of extraneous inputs that has been selected is 20%. On the other hand, the731

PCIS algorithm shows perfect specification, with both SAc and SAe equal to732

1. The over-specification of extraneous inputs (i.e. SAc = 1 and SAe < 1)733

was observed for the Miller dataset, where all relevant variables were selected734

when using the IIS and GA-ANN algorithms (SAc = 1), but the only extra-735

neous input was also included, resulting in a value of SAe equal to 0. Worse736

results were obtained for the PMIS and PCIS algorithms: the former resulted737

in a SAc score of 0.5 and a SAe score of 0, while the latter performed poorly738

with respect to both indicators (SAc and SAe equal to 0).739

5.1.2. Effect of dataset properties on algorithm performance740

The impact of dataset properties on IVS algorithm performance in terms741

of SA, SAc and SAe is shown in Figure 5 and described below for each of742

the datasets in turn. A discussion of the findings is provided in Section 6.743

• AR and TAR datasets. As discussed in the previous section, these744

datasets have high noise and collinearity, but a high number N of745
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observations and a reduced number P of total candidate inputs. The746

ratioN/P is therefore high, allowing all of the algorithms to identify the747

K relevant inputs (SAc = 1), without including any extraneous inputs748

(SAe = 1). The only exception is the AR9 70 dataset: in this case the749

number of observations decreases from 500 to 70, and the N/P ratio750

from 33.3 to 4.7, with an associated greater likelihood of overfitting.751

This is empirically demonstrated by the IIS algorithm, which indeed752

shows a value of SAe lower than 1.753

• NL datasets. The NL 500 dataset is not characterised by high noise754

or high collinearity, but is highly nonlinear and has a non-Gaussian755

output. This combination seems to have a negative impact on the per-756

formance of the PMIS, ANN-GA and PCIS algorithms, as indicated757

by a significant decrease in SAc (i.e. greater under-specification of758

the relevant inputs). The reason for this may be due to the specific759

characteristics of each algorithm. PMIS, for example, can accurately760

model nonlinear relationships, but the Gaussian reference bandwidth761

used in the estimation of the PMI is known to result in reduced perfor-762

mance in cases where the data follow a non-Gaussian distribution (May763

et al., 2008a). As expected, the performance of the PCIS algorithm is764

worse than that of the PMIS algorithm, since it is based on partial765

linear correlation, and is therefore unable to account for the nonlinear-766

ity in the data. Finally, the low performance shown by the GA-ANN767

algorithm may be due to the simple ANN architecture adopted (i.e.768

1-hidden node multi-layer perceptron), which might not be fully capa-769

ble of characterizing the highly nonlinear behaviour of NL 500 dataset.770
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The IIS algorithm, based on Extra-Trees, is capable of selecting all771

relevant inputs (SAc = 1) without including any extraneous inputs772

(SAe = 1), probably because Extra-Trees are capable of accounting for773

nonlinear relationships and do not require any assumption about the774

statistical properties of the dataset. However, as seen for the AR9 70775

dataset, IIS is sensitive to a decrease in the N/P ratio: while PMIS,776

ANN-GA and PCIS show similar performance for both the NL 500777

and NL 70 datasets, the performance of IIS decreases for the second778

dataset. Finally the high noise and collinearity (in addition to non-779

Gaussian output and nonlinearity) characterising the NL2 dataset do780

not seem to affect the performance of the PMIS, ANN-GA and PCIS781

algorithms, when compared with the performance of these algorithms782

on the NL 500 dataset. This seems to be in line with the results for the783

AR and TAR datasets, and empirically demonstrates that the overall784

performance of these algorithms is more sensitive to non-Gaussian out-785

puts and/or nonlinearity. This is not the case for the IIS algorithm, the786

performance of which decreases in terms of both SAc and SAe when787

including high noise and collinearity.788

• Bank datasets. Unlike any other dataset, these four datasets are charac-789

terised by incomplete information about the output data, which seems790

to have a negative effect on all algorithms, with all values of SA lower791

than 1. It is important to note that the sub-optimal values in SA are792

due to sub-optimal values in SAc only (SAe is always equal to 1), indi-793

cating that the algorithms do not have sufficient information to single794

out the relevant inputs. The degree of nonlinearity of the underlying795
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function does not seem to significantly affect SAc (and therefore SA),796

while the presence of noise (datasets Bank fh and Bank nh) appears to797

have a greater negative impact on the ANN-GA and PCIS algorithms.798

• Friedman datasets. These datasets are characterised by a combination799

of nonlinearity, noise, collinearity and different numbers P of candi-800

date inputs. For Friedman c0 10 m and Friedman c0 50 m, the PMIS801

and IIS algorithms result in a value of SA equal to 1, as they are802

both capable of dealing with nonlinear datasets. On the other hand,803

the GA-ANN and PCIS algorithms have slightly lower performances,804

most likely due to their lower efficiency in characterising highly non-805

linear functions, as discussed previously. Other potential sources of806

failure include the parameterization of the GA (e.g. insufficient ex-807

ploration of the search space or insufficient numbers of generations).808

The addition of high noise (Friedman c0 10 h and Friedman c0 50 h)809

reduces the selection accuracy of PMIS and IIS, while it does not af-810

fect that of GA-ANN and PCIS algorithms. It thus seems that the811

presence of noise flattens the modelling conditions, with all algorithms812

showing similar performance. The addition of high collinearity in the813

Friedman c25 10 m and Friedman c25 50 h datasets causes a decrease814

in SA for all algorithms, with the combination of high noise and high815

collinearity being particularly critical. It is interesting to note that all816

algorithms show a value of SAe equal to 1, with SAc and SA lower817

than 1. This means that in the presence of nonlinearity, high noise and818

collinearity, the algorithms under-specify the relevant inputs, but do819

not select extraneous inputs.820
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• Salinity datasets. The salinity datasets have a relatively large number821

of candidate inputs (80 or 160), including time lagged values (5 or822

10) of 16 variables, resulting in high collinearity in the input data.823

The presence of high collinearity and 80 candidate inputs (Salinity 5 l824

dataset) slightly affects the performance of the PCIS and GA-ANN825

algorithms (SAe < 1), which is further reduced by the addition of 80826

extra inputs (Salinity 10 l dataset). This may be due to the difficulty827

the GA has in finding the correct combination of input variables among828

a set of 160 highly correlated inputs. On the contrary, PMIS and IIS829

are capable of determining all relevant inputs for both datasets. When830

moderate noise is added to these data (Salinity 5 m and Salinity 10 m831

datasets), IIS and PCIS maintain the same performance (i.e. perfect832

specification and a slight over-specification of some extraneous inputs,833

respectively), while GA-ANN shows a further decrease. The PMIS834

algorithm shows a pronounced under-specification of relevant inputs835

(SAc < 1), which may be due to some difficulties in estimating the836

correct values of PMI in the presence of noise. Finally, the addition837

of high noise (Salinity 5 h and Salinity 10 h datasets) to both high838

collinearity and a large number of input variables has a negative effect839

on all algorithms, which show a decrease in SAc and hence in SA.840

• Kentucky dataset. Similar to the Salinity datasets, this dataset is also841

characterised by a large number P of candidate inputs defined as time842

lagged values of flow and rainfall observations, causing high collinearity843

in the data. The presence of random noise is limited, but the output844

is non-Gaussian. As was found for the NL and Bank datasets, the845
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presence of a non-Gaussian output particularly affects the performance846

of PMIS and GA-ANN: the former has a SAc score equal to about 0.50847

(meaning that the proportion of correct inputs that has been selected is848

only 50%), while the latter is capable of selecting the relevant variables,849

but tends to include extraneous inputs (SAe equal to 0.80). On the850

other hand, IIS and PCIS seem to be less affected by the non-Gaussian851

output.852

• Miller dataset. This dataset has a non-Gaussian output and three can-853

didate inputs only: x1 and x2 have a strong inter-dependency (i.e. they854

jointly influence the output, while having little influence on the output855

individually), while the extraneous input x3 has the highest (spuri-856

ous) correlation with the output. This last characteristic makes the857

input selection exercise particularly challenging for forward selection858

methods (i.e. PMIS, IIS and PCIS) that select only one input at each859

iteration, as evidenced by SA scores of less than 1. PMIS and PCIS860

are particularly affected by the inter-dependency. The SAe score is861

equal to 0 for both algorithms, meaning that they always select the862

extraneous input x3, and the SAc score is respectively equal to 0.5 and863

0, resulting in very low values for the SA score. Surprisingly, the IIS864

algorithm achieves the same performance as the GA-ANN algorithm865

(the only wrapper method adopted in this study), with SAe equal to 0,866

but SAc equal to 1. That is both IIS and GA-ANN select all candidate867

inputs. The unexpectedly good performance of the IIS algorithm may868

be due to the algorithm tolerance (i.e. ε = 0.01), which could cause a869

slight tendency to over-specify models and allow the algorithm to select870
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additional variables beyond the first ‘most relevant’ input.871

5.1.3. Effect of N and P on algorithm performance872

As discussed in the previous section, an increase in the number N of873

observations increases the information available for the IVS algorithm, thus874

positively impacting selection accuracy (and vice versa for a decrease in N).875

As far as the number P of candidates is concerned, an increase in P should876

increase the overall complexity of the IVS problem, but, in practice, the877

results show that the correspondence between P and SA is neither univocal878

nor monotonic. Indeed, different values of SA are found for the same value879

of P (see, for instance, the AR datasets), and SA does not decrease with880

P . For example, the average performance of the four algorithms on the881

Miller dataset (P = 3) is lower than the average performance on the Salinity882

datasets, where P is either 80 or 160. The ratio N/P is probably a better883

indicator of IVS problem complexity, since its value is indicative of the risk of884

retaining extraneous inputs (i.e. likelihood of overfitting). High values of this885

ratio are generally associated with high values of SA, and vice versa. The886

ratioN/P should be evaluated together with the other properties of a dataset,887

and collinearity in particular, as the likelihood of overfitting increases with888

the correlation between the candidate inputs. Indeed, it can be observed that889

when the ratio N/P falls below a critical threshold (about 5), most of the890

considered IVS algorithms have a SA score of less than 1. In other words,891

the ratio N/P appears to be a ‘limiting factor’, where low values limit the892

capability of any IVS algorithm to select the relevant input variables.893
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5.2. Computational efficiency894

From Table 2, it is evident that when the IVS algorithms are applied895

to the benchmark datasets, two different behaviours, in terms of average896

run-time, are observed. First, the PMIS and IIS algorithms show similar897

run-times, especially for the first eighteen datasets. These datasets are char-898

acterised by a limited number of observations and candidate inputs N and P899

(ranging from 70 to 500 and 10 to 50, respectively), so both algorithms per-900

form the input selection task in a time ranging from a few seconds to about901

one minute. Such computational efficiency is due to their forward selection902

nature (i.e. one variable is selected at each iteration), which only requires903

a small number of iterations and therefore few calibrations of GRNNs and904

Extra-Trees. On the other hand, the application of these two algorithms to905

the Salinity and Kentucky datasets, which are characterised by much larger906

numbers of samples and candidate inputs, increases the run-time up to about907

2.5 hours, but with IIS faster than PMIS. Apart from the adopted server and908

the specific implementation (a C++ executable may be faster than the R en-909

vironment), the reason behind this difference stands in the good scalability910

of Extra-Trees to large datasets. Indeed, as further discussed in Appendix911

B, the Extra-Trees run-time increases linearly with P and superlinearly with912

N , while the time required to calibrate a GRNN does not scale well to large913

datasets. Moreover, Extra-Trees are used in the IIS algorithm a smaller914

number of times than GRNNs in the PCIS algorithm, resulting in a run-time915

order that is quadratic in P and superlinear in N , whilst the run-time order916

of PMIS is O(P 4 ·N2 +P 5) (Table 3). The PCIS algorithm has the smallest917

run-time, which varies from a few tenths of a second to about 3 minutes918
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for the most complex datasets. Similarly to PMIS and IIS, this algorithm919

also has a forward selection nature, requiring only few estimates of the Pear-920

son correlation coefficient and calibrations of a linear regression model. The921

latter have a high computational efficiency, thus reducing PCIS run-time in922

comparison with that for PMIS and IIS. Apart from this specific difference,923

these three filters are characterised by similar growth rates of the run-time:924

PMIS and PCIS find a solution in an expected number of O(P 4 · N2 + P 5)925

and O(P 4 · N + P 5) steps, respectively, while IIS requires O(T · P 2) steps926

(where T is the time required for cross-validating and ensemble of Extra-927

Trees). That is, the growth rate for the three filters is polynomial in P and928

N (see Appendix B for further details).929

Second, the GA-ANN algorithm has a run-time that is almost two orders930

of magnitude higher than that of PMIS and IIS. This is due to its wrapper931

nature, which requires several ANN calibration runs at each iteration of the932

GA. As a consequence, the application of this algorithm to the first eigh-933

teen datasets takes a time ranging from a few minutes to about 30 minutes,934

while the time required to analyse the largest datasets (e.g. Salinity 10 l)935

takes almost 80 hours. Notice that such run-times are obtained by adopt-936

ing a relatively-simple ANN, i.e. a 1-hidden node multilayer perceptron, so937

higher run-times would be required if a more complex network architecture938

were adopted. Unlike PMIS, IIS and PCIS, it is much harder to determine939

the growth rate of the run-time of the GA-ANN algorithm, since the GA is940

a stochastic optimisation algorithm, the computational complexity of which941

depends on different factors, such as the (randomly generated) initial popu-942

lation. In general, it can be assumed that when the GA-ANN algorithm is943
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run over the whole number of generations, the run-time is proportional to944

G · I, where G and I represent the number of generations and the population945

size, respectively.946

5.3. Qualitative criteria947

In addition to the quantitative criteria, the four IVS algorithms are also948

assessed in terms of ease of use, explanation capability and flexibility.949

• Ease of use. The three filter algorithms adopted in this study (i.e.950

PMIS, IIS and PCIS) are easy to use, in terms of both the number of951

parameters to be tuned and the robustness of the results with respect952

to the default set of parameter values. The PMIS and PCIS algorithms953

require the tuning of two and one parameter, respectively (see Section954

4). The IIS algorithm has a larger number of parameters, but these955

can be easily tuned via a trial-and-error procedure (Galelli and Castel-956

letti, 2013b). Furthermore, the accuracy of the PMIS, IIS and PCIS957

algorithms is very robust with respect to the adopted (default) parame-958

terization. On the other hand, the accuracy of the GA-ANN algorithm959

is sensitive to the parameterization of both GA and ANN. In particular,960

the results described in Section 5 show that the selection of the ANN961

architecture appears to be critical. This is a common feature of wrap-962

per algorithms, which generally require an accurate, dataset-dependent963

tuning of the underlying model (Guyon and Elisseeff, 2003).964

• Explanation capability. Another advantage of the PMIS, IIS and PCIS965

algorithms, and of filter methods in general, is that they provide in-966

formation about the relative importance of each selected input. The967
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same information may be obtained from a wrapper algorithm, but this968

requires an ex-post interpretation of the data-driven model structure.969

• Flexibility. The PCIS and PMIS algorithms are very flexible, as their970

structure is identical, but with (1) the PMI criterion used in place of971

the partial linear correlation coefficient, and (2) a GRNN in place of972

a linear model. On the other hand, the IIS algorithm relies on Extra-973

Trees for both ranking the candidate input variables and assessing the974

significance of the selected ones. This reduces the overall flexibility of975

the algorithm, although it may increase the accuracy of the underlying976

model. Finally, it could be argued that the GA-ANN algorithm exhibits977

a high level of flexibility, as both the optimization algorithm (GA) and978

the underlying data-driven model (ANN) can be interchanged with979

other methods. However, such high flexibility comes at a price, since980

the adoption of complex, highly parameterized components may neg-981

atively impact the algorithm’s easy of use, explanation capability and982

computational efficiency.983

6. Discussion, recommendations and issues in environmental mod-984

elling985

6.1. Discussion986

The effect of the properties of the benchmark datasets on IVS algorithm987

performance can be summarised as follows:988

• Non-Gaussian Output. Unsurprisingly, it is found that a non-Gaussian989

output inhibits a high level of performance for the PMIS algorithm,990
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which assumes Gaussian data when estimating the PMI. This tendency991

is accentuated when this property is combined with other limiting prop-992

erties (e.g. incomplete information or inter-dependency as in the Bank993

or Miller datasets). The IIS and PCIS algorithms, which do not assume994

Gaussian data, appear to be unaffected by a non-Gaussian output, and995

can indeed achieve a perfect specification, with SA = 1, when this996

property is not combined with other limiting properties (e.g. NL 500997

for IIS and Kentucky dataset for PCIS).998

• High Nonlinearity. The presence of a highly nonlinear relationship be-999

tween inputs and output can be effectively handled by IIS and PMIS,1000

which rely on regression methods capable of characterising such re-1001

lationships (Extra-Trees and GRNN, respectively). This is demon-1002

strated on the Friedman c0 10m and Friedman c0 50m datasets, which1003

are characterised by this property only. As mentioned above, IIS can1004

simultaneously deal with non-Gaussian outputs and highly nonlinear1005

input-output relationships, if enough observations are available (see1006

NL 500 and NL 70 datasets). On the other hand, both GA-ANN and1007

PCIS are affected by highly nonlinear datasets. Indeed, the former1008

relies on a simple 1-hidden node ANN, which is effective with weakly1009

nonlinear functions only, while the latter is based on linear partial cor-1010

relation.1011

• High Noise. The presence of high noise affects the performance of all1012

IVS algorithms, but only when combined with certain other properties1013

of the data. For example, the combination of high noise with high1014

43



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

nonlinearity decreases the signal-to-noise ratio, which deteriorates the1015

performance of both the PMIS and IIS algorithms on the Friedman1016

datasets. Similarly, the presence of high noise is critical when evaluated1017

in relation to the number N of observations. Indeed, a decrease in N1018

affects the signal-to-noise ratio, as illustrated by the deterioration in1019

performance when reducing the number of observations from 500 to 701020

in the AR 70 dataset.1021

• High Collinearity. This property is normally due to the presence of time1022

lagged values of some input variables, as in the AR, TAR, Salinity and1023

Kentucky datasets. Similar to the presence of high noise, collinearity1024

can also be effectively handled by all algorithms, even in the presence1025

of many inputs, such as in the Salinity 5 l and Salinity 10 l datasets,1026

where P is equal to 80 and 160, respectively. However, when high noise1027

is introduced into the dataset, good performance can only be achieved1028

if the number P of candidate inputs is limited, as is the case for the1029

AR and TAR datasets.1030

• Inter-dependency. As explained in Section 5, inter-dependency between1031

input variables (Miller dataset) is generally problematic for filter, for-1032

ward selection methods that evaluate one input variable at each it-1033

eration. Indeed, PMIS and PCIS exhibit low accuracy on the Miller1034

dataset (SA equal to about 0.40 and 0, respectively), while IIS is capa-1035

ble of achieving greater accuracy, probably because of the pre-selected1036

exit condition. Unsurprisingly, the GA-ANN algorithm, the only wrap-1037

per method considered in this study, achieves the best performance.1038
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• Incomplete information. This property has a significant impact on all1039

IVS algorithms, as evidenced by the inability of any of the algorithms1040

to select the relevant input variables on the Bank dataset.1041

• N , P and N/P . The ratio N/P is a further limiting factor that re-1042

duces the accuracy of all algorithms when it drops to values below 5.1043

In particular, IIS seems to be more sensitive to drops in the ratio N/P ,1044

as found for the AR 70 and the NL 70 datasets. In addition, both N1045

and P have a strong impact on the computational performance of IVS1046

algorithms. While filter methods, such as PMIS and IIS, exhibit good1047

scalability with respect to input dataset dimensionality, the run-time1048

of wrapper methods is particularly sensitive to an increase in N and1049

P , up to the point where their adoption becomes impractical for large1050

datasets. For example, the GA-ANN algorithm requires more than 31051

days of computation for solving an input selection problem with 41151052

observations and 160 candidate input variables, while PMIS and IIS1053

require 2.5 and 1.5 hours, respectively.1054

1055

Finally, it is interesting to highlight that the presence of two properties of1056

the data, namely inter-dependency and incomplete information, have a strong1057

impact on the accuracy of all algorithms, irrespective of the presence/absence1058

of other properties. Non-Gaussian output and a highly nonlinear input-1059

output relationship can only be fully handled by some algorithms (i.e. IIS1060

and PCIS, and PMIS and IIS respectively), and they require the adoption of1061

specific metrics and regression methods that can deal with such properties.1062

Finally, high noise and high collinearity are not a problem per se, but their1063
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presence adds a further level of complication when they are combined with1064

other properties, such as non-Gaussian outputs or nonlinear datasets.1065

6.2. Recommendations1066

Although the results reported here are primarily discussed for the pur-1067

poses of the demonstration of the framework, they can be used to develop1068

some preliminary guidelines in relation to the relative importance of differ-1069

ent properties of the data and the corresponding performance of the four IVS1070

algorithms.1071

• The presence of a non-Gaussian output is a potential limiting factor,1072

which requires the adoption of IVS algorithms that do not assume1073

Gaussian data when estimating the relative importance of each input or1074

when building a regression model. A similar recommendation is valid in1075

case of a highly nonlinear relationship between input and output. The1076

only algorithm capable of selecting the correct inputs in the presence1077

of both properties is IIS.1078

• As discussed in Section 6.1, the presence of high noise is problematic1079

only when combined with certain other properties of the data (e.g.1080

non-Gaussian output or inter-dependency), so the choice of the most1081

appropriate IVS algorithm should be based on its capability of dealing1082

with such properties. This guideline still holds in the presence of high1083

collinearity.1084

• In the presence of inter-dependency between input variables, it is ad-1085

visable to adopt a wrapper method, which can handle this property1086
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through the selection of multiple inputs at each iteration. This cannot1087

be done by filters, unless the candidate input set is enlarged to include1088

features that are combinations of the original input variables.1089

• Incomplete information within the dataset affects the performance of1090

all IVS algorithms, so the most suitable algorithm should be chosen1091

according to its capability of dealing with the other properties charac-1092

terising the dataset in hand.1093

• The ratio N/P is a limiting factor when it drops to values approxi-1094

mately below 5: in this case it is recommendable to use IVS algorithms1095

that rely on simple metrics and regression techniques, such as PCIS,1096

which is based on the Pearson correlation coefficient and linear regres-1097

sion. Indeed, more advanced algorithms (e.g. PMIS and IIS) require1098

the identification of complex data-driven models, whose performance1099

increases in the presence of more observations.1100

• While the properties and recommendations above should be considered1101

before any IVS experiment, the size of the dataset and the computa-1102

tional performance of an IVS algorithm matter only in the presence of1103

limited computational resources (or limited time available to conduct1104

the experiments). In general, if the maximum computing time that is1105

available for each experiment is in the order of a few hours, it is advis-1106

able to adopt a filter method. On there other hand, if more or unlimited1107

time is available, a wrapper can be a viable solution. However, it must1108

be remembered that the tuning of a wrapper is a time consuming task,1109

which requires an accurate parameterisation of both the optimisation1110
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algorithm and the architecture of the data-driven model.1111

6.3. Issues in environmental modelling1112

Unlike for the synthetic data considered here, a key aspect of real-world1113

environmental modelling problems is that the true underlying function is1114

unknown, and IVS is thus used to reduce the uncertainty in the model de-1115

velopment process by selecting a subset of relevant and non-redundant input1116

variables. This opens some relevant theoretical and practical issues that are1117

highlighted below:1118

• Most of the IVS algorithms currently available select a unique subset1119

of input variables, although the structural uncertainty in the inputs1120

to be used often results in the possibility of choosing different, but1121

equally informative, subsets. An attempt to account for this issue was1122

recently made by Sharma and Chowdhury (2011), who proposed a PMI-1123

based heuristic approach to select five different subsets of predictors in1124

the context of medium-term hydro-climatic forecasting. The approach1125

ensures that the cross-dependence between these subsets is limited,1126

while the predictions of the resulting models are eventually combined1127

with ensemble averaging.1128

• In many practical situations, input variables can be characterised by1129

errors, due to, for example, the interpolation of data in space and1130

time or the conversion of point measurement into areal values. Whilst1131

methods exist for assessing the impact of input errors on parameter1132

estimation procedures (Chowdhury and Sharma, 2007; Woldemeskel1133
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et al., 2012), IVS algorithms cannot take into account the change in1134

the uncertainty associated with the different inputs.1135

• A benefit of IVS is the improvement in the performance of the model1136

being identified. Although the manner in which such performance is1137

characterised depends on the specific domain of interest and the model1138

objectives (Jakeman et al., 2006), two important aspects should always1139

be considered when dealing with quantitative testing. First, the use1140

of observational data for comparison must rely on appropriate data-1141

division methods, such as cross-validation or bootstrapping, that allow1142

for testing the ability of the model to generalise. Data division can1143

account for both temporal and spatial dimensions, so it is suitable for1144

spatial modelling as well (see Chowdhury and Sharma (2009) for an1145

application to hydrological modelling problems). Second, an exhaus-1146

tive quantitative evaluation should rely on a set of metrics focussing on1147

different aspects in order to test the ability of the model in reproducing1148

all the important features of the system. The reader is referred to Ben-1149

nett et al. (2013) for a comprehensive review of techniques available for1150

both data-division and quantitative evaluation, and to Robson (2014)1151

for a more general assessment of environmental models.1152

7. Closure1153

In this work we present a framework for the comparative analysis of IVS1154

algorithms in environmental modelling problems. The framework consists1155

of a set of benchmark datasets with the typical properties of environmental1156

data, a recommended set of evaluation criteria and a website for sharing1157
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data, code and results. Since the data and criteria proposed here cannot1158

exhaustively represent all modelling contexts encountered by developers and1159

users, it is hoped that the presence of a dedicated website will increase the1160

flexibility of this framework and facilitate collaboration between researchers.1161

For example, the benchmark datasets are currently limited to those that have1162

both continuous input and output variables; however, it is intended that this1163

set will be extended to include datasets comprised of nominal and categorical1164

variables. In addition, as this framework is applied to an increasing number1165

of IVS algorithms and datasets, it is hoped that guidelines for the adoption of1166

the most appropriate IVS algorithms for datasets with particular properties1167

can be developed.1168
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Appendix A1412

A.1 PMIS algorithm1413

The PMIS algorithm is a filter IVS method developed by Sharma (2000)1414

and later modified by Bowden et al. (2005a) and May et al. (2008a), where the1415

relevance of potential inputs is evaluated based on the mutual information1416

(MI) between each input variable and the output. While MI is a useful1417

measure of dependence between a potential input variable x and a dependent1418

variable y, it cannot account for redundancy in the candidate input pool,1419

X = {x1,x2, . . . ,xP}. To account for such redundancy, the PMI criterion,1420

which measures the partial dependence between a potential input variable1421

and the output, conditional on any inputs that have already been selected,1422

is instead used in this algorithm. This criterion is analogous to the partial1423
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correlation coefficient and can be formulated as:1424

PMI =
1

N

N∑
i=1

log

[
f (x′i, y

′
i)

f (x′i) f (y′i)

]
(4)

where1425

x′ = x− E[x|Z]; and y′ = y − E[y|Z] (5)

represent the residual information in variables x and y once the effect of the1426

already selected inputs, Z, has been taken into consideration. In eq. (4), x′i1427

and y′i are the i-th residuals in a sample dataset of size N and f (x′i), f (y′i)1428

and f (x′i, y
′
i) are the respective marginal (univariate) and joint (bivariate)1429

probability density functions (pdfs).1430

1431

Calculation of the PMI criterion in eq. (4) requires estimation of the1432

marginal and joint pdfs of x and y. For the PMIS algorithm, Sharma (2000)1433

proposed the use of a non-parametric kernel density estimation based on the1434

Gaussian kernel function (Silverman, 1986). The accuracy of this kernel es-1435

timator is largely dependent on the choice of the smoothing parameter (or1436

bandwidth) λ, with its optimal value depending on the distribution of the1437

available data sample (May et al., 2008a). A value of λ that is too large1438

will result in an over-smoothed probability density, while a value that is too1439

small can lead to density estimates overly influenced by individual data points1440

(under-smooth). Sharma (2000) adopted the Gaussian reference bandwidth1441

(Scott, 1992) due to its simplicity and computational efficiency. Calculation1442

of the PMI criterion also requires the appropriate estimation of the condi-1443

tional expectation E[·] of x and y on Z. Bowden et al. (2005a) proposed1444

the use of a General Regression Neural Network (GRNN) to compute these1445
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conditional expectations. GRNNs are very similar in their underlying philos-1446

ophy to kernel regression, where a non-parametric estimate of the pdf of the1447

observed data, similar to that given by eq. (4), is utilised in the estimation1448

of E[·], rather than assuming any particular form for the regression function.1449

At each iteration, the PMIS algorithm seeks to find the variable xs which1450

maximises the PMI with respect to y, conditional on the inputs that have1451

been selected in previous iterations, Z. If xs is found to be relevant (based1452

on some stopping criterion), it is added to the selected subset Z and the1453

selection continues; otherwise, the algorithm is terminated since there are no1454

more relevant candidate inputs remaining. For the purposes of this study,1455

the stopping criterion utilised was the coefficient of determination, R2, of the1456

output variable residual, y′ (see May et al. (2008a) for an analysis of different1457

stopping criteria).1458

1459

The advantages of using a GRNN in the PMIS algorithm include: accu-1460

racy in modelling the nonlinear relationships between the inputs and output,1461

computationally efficient model calibration, and fixed model structure that1462

does not have to be tuned on each specific dataset (Bowden et al., 2005a).1463

On the other hand, a limitation of the PMIS algorithm is that, although it1464

is a filter method, it can still be relatively computationally expensive due1465

to the use of kernel based approaches for estimating the PMI criterion and1466

the conditional expectations E[·]. While such approaches give efficient and1467

reliable density estimates for smaller data sets, their computational efficiency1468

decreases dramatically with increasing sample size (Fernando et al., 2009).1469

Furthermore, the Gaussian reference bandwidth, which is utilised in the cal-1470
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culation of the marginal and joint pdfs of x and y, as well as in the GRNN1471

estimates of E[x|Z] and E[y|Z], can tend to over-smooth and its optimality1472

might be questionable if the data are not Gaussian (May et al., 2008a). For1473

further details of this algorithm, see Sharma (2000); Bowden et al. (2005a)1474

and May et al. (2008a).1475

A.2 IIS algorithm1476

The IIS algorithm is a hybrid filter-wrapper IVS method introduced by1477

Galelli and Castelletti (2013b). Similar to the PMIS algorithm, IIS adopts1478

a forward selection approach to iteratively select the most significant inputs,1479

but uses a tree-based ranking method instead of an information-theoretic1480

measure to estimate the relative contribution of each candidate input. At1481

each iteration, all the input variables are ranked according to their relative1482

contribution to the building of an underlying model of the output. The rel-1483

ative significance of the first p ranked variables is then assessed against the1484

output by identifying p Single Input-Single Output (SISO) models. Even-1485

tually, the best performing input among the p considered (according to a1486

preselected measure of accuracy) is added to the set of the selected variables.1487

At the first iteration of the IIS algorithm, both ranking and SISO models are1488

run on a data set composed of time series of the candidate input variables1489

and the associated output values. At the subsequent iterations, the original1490

output values are replaced by the residuals of the underlying model built1491

at the previous iteration. The re-evaluation of ranking and SISO models1492

every time an input is selected (i.e., at each iteration) ensures that all the1493

candidate inputs that are highly correlated with the selected input are dis-1494

carded, thus minimizing the redundancy of the final set of selected inputs.1495
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The IIS algorithm terminates when the accuracy of the model built upon the1496

selected variables, as evaluated with a k-fold cross validation (Allen, 1974),1497

starts decreasing (or when it does not significantly improve). As discussed1498

in Wan Jaafar et al. (2011), this process is aimed at minimizing the risk of1499

overfitting the data, since it estimates the ability of the model to capture the1500

behavior of unseen or future observations.1501

1502

In the present study the underlying model performance is computed1503

with the coefficient of determination R2, while both the ranking and model1504

building algorithm are based on Extremely Randomized Trees (Extra-Trees,1505

Geurts et al. (2006); Galelli and Castelletti (2013a)). Similar to the PMIS1506

algorithm, the idea of exploiting the underlying model residuals provides ro-1507

bustness against redundant inputs, while the adoption of Extra-Trees allows1508

accounting for non-linear interactions and computational efficiency (with re-1509

spect to sample size N and the number P of candidate inputs). Furthermore,1510

the tree-based ranking method does not require any specific assumption re-1511

garding the structure of the dependence between input and output variables.1512

However, as any other forward selection method, the IIS algorithm does not1513

account for the inter-dependency between candidate input variables. For fur-1514

ther technical details the reader is referred to Galelli (2010) and Galelli and1515

Castelletti (2013b).1516

1517

A.3 GA-ANN algorithm1518

The algorithm described herein is one particular implementation of a1519

combination of a Genetic Algorithm (GA) search procedure with an Artifi-1520
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cial Neural Network (ANN) model. In particular, a simple 1-hidden node1521

multilayer perceptron was utilised in this algorithm1. The model training1522

process is performed by means of a simulated annealing algorithm (Belisle,1523

1992), which is used each time a new combination of inputs is evaluated.1524

The GA here adopted is a relatively simple variant which is outlined in1525

Goldberg (1989). In this implementation, solutions representing different1526

subsets of inputs, are encoded as binary strings, called ‘chromosomes’. Each1527

bit, or ‘gene’, in these chromosomes represents a candidate input variable,1528

where a ‘1’ denotes that the input will be included in the model, while a1529

‘0’ denotes its omission from the model. The objective function used to de-1530

termine whether one subset of inputs is better (fitter) than another was the1531

out-of-sample AIC, computed using a k-fold cross-validation. This objective1532

function was also used as a stopping criterion to terminate the GA-ANN1533

algorithm.1534

1535

The main drawback of this implementation of the GA-ANN algorithm is1536

that the complexity of the learning algorithm, and hence its ability to accu-1537

rately model complex functions, is limited by the choice of an ANN with a1538

single hidden node. However, this model should still provide an improvement1539

over a simple linear mapping when applied to nonlinear datasets.1540

1Ideally, the structure and complexity of the ANN model would be optimised to suit

the problem at hand; however, when evaluating a general algorithm across a number of

different datasets this can become impractical.
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A.4 PCIS algorithm1541

The partial correlation input selection (PCIS) algorithm (May et al.,1542

2008a) is based on partial correlation analysis, which aims to find the linear1543

correlation between two variables after removing the effects of other variables.1544

The PCIS algorithm is structured the same as the PMIS algorithm, but with1545

the partial linear correlation coefficient used in place of the PMI criterion1546

for measuring the relevance of inputs. This coefficient is calculated as Pear-1547

son’s correlation between the residuals x′ and y′, given by eq. (5), once the1548

effect of the already selected inputs, Z, has been taken into consideration.1549

In this case, the conditional expectation E[·] is a linear regression of x and y1550

with Z. The regression is based on a least-squares approach, which implies1551

a Gaussian distribution of the residuals. The PCIS algorithm is terminated1552

when the selection of additional inputs no longer results in an improvement1553

(increase) in the BIC, calculated based on the output variable residual y′,1554

which provides a trade-off between goodness-of-fit and model complexity.1555

Appendix B1556

B.1 PMIS algorithm1557

The computing time tPMIS,i associated with the i-th iteration of the PMIS1558

algorithm is the combination of the time tPMIS,T1 required to calibrate a1559

GRNN to estimate the output based on the selected inputs, the time tPMIS,T21560

required to calibrate a GRNN to estimate each (non-selected) input based on1561

the selected inputs, and the time tPMIS,T3 for computing the PMI between1562

the residual of each model. Knowing that the run-time order to calibrate1563

a GRNN is O(K2 · N2 + K3) (where K and N are the number of inputs1564
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and observations, respectively), and that the run-time order to estimate the1565

PMI is O(N2), the time tPMIS,T1, tPMIS,T2 and tPMIS,T3 can be estimated as1566

follows:1567

tPMIS,T1 = c ·
(
(i− 1)2 ·N2 + (i− 1)3

)
(6a)

where c is a constant, machine-dependent parameter and i the iteration num-1568

ber.1569

tPMIS,T2 = c · (P − (i− 1)) ·
(
(i− 1)2 ·N2 + (i− 1)3

)
(6b)

where P is the number of candidate input variables.1570

tPMIS,T3 = c · (P − (i− 1)) ·N2 (6c)

Therefore, the time tPMIS,i associated with the i-th iteration is equal to1571

tPMIS,i = tPMIS,T1 + tPMIS,T2 + tPMIS,T3 (7a)

while the time tPMIS,n required to perform n iterations is1572

tPMIS,n = c ·
n∑

i=1

(
(i− 1)2 ·N2 + (i− 1)3

)
+

+ c ·

[
n∑

i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N2 + (i− 1)3

)
+

n∑
i=1

(P − (i− 1)) ·N2

]
=

= c ·
n∑

i=1

(
(i− 1)2 ·N2 + (i− 1)3

)
+

+ c ·
n∑

i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N2 + (i− 1)3 +N2

)
(7b)

In the worst case scenario, the PMIS algorithm is run over P iterations1573
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to evaluate all candidate inputs. In this case, the total computing time is1574

tPMIS(P ) = c ·
P∑
i=1

(
(i− 1)2 ·N2 + (i− 1)3

)
+

+ c ·
P∑
i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N2 + (i− 1)3 +N2

) (8)

so the run-time order is O(P 4 ·N2 + P 5).1575

B.2 IIS algorithm1576

The computing time tIIS,i associated with the i-th iteration of the IIS1577

algorithm is the combination of the time tIIS,T1 required to run the ranking1578

method, the time tIIS,T2 for evaluating the accuracy of p SISO models and1579

the time tIIS,T3 for evaluating the underlying MISO model. Knowing that1580

the computing time of Extra-Trees grows superlinearly in the number N of1581

observations, and linearly in the number K and M of inputs and trees, the1582

time tIIS,T1, tIIS,T2 and tIIS,T3 can be estimated as follows:1583

tIIS,T1 = c · (N · log(N)) ·M · P (9a)

where c is a constant, machine-dependent parameter, and P the number of1584

candidate input variables.1585

tIIS,T2 = c · p · k ·
((

N

k
· (k − 1)

)
· log

(
N

k
· (k − 1)

))
·M · 1 =

= c · p · T
(9b)

where k is the number of folds in the k-fold cross-validation process and T1586

is equal to k ·
((

N
k
· (k − 1)

)
· log

(
N
k
· (k − 1)

))
·M .1587

tIIS,T3 = c · k ·
((

N

k
· (k − 1)

)
· log

(
N

k
· (k − 1)

))
·M · i =

= c · T · i
(9c)
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where i is the iteration number, which can range from 1 to P .1588

1589

Therefore, the time tIIS,i associated with the i-th iteration is equal to1590

tIIS,i = tIIS,T1 + tIIS,T2 + tIIS,T3 (10a)

while the time tIIS,n required to perform n iterations is1591

tIIS,n = n · tIIS,T1 + n · tIIS,T2 +
n∑

i=1

c · T · i (10b)

In the worst case scenario, the IIS algorithm is run over P iterations to1592

evaluate all candidate inputs. In this case, the total computing time is1593

tIIS(P ) = P · tIIS,T1 + P · tIIS,T2 + c · T · [1 + 2 + . . .+ (P − 1) + P ] =

= P · tIIS,T1 + P · tIIS,T2 + c · T · [1
2
· (P 2 + P )]

(11)

so the run-time order isO(T ·P 2), that isO(k·
((

N
k
· (k − 1)

)
· log

(
N
k
· (k − 1)

))
·1594

M · P 2).1595

B.3 PCIS algorithm1596

The computing time tPCIS,i associated with the i-th iteration of the PCIS1597

algorithm is the combination of the time tPCIS,T1 required to build a linear1598

model to estimate the output based on the selected inputs, the time tPCIS,T21599

required to build a linear model to estimate each (non-selected) input based1600

on the selected inputs, and the time tPCIS,T3 for computing the Pearson1601

correlation between the residual of each model. Knowing that the run-time1602

order to build a linear model is O(K2 ·N +K3), and that the run-time order1603
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to estimate the Pearson correlation is O(N), the time tPCIS,T1, tPCIS,T2 and1604

tPCIS,T3 can be estimated as follows:1605

tPCIS,T1 = c ·
(
(i− 1)2 ·N + (i− 1)3

)
(12a)

where c is a constant, machine-dependent parameter and i the iteration num-1606

ber.1607

tPCIS,T2 = c · (P − (i− 1)) ·
(
(i− 1)2 ·N + (i− 1)3

)
(12b)

where P is the number of candidate input variables.1608

tPCIS,T3 = c · (P − (i− 1)) ·N (12c)

Therefore, the time tPCIS,i associated with the i-th iteration is equal to1609

tPCIS,i = tPCIS,T1 + tPCIS,T2 + tPCIS,T3 (13a)

while the time tPCIS,n required to perform n iterations is1610

tPCIS,n = c ·
n∑

i=1

(
(i− 1)2 ·N + (i− 1)3

)
+

+ c ·

[
n∑

i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N + (i− 1)3

)
+

n∑
i=1

(P − (i− 1)) ·N

]
=

= c ·
n∑

i=1

(
(i− 1)2 ·N + (i− 1)3

)
+

+ c ·
n∑

i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N + (i− 1)3 +N

)
(13b)

In the worst case scenario, the PCIS algorithm is run over P iterations1611
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to evaluate all candidate inputs. In this case, the total computing time is1612

tPCIS(P ) = c ·
P∑
i=1

(
(i− 1)2 ·N + (i− 1)3

)
+

+ c ·
P∑
i=1

(P − (i− 1)) ·
(
(i− 1)2 ·N + (i− 1)3 +N

) (14)

so the run-time order is O(P 4 ·N + P 5).1613
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Table 3: Run-time order of PMIS, IIS, GA-ANN and PCIS algorithms. P and N represent

the number of candidate inputs and observations, respectively, while T is equal to k ·((
N
k · (k − 1)

)
· log

(
N
k · (k − 1)

))
·M (where k is the number of folds in the k-fold cross-

validation process and M is the number of trees in an ensemble). See Appendix B for

further details.

IVS algorithm PMIS IIS GA-ANN PCIS

Run-time order O(P 4 ·N2 + P 5) O(T · P 2) - O(P 4 ·N + P 5)
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Figure 1: The generic IVS process (adapted from Dash and Liu (1997)).
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Figure 2: Schematic representation of the IVS framework components.
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Figure 3: The effect of γ on SA score.
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Figure 4: Bar charts representing the values of the scores SA, SAc and SAe obtained by

running the PMIS, IIS, GA-ANN and PCIS algorithms on the 26 benchmark datasets.
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Figure 5: Bar charts representing the values of the scores SA, SAc and SAe obtained by

running the PMIS, IIS, GA-ANN and PCIS algorithms on the 26 benchmark datasets.

The datasets properties are described on the right-hand side.
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