
Development of machine learning models
for short-term water level forecasting

A case study on Storå River, Denmark

Final Thesis developed by:

Buse Onay

Directed by:

Prof. Allen Bateman Pinzon

Master in:

Erasmus Mundus Joint Master Degree on

Flood Risk Management

Barcelona

August,2021



Development of machine learning models for
short-term water level forecasting

A case study on Storå River, Denmark

Buse Onay

MSc Thesis
August, 2021



Development of machine learning models
for short-term water level forecasting

A case study on Storå River, Denmark

Master of Science Thesis
by

Buse Onay

Supervisor
Prof. Dr. Allen Bateman Pinzon (UPC Barcelona)

Mentors
Dr. Laura Frølich (DHI)

Dr. Nicola Balbarini (DHI)

Examination Committee
Prof. Dr. Allen Bateman Pinzon (UPC Barcelona)

Prof. Dr. Vicente Cesar De Medina Iglesias (UPC Barcelona)
Prof. Dr. Agustin Sanchez-Arcilla Conejo (UPC Barcelona)

Dr. Laura Frølich (DHI)
Dr. Nicola Balbarini (DHI)

This research is done for the partial fulfilment of requirements for the Master of Science degree in the
Erasmus Mundus Flood Risk Management Programme

Barcelona

August, 2021



© 2021 by Buse Onay. All rights reserved. No part of this publication or the information
contained herein may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, by photocopying, recording or otherwise,
without the prior permission of the author. Although the author and institutions involved
have made every effort to ensure that the information in this thesis was correct at press
time, the author and institutions involved do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions,
whether such errors or omissions result from negligence, accident, or any other cause.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0
International License

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Abstract

The impact of precise river flood forecasting and warnings in preventing
potential victims along with promoting awareness and easing evacuation is
realized in the reduction of flood damage and avoidance of loss of life.
Machine learning models have been used widely in flood forecasting
through discharge. However the usage of discharge can be inconvenient in
terms of issuing a warning since discharge is not the direct measure for the
early warning system. This paper focuses on water level prediction on the
Storå River, Denmark utilizing several machine learning models. Multiple
Linear Regression, Random Forest Regression, Gradient Boosting
Regression, and Feed-Forward Neural Network were selected as machine
learning algorithms used in this study. While the first three models were
utilized in the assessment of features, the neural network model was used to
compare the prediction performance of the models at the end. The
methodology was developed to understand the effect of different feature
transformation and scaling techniques on the machine learning models’
performance. Furthermore the effect of different feature sets on the machine
learning models’ performance was investigated. Moreover the importance
of feature selection utilization through filter and hybrid methods which is a
combination of filter and wrapper methods were analysed. The study
revealed that the transformation of features to follow a Gaussian-like
distribution did not improve the prediction accuracy further. Additional data
through different feature sets resulted in increased prediction performance
of the machine learning models. Using a hybrid method for the feature
selection improved the prediction performance as well. The Feed-Forward
Neural Network gave the lowest mean absolute error and highest coefficient
of determination value. The results indicated the difference in prediction
performance in terms of mean absolute error term between the
Feed-Forward Neural Network and the Multiple Linear Regression model
was 0.003 cm. It was concluded that the Multiple Linear Regression model
would be a good alternative when time, resources, or expert knowledge is
limited.

Keywords: machine learning, water level forecasting, fluvial flood, multiple
linear regression, random forest, gradient boosting, feed forward neural
network, filter method, wrapper method, feature transformation
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Chapter 1. Introduction

This chapter presents the introduction of the research study. First floods will be
discussed as a natural disaster in generic terms: How they occur, what are the
consequences, how can it be avoided. The seriousness is highlighted with the increased
precipitation in northern Europe in the context of this research work. It will continue with
the motivation of this research study elaborating why it is needed to have water level
forecasting in the Storå River. Afterwards, the objective of the study will be introduced
and then research questions will be provided. Finally, innovation and practical value will
be discussed.

1.1 Background

Floods are among the most destructive natural disasters that have comprehensive
consequences on human life and well-being along with social and economic losses at a
community level. Among all weather-related disasters recorded between 1995-2015,
flooding accounted for 47% affecting 2.3 billion people (UNISDR, 2015). Especially in
the European Region, floods are the most common disasters, causing extensive damage
and disruption (WHO, 2013). According to the European Environment Agency, 213
flood events were recorded between 1998-2003, affecting 3.145 million people. These
floods brought more than EUR 52 billion overall losses (EEA, 2010). Unfortunately, the
increasing population and urbanization rate in flood-prone areas increases exposure and
thus, the damage potential of flooding. Furthermore, climate change, sea-level rise, and
other anthropogenic factors exacerbate the current and predicted future flood risk.
According to the World Health Organization, total precipitation during autumn and
winter increased in northern Europe (WHO, 2013). Heavy and prolonged rainfall
increases the stream’s water level and poses a potential danger to riverine floods.
Recently, several massive fluvial flooding events have highlighted the seriousness of the
problem. It may not be possible to avoid flooding itself completely, but it is possible to
reduce the negative impact and ease the aftermath with appropriate mitigation strategies,
emergency preparedness, and recovery activities. Flood forecasting and early warning
systems have been one of the most efficient and cost-effective measures for this purpose.

1.2 Motivation

This study is motivated by the need for water level forecasting of Storå River,
Denmark that is responsible for Holstebro municipality’s flood risk. According to the EU
Flood Risk Directive (2007/60/EC), member states are required to assess their territory
for significant flood risk along with preparing flood maps, analyzing the damaging effect
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of floods for human life and well-being, cultural and historical heritage, the economy and
environment in these risky areas, and reducing the flood risk by adequate measures. As
one of the member states, Denmark prepared Preliminary Flood Risk Assessments
(PFRAs) to identify the Areas of Potential Significant Flood Risk (APSFRs) in the river
basins and coastal areas at the end of 2011.

Figure 1 | Ten Risky Areas in Denmark appointed according to the EU Flood Directive.
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Ten risky areas were determined for flood potential due to storm surge, extreme
river runoff, or both and presented in Figure 1. Jebens et al. (2016) explained the
methodology of determining these areas. Among selected municipalities, Holstebro is the
only one with an entirely fluvial risk source. The risk stems from the second largest river
of Denmark, Storå River. The Holstebro city has been exposed to several floods
throughout history due to the low-lying nature of the area and the capacity exceedance of
the Storå River. Water levels regarding those events recorded in the Storebro Station
which is located in the center of Holstebro, are presented in Figure 2. Among them,
March 18, 1970 was by far the greatest one. The recorded water level at Storebro station
in the city center was 11.3 m above sea level. More recent floods experienced by the
Holstebro city are in 2007, 2011, and 2015 with the recorded water level of 10m, 10.1m,
and 10m at the Storebro station. (Holstebro Kommune, 2015, n.d.)

Figure 2 | Water level through time at Storebro Station, Holstebro
Copyright 2021 Holstebro Kommune, Denmark.

For the city center, the current discharge model is utilized to issue a warning but
this early warning system is not sufficient in covering all risky areas, especially the
downstream of the city. Moreover, using discharge to issue a warning can be
inconvenient, since discharge is not the direct measure for the early warning system.
First, it needs to be converted into water level in order to be useful by the warning
system. However, the rating curve of the area varies over a year due to altering the
vegetation cover in the channel by cutting grass every spring and fall. Thus, the discharge
to water level conversion creates some uncertainties in the area. Developing a water level
forecasting model for the Storå River and utilizing this information in issuing warnings
would be an appropriate solution to address fluvial risk in the area that can be applied
quickly given the amount of information. Therefore, this study focuses on water level
forecasting in the Storå River.
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1.3 Objectives

The objectives of this research study are river stage forecasting using different
machine learning techniques, trying to achieve forecasting with 48-hours lead-time and
investigating the effect of input selection on models’ performance.

1.4 Research Questions

Throughout the study, the questions listed below will be answered:

1. How does transforming features into normal distribution affect the machine
learning algorithms’ performance?

2. How do the different feature sets affect the model’s performance?
3. How does using only the filter method and combination of filter and wrapper

methods for feature selection affect the models’ performance?
4. Which machine learning methods give better results based on the selected

evaluation criteria?

1.5 Innovation and Practical Value

This research aims to fill a research gap in fluvial flood forecasting for the selected site
through predicting water level in the Storå River. It provides interesting insights to be
used at other sites and that could strengthen fluvial flood forecasting for early warning,
supporting prevention measures and remediation activities while a flood is happening.
Moreover, the findings and the developed models may support and complement the
existing system for water level forecasting in town by providing insights on areas nearby,
especially downstream where most flooding is historically.
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Chapter 2. Literature Review

This chapter focuses on a review of related literature in context with the study
objective. This review of literature was conducted and presented in two sections. The
purpose of this chapter is to provide an understanding on a background and the related
works to this study. The background section was developed to give a reader insight into
the current approaches in flood forecasting applications of machine learning models. The
review was conducted for this topic with the purpose of obtaining a broad perspective.
The related work section of this review is devoted to comparison of methods and insights
of different machine learning models in water level forecasting in their applications
found in case studies.

2.1 Background

Over the last 20 years, machine learning methods have become a more popular
tool to forecast various water source parameters. With the variety of machine learning
algorithms, increasing computational power, and available data with the help of diverse
and effective ways of measuring parameters, machine learning methods contribute more
than ever to flood forecasting and detection. The amount of research in this area followed
the same trend and a considerable amount of papers have been published. This progress
led to some alterations in flood risk assessment in mitigation, response, and recovery
phases as well (Wagenaar et al., 2020). Accurate flood forecasting enables authorities to
develop effective flood risk management strategies by improving preparedness and
increasing resilience before flooding, envisaging emergency response during flooding,
and planning recovery after flooding. It has the utmost importance in flood hazard
analysis and early warning systems to protect human life and their assets.

The current approaches for flood forecasting can be divided into two categories:
the physics-based models and the data-driven models. Physics-based models use the
known physical laws (Kisi and Cizioglu, 2005), such as conservation of mass and
momentum (Nguyen et al., 2013) in differential form through time and space (Hosseiny
et al. 2020) which have been widely applied in the simulation of complex hydrological
processes and flood dynamics (Kabir et al., 2020). Especially the late improvements in
satellite remote sensing made it possible to reach fine-resolution data for terrain elevation
and river morphology, enabling advanced physics-based modeling as seen in the Amazon
River basin (De Paiva et al., 2013). While physics-based models show potential for flood
prediction, they require extensive data to describe the site, and are computationally
intensive, deeming their application to short-term forecasting as infeasible (Yang and
Chang, 2020). Furthermore, most of these models are quite sophisticated, thus the
development of these models requires in-depth knowledge and expertise about
hydrological parameters (Hosseiny et al. 2020; Mosavi et al., 2018).
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The data-driven models, e.g., machine learning (ML) models, on the other hand,
focus on learning from historical data with developing relationships between features and
target variables without having prior knowledge of the physical hydrological process
(Mosavi et al., 2018). Although the data-driven methods also require large amounts of
data, depending of course on the method, it becomes handy when the available physical
models are not capable of capturing the physics in mathematical terms, the computational
cost is impractical, or the available knowledge about the problems is limited. (Hosseiny
et al. 2020).

Some data driven approaches combine different machine learning models. In the
literature, there are numerous studies advocating a hybrid approach. Chen and Wang
(2007) reported that a hybrid model of SARIMA (Seasonal Autoregressive Integrated
Moving Average) and SVM (Support Vector Machine) performed better than SARIMA
and SVM models alone in forecasting seasonal time series; Khashei and Bijari (2010)
proposed a hybrid novel model of ANN (Artificial Neural Network) using ARIMA
(Autoregressive Integrated Moving Average) models to improve predictive performance;
Xie and Lou (2019) combined ARIMA and SVR (Support Vector Regression) to predict
the water level more accurately; Phan and Nguyen (2020), proposed a hybrid approach
by combining ARIMA with RF(Random Forest), SVM, KNN (K-Nearest Neighbors),
and LSTM (Long Short-Term Memory). They revealed that the hybrid approach has
advantages over individual base models.

Literature review revealed that there are various studies developed with different
lead-times for flood predictions. They can be categorized under short-term and long-term
predictions. Short-term flood predictions generally refer to hourly, daily, and sometimes
weekly predictions, which also help issue warnings. Long-term predictions, contrarily,
are often utilized by authorities, flood risk managers, or both in policy making regarding
flood resilience. There is a diversity in timeline definition of long-term predictions.
According to WHO, a forecasting period of more than ten days is defined as long-term;
in another source, when prediction lead time to flood is three days longer than the
confluence time, it is considered as long-term prediction (WMO, 2007; Mosavi et al.,
2018). In this paper, a lead time of more than a week is considered as a long-term
prediction.

Short-term and long-term predictions can ease the flood damage successfully.
Various accomplished predictions for short-term lead-time have been encountered in the
literature of machine learning methods. Toth et al. (2000) compared the performances of
ANN and KNN in short-term rainfall predictions. According to results, ANN predictions
were superior with lead-times from 1 to 6 hours. Leahy et al. (2008) demonstrated ANN
usage in river level prediction with a 5-h lead time. Yu et al. (2017) compared RF and
SVM performances using radar-derived rainfall data in real-time flood forecasting.
Overall, SVM performed better, yet both models demonstrated satisfactory results for 1-h
ahead forecasting.
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For long-term predictions, Elsafi (2014) used ANN to forecast seasonal flooding
which ended up providing reliable results in forecasting flood hazard in the Nile River.
Singh and Borah (2013) utilized FFBPNN (Feed-Forward Back-Propagation Neural
Network) to build several forecasting models for Indian summer monsoon rainfall which
showed superiority over the existing models and predicted seasonal rainfall values for
upcoming 5 years for India. Lin et al. (2006) compared the performance of SVM to
benchmark ANN and ARMA (Autoregressive Moving Average) models for long-term
discharge predictions and proved the SVM can be considered as a potential candidate in
long-term discharge predictions.

2.2 Related Works

This research narrows down to water level forecasting in river systems taking into
consideration the objectives in this study. Although river discharge is forecasted
commonly in river systems, it is not favorable to issue warnings. First, it needs to be
converted into water level using a rating curve. However, there are some uncertainties in
this process due to the imperfect relationship between river discharge and water level.
Water level forecasting, on the other hand, is more practical to issue warnings because
the exceedance of a certain level is more actionable by authorities. Therefore, the water
level forecasting model for river systems has attracted increasing attention due to its
convenience in flood forecasting (Yu et al., 2006).

A fluvial flood or river flood occurs when the water level in its channel exceeds
the capacity and eventually leads water to overtop its bank and inundate the surrounding
areas. Heavy and prolonged rainfalls, torrential meteorological activities such as
cyclones, typhoons, etc., and rapid snowmelt tend to cause water level rise in the channel
and, thus, river flooding. The expected consequences can be counted as a loss of human
life, property damage, deterioration of environmental conditions - particularly water
quality, loss of crops and livestock. Other than these, the interruption of businesses which
depend on the location, duration, vulnerability of the exposed community, and several
other factors can be counted as the negative consequences as well. Accurate river flood
forecasting is an essential non-structural measure that helps to minimize these potential
damages and losses. Various machine learning methods (Chen et al., 2014; Kisi and
Cizioglu, 2005; Wu et al., 2009a; Wu et al., 2009) were successfully applied in river
flood forecasting.

Different water quantity variables (water level, discharge, runoff depth,
precipitation, peak flow) have been used in river systems for flood forecasting depending
on the available data, selected site, and the objectives of the study. A vast amount of
papers utilized river flow as an input parameter to forecast river flooding (Lima et al.
2016; Atiquzzaman and Kandasamy, 2015; Li and Cheng, 2014; Abrahart et al.,2007;
Aqil et al., 2007; Bae et al., 2007; Chang et al., 2007; Corzo and Solomatine, 2007; Jia
and Culver, 2006; Wang et al. 2006). Some papers used water level as an input parameter
(Yu et al., 2006; Chau, 2007; Zehra, 2020). There are also other papers using runoff depth
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(Wang et al., 2015); peak flow (Sun and Trevor, 2017); precipitation (Wang et al., 2015)
as an input parameter.

Thirumalaiah and Deo (1998) used an ANN model in river stage forecasting for
River Godavari, India. Daily continuous water level data from 1988 to 1991 for the
observed station, upstream stations, or both are utilized in the paper. The trial-and-error
method is used to determine the number of input stations for ANN. The network is
trained by using three different algorithms: error back propagation, conjugate gradient,
and cascade correlation. According to the results, remarkably high iterations and training
time are required for the back propagation algorithm. Training time for the cascade
correlation algorithm, contrarily, takes a small fraction of time. Additionally, the paper
argues the usefulness of using both the given and upstream station in forecasting water
level because using the data from only the given station would be enough if the training
algorithm is chosen wisely.

Liong et al. (2000) successfully implemented an ANN model into river stage
forecasting in Dhaka, Bangladesh. Daily river stage data collected from eight gauge
stations between 1991-1996 is used to build the ANN model. Data recorded for three
years with great variety in river stage is selected for model training, and remaining data
reserved for verification. As a result, highly accurate results are obtained even for a
7-lead-day model. Sensitivity analysis was also performed and 3 out of 8 input neurons
were eliminated without significantly affecting the accuracy of water prediction, which
enables policymakers to reduce unnecessary data collection and operational cost.

Chang and Chen (2003) used RBFNN (Radial Basis Function Neural Network) in
water stage forecasting for an estuary influenced by high flood and tidal effects. The
RBFNN consists of an unsupervised and supervised learning scheme. For the first stage,
fuzzy min-max clustering and for the second stage, multivariate linear regression has
been used. Hourly water-stage data from 6 stations in the Tanshui River under tidal
effects are utilized to construct the model. The result showed that the RBFNN gives
accurate results with a 1-h lead-time for water-stage forecasting.

Sung et al. (2017) addressed water level forecasting for a tributary affected by the
main river condition using machine learning models in South Korea. The existing ANN
model, which uses rainfall and upstream water level as input, is improved by adding
multiple water level data on the main river to include the backwater effect from the main
river. Hourly rainfall and water level data only during the monsoon period from 21 June
to 20 September between 2007-2016 is used to construct the model. Several ANN models
with different lead times and complexity are built, and their performances are compared.
Based on results, the best ANN water level forecast model performed a small error with
lead-times of 1-2 hours, and ANN models are able to include backwater effects in water
level forecasting without the use of complex physical models.

Yu et al. (2006) performed real-time stage forecasting using an SVR model in
Lan-Yang River, Taiwan. Hourly water level data from two stations on the river and
hourly precipitation data from 10 rainfall stations in the basin between 1990-2004 have
been used to build the SVR model. The SVR model can predict the flood stage with
lead-times of 1-6 hours based on results.
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Multiple studies compared the performance of machine learning models in water
level forecasting for river systems. Wu et al. (2008) compared several machine learning
models in river stage forecasting of Yangtze River, China. Those models were LR (Linear
Regression), NNM (Neural Network Model), ANN-GA (Genetic algorithm-based ANN),
Conventional SVR, D-SVR (Distributed Support Vector Regression), namely. According
to validation results, the D-SVR model is better at predicting water level than other
proposed models and decreasing the training time remarkably compared to the
Conventional SVR.

Nguyen and Huu (2015) compared the performance of three machine learning
methods, namely, LASSO (Least Absolute Shrinkage and Selection Operator), RF, SVR,
in daily water level forecasting. Continuous daily water level data from the Mekong
River is utilized as input for the models for 1994 to 2003. The results revealed that the
SVR model provides accurate results based on the Mekong River Commission
requirements.

Alvisi et al. (2006) compared ANN with fuzzy logic in water level forecasting
Reno River, Italy. In the models’ construction, the same datasets with varying spatial and
temporal information have been used to analyze the model’s performance under different
information levels. The results showed that the fuzzy logic approach performs better with
a limited number of variables and IF-THEN logic statement, which links the input and
output variables, and ANN shows better performance with detailed information and
greater reliability.
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Chapter 3. Case Study

This chapter presents information about the site and gives an overview of the data
utilized in this case study. In the site overview section, some statistics about the case
study area are presented. An orientation of the topographic information of the area is
provided. An overview of the case study data was provided in discussing the technical
descriptions from the sources of the inputs to the methodology. Brief information about
the data is provided in this section, including location of the station, source, unit,
availability, frequency of the data.

3.1 Site Overview

Storå River is the second largest river in Denmark, spanning 104 kilometers. The
river originates from the south-east of Ikast, crosses the Jutland peninsula to the
north-west through the Holstebro municipality before finishing its course in the Nissum
Fjord.

Overview of the site area is presented in Figure 3. The catchment area of Storå
River in Holstebro municipality is approximately 825 km2 and only the part of the Storå
River that lies within the borders of Holstebro municipality is visualized. (Holstebro
Kommune, 2011)

Figure 3 | Overview of the Case Study Area: Storå River Basin, Denmark.
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The European Union Digital Elevation Model (EU-DEM) is downloaded for
E40°N30° through Copernicus Land Monitoring Service and zoomed in the case study
area as presented in Figure 4. The EU-DEM is a hybrid Digital Elevation Model (DEM)
product based on SRTM (Shuttle Radar Topography Mission) and ASTER-GDEM
(Advanced Space-borne Thermal Emission and Reflection Radiometer - Global Digital
Elevation Model) data, merged using a weighted averaging approach (EEA, 2017). Based
on the topographic map with a spatial resolution of 25 m in Figure 4, the area lies in
between Stora River Basin and Holstebro Municipal Border has low elevation, even
reaching below sea level in the mouth of the river.

Figure 4 | Topography of the Case Study Area: Storå River Basin, Denmark.
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3.2 Data Overview

In this research, historical precipitation, forecasted precipitation, historical water
level, relative soil moisture contents coming from the MIKE 11-NAM
(NedborAfstromnings Model-Rainfall - Runoff Model) model, and simulated discharge
coming from hydrologic model for the area are used to forecast water level in Skærum
Bro Station. Spatial orientation of the station network is presented in Figure 5.

Figure 5 | Location of the Stations.

For historical precipitation, data is collected from DMI (Danish Meteorological
Institute) for five different stations, namely, Isenvad, Grønbjerg, Øby, Høgild, and
Gludsted Plantage Nv. The frequency of the historical precipitation data is one hour, and
data availability is presented in Table 1.
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Table 1 | Data Information, Availability and Frequency

The forecasted precipitation data used in this research work retrieved from
TIGGE (THORPEX Interactive Grand Global Ensemble) which has been developed as a
part of THORPEX (THe Observing-system Research and Predictability EXperiment )
programme. TIGGE offers ensemble forecast data coming from 13 worldwide numerical
weather prediction (NWP) centres. Due to its public availability and extensiveness, it is
commonly used for non-profit research purposes (Park et al., 2008). For this research
work, total precipitation data coming from ECMWF (European Centre for
Medium-Range Weather Forecasts) with a 48-hour lead time is downloaded. The time
interval is selected as 12 hours. Data represents a control forecast which has unperturbed
initial conditions at the surface for the bounding coordinates of 56.5°N 8.0°E 56.0°N
9.0°E. This area represents a broader area when compared with the case study area
presented in Figure 6. The grid resolution of the forecasted data is 0.5°x0.5° which is
approximately 55kmx55km. At the end of 2016, a considerable portion of 2017 (8
months) was missing from the ECMWF system. This discontinuity in the data sets a
limitation for the study.

For water level, data is collected at Skærum Bro Station from DEPA (Danish
Environmental Protection Agency) with a time interval of 15 minute. Although Hostebro
city center is hazardous in terms of fluvial flooding, water level data from the stations in
the city center was not considered for input selection due to two limitations. First, the
city's sewage system influences the water level in the Storå River. Second, periodical
water management activities through a gated structure in the Vandkraft Lake which is
located upstream of the city center, alter the water level in the Storå River. The recorded
water levels in the city center would be impractical to use as input since the natural
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hydrologic process is disturbed by these two interventions. The location of Vandkraft
Lake is presented in Figure 6. On the other hand, Skærum Bro Station is reasonably far
from the abovementioned disturbances which makes it a suitable candidate to perform
water level predictions for this study. Additionally, the water level from Ellebæk Bro
Station is selected as an accompaniment in order to grasp an idea about the upstream
tributary water level condition. Contribution of snowmelt was not considered in this
research because there is no mountain in the area that can form a snow storage.

Figure 6 | Location of Vandkraft Lake. Alteration of water level measurements at
Storebro Station due to water level measurement through the gated structure at the

Vandkraft Lake.

Since antecedent soil moisture or wetness situation of a soil is a distinctive
parameter in describing the catchment's pace of generating subsurface, surface, and base
flows from the precipitation (Casper et al., 2007 and Bronstert et al., 2012), relative soil
moisture data is included in this research. The data is collected from the Rainfall-Runoff
Model for Denmark, created using MIKE 11 modeling package - NAM modules and
prepared by DHI (Danish Hydraulic Institute) (DHI, 1999). Relative soil moisture
content, L represents water content in the root zone divided by maximum water content
in the root zone, and relative soil moisture content, U represents surface water storage
divided by maximum surface water storage. The structure NAM model showing the
conceptual idea behind soil moisture contents U and L is presented in Figure 7.
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Figure 7 | Structure of the NAM model

Finally, simulated discharge is used as another parameter in this research. The
data is collected from an hydrologic model for the area with a 6-hour interval. Summary
of the data used in this research is presented in Table 1.
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Chapter 4. Research Methodology

This chapter revolves around a discussion on the research methodology and
corresponding theory behind each procedure. First, the importance of data preparation
and the steps of preparing data will give context to initializing this study. Afterwards, the
discussion will continue with a theoretical background of machine learning models that
were utilized in this research. Furthermore, the evaluation criteria and ways to improve
machine learning model’s performance were addressed. Ultimately, the purpose of this
chapter is to provide the foundational description of the approach to answer the
proposed research questions.

4.1 Methodology Schematic

Formulating the research questions forms a backbone of any good research (Ratan
et al., 2019). The main objectives and research questions were already defined in Chapter
1. Defining a research question gives an idea about the required data. Thus, the research
will be continued with data preparation. This step includes acquisition and visualisation
of data, preprocessing of data, feature selection, feature transformation and scaling, and
data splitting. Afterwards, based on the collected data, identifying the machine learning
task i.e. supervised or unsupervised and suitable machine learning algorithms will be
addressed. Additionally, theoretical information about those algorithms will be provided.
Model construction will then take place using training data. This will be an iterative
process with the use of validation data. After the model construction is concluded, the
model testing and performance evaluation will take place in order to investigate the
prediction power of the model that was built. Finally, the formulated research questions
will be answered with the prediction coming from the machine learning models. The
theoretically explained research methodology is briefly visualized in Figure 8.
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Figure 8 | Overview of Methodology

4.2 Data Preparation

Data preparation is the primary step for any machine learning model. In basic
terms, data preparation includes sets of procedures starting from how to get required data
for the articulated problem up until creating ready-to-use data by the selected machine
learning algorithms.
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Machine learning models depend profoundly on the data. Data makes the training
of a model, thus the whole machine learning concept possible. However, data often
comes up with some missing values, quality issues, errors, or other flaws. Unless these
issues are resolved, the predictions of machine learning algorithms might be useless, even
misleading. Additionally, storing data may vary among organizations. Thus, formatting
data may be required to make them all consistent with each other. In this sense, data
preparation is vital in order to achieve accurate model outcomes. It helps to examine the
data in meaningful ways and to extract the useful information. Data preparation enables
further improvements of a model's performance as well (Wu et al., 2008). If the data does
not align with the requirements of machine learning algorithms or contains erroneous
information, it would cause communication problems during training of machine learning
algorithms and lead to failure or impractical results. With proper data preparation, a
machine learning model is more likely to generate remarkably better results than a model
with no or poor data preparation.

For this research, water level, observed precipitation, forecasted precipitation,
simulated soil moisture content, and simulated discharge data were preferred to use as
described in Chapter 3.2. The procedural workflow that is planned to pursue for data
preparation is presented in Figure 9.

Figure 9 | Data Preparation Workflow

In order to avoid ambiguity in terms, data refers to the information collected through
different organizations that consist of dependent (y) and independent (X) variables. When
they are put in together they form a dataset (X, y). Here X represents the features and y
represents the target variable that is being tested during an experiment. In this research
the aim is to predict the water level in Storå River, thus, water level coming from
Skærum Bro Station is the target variable. Rest of the data is considered as feature
variables.

4.2.1 Data Collection and Visualization
Data collection and visualization require a properly articulated problem statement.

It is not possible to guess which data is required without the established problem. After
the problem and target variable needed to be predicted are defined, looking for data and
going through different data collection mechanisms takes place. It is important to
remember, data storing among different organizations may vary, and in the end, the
gathered data might have inconsistent formatting. These formatting issues demand the
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installation of different libraries depending on the selected programming language to
import data. The imported data constitutes the "raw data". It is not feasible for a human
being to draw inferences or grasp the underlying distribution in raw data by just looking
at the numbers in this day and age. Data visualization helps identify anomalies, missing
data, hidden patterns, cyclic representation, and other useful features that are potentially
helpful in improving data quality and thus predicting performance of the machine
learning algorithm. In this perspective, data visualization can be thought of as the bridge
between data collection and data preprocessing.

4.2.2 Data Preprocessing
Data preprocessing refers to the interventions in raw data to convert it into a clean

dataset that can be ready to use by a machine learning algorithm for training. The dataset
provided at the beginning might require some work regarding unit conversions issues, the
presence of outliers, noisy data and duplicated indices, improper formatting, dealing with
missing or null values, encoding the categorical data, and more. The preprocessing step
includes identifying and detecting inaccurate data and deleting, modifying, or changing it
to improve the efficiency and prediction accuracy of the machine learning model.

Among all, missing data poses the biggest threat for this research due to
incomplete datasets. One way to handle missing data is to remove all the missing values.
Many machine learning algorithms can deal with missing data, but this does not mean
that they should. Removing missing values can cause valuable information loss and
jeopardize the deduction power of machine learning algorithms. Trying to find ways to
handle missing data would be a better approach to proceed. There are many different
ways to address this problem. Since the implementation of missing data techniques is not
an objective of this research, some fast imputation techniques can be considered such as
imputing missing values using mean, median, the most frequent value, and zero value.
However, imputation of missing precipitation data should be considered separately
because precipitation is not continuous both spatially and temporally by nature (Hema
and Kant, 2017). In literature, there are several studies for imputation of missing
precipitation data either on a monthly (Kajornrit et al., 2012) or daily (Tang et al., 2009;
Ly et al., 2011; Lee and Kang, 2015) basis. However, hourly precipitation observations
exhibit very high variation, which is even referred to as random behavior (Hema and
Kant, 2017). Therefore, it is quite a challenge to determine the correct precipitation
patterns for any length of missing data even for a single point considering the presence of
dry days.
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4.2.3 Feature Selection
Having access to an abundance of data creates a challenge for machine learning

practitioners to extract important information. Feature selection is one of the most critical
steps when building a machine learning model. There can be numerous data, but not all
of them would be useful for the model. In fact, in general, adding so many variables
increases the overall complexity, training time, computational cost, and a chance of
overfitting the model while decreasing the overall accuracy. In basic terms, feature
selection reduces the redundant or relatively less important features, making the machine
learning model learn from more relevant features and contributes more to the model's
performance with less resources. In the classification of feature selection methods,
several different ways can be utilized. The most pronounced ones can be summarized
into four main categories: Filter, Wrapper, Embedded and Hybrid (Hoque et al., 2014).

Filter method chooses a subset of features based on their performance in various
statistical tests without help from a machine learning algorithm. There are many filter
methods widely used in the literature performing different tasks like classification,
regression, or clustering. (Jovic et al., 2015). Filter methods are generally considered as
superior to other methods due to their computational speed, statistical robustness,
simplicity, and cost effectiveness (Guyon and Elisseeff, 2003; Yu and Liu, 2003).
Pearson’s product moment correlation (for short:Pearson’s correlation), information gain,
chi-square test, fisher score are some of the common filter methods for feature selection.
These methods are not applied on the test dataset.

Pearson’s correlation is a statistical analysis that measures the amount of linearity
among each independent feature with a target variable for prediction. The definition of
Pearson’s correlation coefficient involves division of covariance to standard deviation of
two random variables. If x and y are considered as two random variables, then the
formula for calculating the Pearson’s correlation coefficient can be presented as:

(4.1)

where S represents standard deviation for variable x and y separately, Cov(x,y) represents
the covariance among the given variables, and rxy represents Pearson's correlation
coefficient. r takes values in between -1 and +1. Values getting closer to -1 represents
negative correlation which means if one value decreases the other one would increase,
those getting close to +1 represents positive correlation which means if one variable
increases the other one would increase as well, and those close to 0 means no correlation
in between variables (Kumar and Chong, 2018).

Mutual information is another statistical analysis that can be used in feature
selection based on the filter method. It originates from information theory and is widely
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used to apprehend the relevance and redundancy in between feature and target variables.
Unlike the correlation coefficient which does not allow the demonstration of
dependencies, the mutual information is sensitive about it. Specifically, mutual
information is an amount of information obtained about one random variable by
observing the other random variable. As another definition, it is the reduction in the
uncertainty of one random variable because of a knowledge about the other. The
mathematical formulation for two random variables x and y can be presented as
following:

(4.2)

where I(x,y) is the mutual information between x and y, p(x,y) is the joint probability
distribution function of x and y, and p(x) and p(y) are the marginal probability
distribution functions for x and y. In the concept of entropy which represented
unpredictability of a random variable, mutual information can be also presented as:

(4.3)

where H(x) is marginal entropy, H(x|y) is conditional entropy. This represents the
unpredictability of a random variable x decreased by observing y (Kraskov et al., 2014;
Hoque et al., 2014; Zeng et al., 2014).

Wrapper method selects feature subsets by using the prediction performance of a
learning algorithm. Compared to filter methods, wrapper methods are much slower and
computationally expensive yet find feature subsets better fitted to the predetermined
machine learning algorithm that leads supreme learning performance (Guyon and
Elisseeff, 2003; Yu and Liu, 2003; Hoque et al., 2014; Jovic et al., 2015).

The embedded method performs feature selection during the training of a model
and is usually particular to a given learning algorithm. In other words, the embedded
method does not differentiate learning from feature selection. This distinctive feature of
embedded methods differentiates it from filter and wrapper feature selection (Guyon and
Elisseeff, 2003; Lal et al., 2006; Hoque et al., 2014).

Hybrid method is a combination of filter and wrapper methods. Main idea is
exploiting the best properties of methods: High accuracy comes from the wrapper method
and high efficiency comes from the filter method. Hybrid method utilizes the filter
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method to create a list of features in the ranked order, and utilizes the wrapper method
after to create nested subset of previously listed features using machine learning
algorithm (Hoque et al., 2014; Jovic et al., 2015; Ben Brahim and Limam, 2016).

4.2.4 Feature Transformation and Scaling
Depending on the data sets, the range of values might be very distinct for every

feature. Machine learning algorithms focus only on the numbers and having much higher
values in one feature column compared to others may create some communication
problems for the machine learning algorithm. Scaling the features and guaranteeing the
machine learning algorithm treats all features fairly, data scaling plays an essential role.
Moreover, different scales can create a problem when doing analyses, e.g. if plotting
different features in the same plot. So for visualization and interpretive data analyses,
scaling is also relevant. Another reason to scale is for interpretive purposes, so that
weight magnitudes are related to feature importances and feature importances can thus be
investigated by looking at weight magnitudes.

Standardization and normalization are the most popular techniques in data
scaling. Standardization refers to transforming the features by removing the mean and
scaling it to unit-variance through dividing it to standard deviation. It can also be called
Z-score normalization. Standardized value of sample x can be calculated by the following
formula:

(4.4)

where 𝜇 refers to the mean of the feature and 𝜎 refers to the standard deviation. In
general, tree based algorithms such as Random Forest and Gradient Boosting are
scale-invariant. Standardization takes place independently for each feature by computing
the related statistical component on the training dataset. It helps to reduce the outlier
effect.

Normalization is another commonly used scaling technique which refers to
transforming the features by scaling each feature to the desired range. Bounding the
values between (0,1) which is a special case of min-max scaling is the typically used
version. The formulation of min-max scaling is presented as:

(4.5)
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where xmin and xmax refers to minimum and maximum values of the feature column. It can
also be performed for different intervals. Limiting the data in a small fixed range might
smoothen the effect of outliers (Jiawei et al., 2011; Alshdaifat, 2014). The formula for
any arbitrary interval (a,b) is presented as:

(4.6)

In machine learning and statistics many real time series might include numerical
features that follow a distribution far from normal. This situation may complicate the
next steps of analysis (Raymaekers and Rousseeuw, 2021). The way to deal with that
kind of data is by applying some transformation techniques to boost normality.
Transformations toward the normal distribution help to decrease the size of outliers
which make training easier. It is possible to transform the time series to follow normal
distribution through power transformations like Box-Cox (Box and Cox, 1964) and
Yeo-Johnson (Yeo and Johnson, 2000) which are commonly used for improving
normality. Depending on the skewness of the data log or square root transformations can
also be utilized. Transforming data to follow normal distribution makes it possible to
achieve better machine learning performance in practice, yet it may not be possible in
every occasion.

In this research, an experiment was conducted to understand the effect of feature
transformations and scaling techniques. Thus, at first, no scaling and scaling through
normalization and standardization applied to the original data. Later, power
transformations were applied in order to obtain the Gaussian (normal, bell-curve) or
Gaussian-like distribution of the features and again subjected to no scaling and scaling
through normalization and standardization. At the end, machine learning models trained
with these six data sets and the mean absolute errors were compared in order to decide
which feature transformation and scaling technique will be selected moving forward.

4.2.5 Data Split
In developing a machine learning algorithm it is a common practice to split the

dataset into training, validation and test sets. It is important to identify each set separately
in the context of machine learning. The training set represents the amount of data that is
utilized to train the selected machine learning algorithm. It is done by learning from the
historical data and estimating the parameter of the machine learning algorithm in order to
predict well when the machine learning model is encountered with the data never seen
before. The validation set represents the amount of data used for tuning hyperparameters.
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The test set, on the other hand, is used for evaluation of the algorithm. It is only used
once after the model is completely trained and validated (Lazzeri, 2020).

In data splitting it is important to consider physical principles such as hydrologic
year and seasonality and statistical properties such as mean, standard deviation, minimum
and maximum values in data splitting. If the model is constructed without exposing the
whole range of testing data set, it is expected to have poor outcomes (Wu et al., 2008)
and that’s why data splitting requires special attention.

Performance of the machine learning model is directly correlated with its ability
of making reliable predictions on unseen test data. Overfitting poses a threat along this
way. It stems from modelling the inherent noise in the training dataset more than
revealing the relationship among features and target variables. In other words, the model
has learned too much redundant information from the training dataset and it fails with
unseen test data. Cross-validation is one of the most used data sampling methods to train
the models and to tune the hyperparameters in order to prevent overfitting. There are
several cross validation methods including k-folds cross validation. In this method the
training data is randomly partitioned into k folds almost equally. In each iteration (k-1)
folds are used to train the machine learning model and the remaining one fold is utilized
for validation. The process is repeated k times till each fold is used exactly once as
validation data. The average validation error is used to describe overall performance of
the model (Zhou et al., 2017; Berrar, 2018; Bi et al., 2021).

In this research, at first, the data set is planned to divide into three groups:
training, validation, and test sets while trying to keep the time series nature of the data
intact. Later, together with the randomized search approach which is used for the
hyperparameter tuning, the cross validation method is introduced using 5-fold to improve
the performance.

4.3 Machine Learning

The distinction in machine learning algorithms is drawn in between supervised
and unsupervised learning. Although semi-supervised, and reinforcement learning also
exist in the area, most articles only mention supervised and unsupervised learning
algorithms. In supervised learning, it is required to use a labeled dataset that supervises
the algorithm’s training by revealing the underlying relationships among feature and
target variables. With this supervision, the algorithm is capable of predicting the target
variable when unforeseen data is presented to the algorithm. Supervised learning can be
successful in overcoming real-world computational problems, widely used in regression
and classification. Unlike supervised learning, unsupervised learning does not rely on
labeled data yet finds patterns and similarities within unlabeled data without external
supervision. This algorithm is efficient when looking for unknown relationships between
observations of features. Clustering, density estimation, finding association rules,
anomaly detection are most commonly used unsupervised learning tasks (Alloghani et
al., 2020; Sarker, 2021).
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In this research, the machine learning task is identified as a supervised learning
algorithm since the training dataset contains input linked with correct output data. As
suitable models it is decided to start with the linear regression algorithm due to its
simplicity. Since this project is trying to predict water level and employing these
predictions in flood warning and early warning systems it is important to have a machine
learning algorithm that can handle the outliers. Besides, after a single model, it would be
stimulating to deploy an ensemble model. In this perspective Random Forest Regression
is selected as the second machine learning algorithm. In order to understand how it
affects building one tree at a time by learning from the previous one instead of building
each tree independently, Gradient Boosting Regression is selected as the third machine
learning algorithm. Finally, a Feed Forward Neural Network is chosen to implement
state-of-art machine learning algorithms in this research work.

4.3.1 Linear Regression
Linear regression is one of the most popular machine learning algorithms that fall

under supervised learning. It is a very simple algorithm that deserves the right attention
because many problems can be solved with this model, even intrinsically nonlinear ones
(Bonaccorso, 2017). Linear regression is a statistical approach and performs regression
tasks. It assumes a linear relationship among independent (x, one or more) and dependent
(y) variables. They can also be referred to as feature and target variables, respectively.
Depending on the number of independent variables, linear regression can be investigated
under two main categories: Simple Linear Regression (SLR) and Multiple Linear
Regression (MLR). The mathematical representation of a simple linear regression
equation is presented below.

(4.7)

As represented in the equation 4.7, Simple Linear Regression uses one independent
variable presented with x to predict the numeric value of a dependent variable presented
with y. The intercepts presented with and and the error term presented with .β

0
 β

1
ϵ

Multiple Linear Regression, as an extension of Simple Linear Regression, uses more than
one independent variable to predict the numeric value of the dependent variable. The
mathematical representation is presented as:

(4.8)
where x represents independent variable, y represents dependent variable, representsβ
the regression coefficients and represents the error term. Linear regression algorithmϵ 
assumes the error term (residuals) follow normal distribution (Williams et al., 2013;
Sarker, 2021).
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4.3.2 Random Forest
Random Forest is another most prevalent supervised learning algorithm based on

building decision trees with ensemble methods. In decision trees, a single tree is not
accurate by itself because it suffers from a bias-variance trade-off. In other words,
decision trees are able to grow a complex model with low bias, yet they would change a
lot with training on different data. In order to keep low bias trees and reduce this high
variance associated with prediction, building ensemble models comes into picture.
Ensemble model combines predictions from different machine learning algorithms and
takes average to reach reduced variance ergo more accurate predictions than any
individual algorithm can give. However, it is not possible to build ensemble models for
Decision Trees using different training sets, since there is only one training set. The way
to get multiple training sets from a single one is using a statistical technique called
bootstrapping. Bootstrapping refers to resampling the training set with replacement.
Replacement is an utterly critical task because no replacement would lead identical
samples of the training set. By resampling some observations in the original training
dataset might be repeated in the new ones. Combination of bootstrap with Decision Trees
is called Bagging. Bagging (or Boosting AGGregatING) is the process of obtaining
bootstrapped samples from the original training set, building low biased - high variance
decision trees for each of the obtained samples and finally aggregating predictions from
all of these trees created. If the task is regression, aggregating means taking the average
of predictions acquired from the trees. On the other hand, in classification tasks,
aggregating means taking the majority vote. Although averaging the predictions reduces
the variance for the final prediction, if the individual predictions are highly related with
each other, taking the average would not make any difference and all the effort would be
wasted. In bagging, trees incline to look similar to each other which causes generation of
related predictions. In order to avoid these predictions, Random Forest was introduced by
Breiman in 2001. The basic idea is decorrelating the trees generated through Bagging by
forcing every tree to use a random subset of features during the split. In this sense, the
Random Forest algorithm follows the same procedure in Bagging with a small deviation.
The Random Forest algorithm can produce accurate results, have low sensitivity to
multicollinearity, relatively stable for missing data, outliers and noise.. As a limitation,
high demand in terms of time and computational resources can be shown. Compared to
Decision Trees, Random Forests are more resistant to overfitting, yet this can still be a
problem (Efron and Tibshirani, 1993; Breiman, 2001; Hastie et al., 2001; Sutton, 2005;
Zhang and Lu, 2012; Prasad, 2006; Chen et al., 2020).

4.3.3 Gradient Boosting
The boosting concept is originating from the idea of boosting the accuracy of

models with limited performance (i.e. weak learners) by correcting the predecessor
model's prediction sequentially in an ensemble model. Originally the boosting algorithm
was presented by Kearns in 1988 and over time the popularity accelerated. The evolution
of boosting algorithms is explained in general terms by Mayr et al. in 2014. The
algorithm itself was introduced in 1999 by Friedman. The learning in the Gradient
Boosting algorithm happens by optimizing the loss function through the steepest gradient
descent. There are also other loss functions, yet the gradient descent is one of the most

26



popular algorithms to perform optimization (Ruder, 2016). It uses the loss function of the
predecessor model as an input to the next model and the procedure goes on in this
sequence till either the loss function reaches zero or the stopping criteria are met.

Gradient Boosting algorithm shares some common properties with Random
Forest algorithm like both algorithms are based on ensemble learnings and are using
decision trees as the weak learner. The difference stems from how trees are built and the
aggregation of the results. In the Gradient Boosting algorithm, decision trees are built one
at a time in order to improve pitfalls and optimize advantages from the predecessor
model. On the other hand, in the Random Forest algorithm, decision trees are built
independently and the results are aggregated at the end of the process by averaging the
predictions for regression and taking the majority vote of the predictions for classification
tasks as described in Chapter 4.3.2. The Gradient Boosting algorithm aggregates the
results en route. In addition to the differences, the Gradient Boosting can use other weak
learners than decision tree (Papacharalampous et al., 2019)

4.3.4 Artificial Neural Network
The artificial neural networks are mathematical models that use nonlinear

computational methods inspired by the functioning of the biological brain and the
nervous system. The network takes an input and passes it through multiple layers of
neurons and produces the output. A neuron is a basic unit in an artificial neural network
for computation that resembles the biological neurons. Each neuron in the neural network
receives the multiple weighted inputs through synaptic connections, calculates the
weighted sum, applies either linear or nonlinear activation function and returns it to the
next layer. The input to a neuron can be directly coming from the training set as a feature
or the previous layer’s output as well. The artificial neural networks are composed of
three layers, namely, input, hidden, and output. Based on the model complexity there can
be several hidden layers (Sazli, 2006).

One of the main factors that affects the performance of the artificial neural
networks in the selection of activation function which introduces the nonlinearity to the
neural network. This function determines whether a neuron should be activated or not
after calculating weighted sum and further adding bias with it. There are several
activation functions such as Sigmoid, ReLu (rectified linear unit), Leaky ReLu, ELU,
tanh, softmax, softplus, linear that influence the network's prediction ability (Chollet,
2015; Feng and Lu, 2019).

Depending on the type of connections, artificial neural networks divide into two
main categories, Feed Forward Neural Networks and Recurrent Neural Networks. If the
flow of the information is only in forward direction, with no feedback from the output
neuron to the input neuron, it is called Feed Forward Neural Network. On the other hand,
if there is such feedback from the output neuron to the input neuron, it is called Recurrent
Neural Network. Feed Forward Neural Networks can be divided further into two
categories depending on the number of layers, either single-layer or multi-layer. In the
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single-layer Feed Forward Neural Networks there are no hidden layers. Since there is no
computation performed in the input layer, these networks are called single-layer. On the
other hand in multi-layer Feed Forward Neural Networks there is at least one hidden
layer in between input and the output layers (Sazli, 2006).

In this research, a Feed Forward Neural Network is harnessed to forecast water
level in the Stora River. In building the model TensorFlow library which was utilized.
TensorFlow is an open-source software library which can be employed across large-scale
heterogeneous systems. In order to enable fast experimentation, Keras was developed.
Keras is a deep learning application programming interface, running on top of the
machine learning platform TensorFlow. There are two model types available in Keras, the
Sequential model and the Functional API. The Sequential model represents a linear stack
of layers which makes it comfortable to utilize in building vanilla Feed Forward Neural
Networks. Functional API, on the other hand, can be used in building more complex
models (Abadi et al., 2015; Chollet, 2015). The Sequential model is employed for water
level forecasting. As an optimizer Adam is selected. Adam is a gradient descent
optimization algorithm which is known as one of the most popular optimizers and
commonly implemented in neural networks. It is experimentally proven that the Adam
optimizer is faster than any other optimizers (Kingma and Ba, 2015; Bock et al., 2018).
As a loss function the mean absolute error is used in order to maintain consistency in the
research and found out as the recommended loss function (Qi et al., 2020; Jierula et al,.
2021). Moreover early stopping criteria which monitor the validation loss is introduced in
order to prevent overfitting. The early stopping mechanism monitors validation loss after
each training cycle, and when the validation result stops improving it finalizes the
training depending on the predefined patience value. For activation function, batch size,
epochs, and learning rate several inputs were used in order to tune hyperparameters
through the random search method.

4.3.5 Evaluation Criteria
There are several different statistical measures that have been adopted in

evaluation of machine learning algorithms including coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE),
correlation coefficient (CC), mean absolute percentage error (MAPE) etc. Using various
statistical measures instead of a single criterion is required in order to evaluate different
aspects of the model performance (Richter et al., 2011; Cheng et al., 2016). RMSE and
MAE are frequently used evaluation criteria in the field of hydrology. These metrics
measure the efficiency for the machine learning models in the same unit as the target
variable. This usually provides more information about the efficiency of the machine
learning model than relative errors or goodness-of-fit measures. Either RMSE or MAE
are typically recommended to use as absolute error indicators, yet it is better to use them
both since the degree to which RMSE exceeds MAE indicates the extent of the outliers
(Legates and McCabe, 1999; Harmel et al., 2014). On the other hand, the accuracy of
machine learning models are reporting commonly through coefficient of determination
(R2) which allow comparability in the literature (Conrads and Roehl, 2007; Richter et al.,
2011)
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In this research coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE) are selected as the evaluation criteria. The
mathematical formulations of the R2 for observed and predicted values is presented as:

(4.9)

where RSS represents the sum of squares of residuals which is a calculated
squared sum of observed value subtracted by the predicted value. TSS stands for total
sum of squares which is a calculated squared sum of a value subtracted by the observed
value.

The mathematical formulations of the RMSE is presented as:

(4.10)

where ŷᵢ represents the predicted variables whereas yᵢ represents the observed
values and n stands for number of observations. The mathematical formulations of the
MAE is presented as:

(4.11)
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4.3.6 Improving Models
There are various ways to improve machine learning models’ performance. One

of them is introducing more data to machine learning models. The machine learning
models require a large amount of true training data. That's why in case the available data
increases, machine learning predictions get better, as it allows the data to tell itself rather
than depending on assumptions and weak correlations (Hughes, 2019).

Another way of improving the machine learning model’s predictive performance
is improving the quality of data. There are multiple factors that influence the data quality
such as consistency, completeness, accuracy, integrity, presence of outliers,
dimensionality reduction, feature selection etc. (Gudivada et al., 2017). Poor data quality
can be a threat for the machine learning model’s predictions.

Using k-fold cross-validation sets also helps to improve the performance of the
models by reducing risk of overfitting to training data and improving chances of good
performance on unseen data. In k-fold cross validation, the data is split into
approximately equal size of k folds and the machine learning model is trained k times in
everytime leaving one fold out to use in computing the prediction error (Borra and Di
Ciaccio, 2010; Asrol et al., 2021).

Hyperparameter tuning can also be included in this list. Machine learning models
consist of various hyperparameters that define characteristics of a model and help to
improve the performance of it for any given problem. Finding the best combination of
these parameters might be a challenging task. There are mainly two kinds of
hyperparameter tuning techniques: manual search and automatic search. Manual search
heavily depends on intuition and experience of the expert since it consists of trying the
hyperparameter sets by hand. This technique requires professional knowledge and
practical expertise which makes it harder to be used by laymen. In order to overcome this
difficulty automatic search techniques have been proposed. Grid Search and Random
Search are the most pronounced methods. In grid search algorithm hyperparameter
optimization is performed through exhaustive searching which refers to training the
machine learning model with every possible combination of values of hyperparameters
on the training set and evaluating the performance on the validation set. Efficiency of this
algorithm depends on the number of hyperparameters being tuned and their range of the
values, the more the values lower the efficiency. This problem is solved through the
random search algorithm. According to this algorithm, the hyperparameter optimization
practice is performed on only a few hyperparameters that matter in a random
combination of ranges. Compared to the grid search algorithm, random search is more
effective in a high-dimensional space (Wu et al. 2019)

In this research random search is applied together with k-fold cross validation
using RandomizeSearchCV in the python environment to tune the hyperparameters. 10
iterations and 5 fold is selected due to time constraints. Iterations refers to the number of
parameter settings that are sampled through param_distribution. As scoring more than
one metrics is used defined as in the evaluation criteria and as refit the mean absolute
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error is assigned. Refit allows to return the best estimator from the random search and
predict directly on this RandomizedSearchCV instance (SKlearn, n.d.).

Random Forest Regression is able to grow very complex decision trees. As a
result of this, it is expected to have overfitting in the training set. In order to prevent this
problem some hyperparameters were used to decrease complexity. Selected
hyperparameters to be tuned in this research are max_depth, max_features, n_estimators,
ccp_alpha, and min_samples_split for the Random Forest Regression model. Max_depth
represents the depth of each tree in the Random Forest. Each decision tree is able to grow
to the largest extent possible. The deeper the tree gets, it gathers more information, the
model becomes more complex, and overfitting risk increases. Tuning the max_depth
parameter and finding the optimum value help to reduce the growth of trees.
Max_features represents the number of random feature subsets considered before the best
split. N_estimators represent the number of trees in the forest. Random Forest algorithm
consists of multiple decision trees. Increasing the number of the trees helps decrease the
bias as explained in chapter 4.3.3. However, it is not possible to keep increasing these
trees due to time and resource constraints. In this context, finding an optimum
n_estimators is required. Another way of controlling the size of a tree by pruning the
nodes by ccp_alpha. High values might cause information loss, on the other hand, low
values may not prevent overfitting. Min_samples_split represents the minimum number
of samples needed for split. If the minimum number of samples cannot be guaranteed,
training will stop.

Gradient Boosting Regression is also a tree based ensemble learning algorithm,
thus it shares several hyperparameters with Random Forest, especially tree related ones.
In this research, max_depth, min_samples_split, max_features and learning_rate were
used as hyperparameters. Apart from the latter, the same parameters are used and
explained for the Random Forest model. Learning_rate refers to how fast the error is
corrected from one decision tree to another. Lower values would make the Gradient
Boosting model more robust due to giving more time for the model to learn, yet lowering
the learning rate requires more decision trees which would increase computation time and
increase the chance of overfitting.
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Chapter 5. Data Analysis

This chapter, the data was prepared to be used in the machine learning
algorithms. At first data analysis results were presented for data visualization and
preprocessing through missing data imputation, outlier removal, format modification,
and duplicated index elimination. Thereafter, Pearson's correlation and mutual
information analyses were applied to preprocessed data in order to select the most
relevant features that would fulfill the research objectives. After the feature selection
process, the persistence model was introduced. The feature sets were then created based
on the outcome of the filter methods. Afterwards the data split was done by considering
the limitations on the forecasted precipitation data. Finally, feature transformation and
scaling techniques were applied.

5.1 Data Visualization and Preprocessing

The Python environment is utilized for data analysis in this research. Python is
one of the most frequently used programming languages in both data analysis and
machine learning. For data analysis, Pandas library is used. It stands for "Python Data
Analysis Library" and is widely used in data analysis and manipulation due to its
convenience in working with tabulated data. Together with Matplotlib and Seaborn
libraries, Pandas offers a great variety of visualization for tabulated data. Other than
aforementioned libraries, NumPy, SciPy, Scikit-Learn, were also utilized moving
forward.

After the objective was defined, required data was collected. Data analysis started
with the water level parameter at Skærum Bro and Ellebæk Bro stations. There was no
redundant data in the datasets; they only consist of water level measurement recorded in
meters by 15-minute time intervals. Note that water level measurements included
elevation of the river bed in the Storå River. Following the initial visualization, five data
points were detected as outliers for Skærum Bro Station, presented with the red circle in
Figure 10.
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Figure 10 | Storå River water level measurements at Skærum Bro Station by 15-min
intervals with detected outliers (1997 - 2020).

Outlier removal was performed for these five data points. In order not to lose
peak value information, further outlier removal was not performed. The datasets are
presented in Figure 11 and 12 for water level stations at Skærum Bro and Ellebæk Bro,
respectively. The minimum water level recorded in Storå River was 0.157m on
1999-11-26 at 22:00:00 and the maximum water level was recorded as 2.411m on
2007-01-21 at 10:00:00. The water level in the Storå River was remarkably variable
throughout a year. Yearly difference between maximum and minimum water level varies
between 1.045m and 2.074m. In general maximum water levels were observed in winter
season whereas the minimum water levels were observed in summer season.
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Figure 11 | Storå River water level measurements at Skærum Bro Station by 15-min
intervals after removal of outliers (1997 - 2020).

The water level in Ellebæk Brook also showed variation throughout a year, yet
this variation was smaller than Storå River. The average difference in maximum and
minimum water levels for Ellebæk Brook was 0.970 m. On the other hand, it was 1.600
m for the Storå River. There might be several reasons behind this difference. First,
Ellebæk Brook is a much smaller stream than Storå River. The variation in Ellebæk
Brook is only about the stream itself. However, Storå River is fed by various different
small or big water sources and variation in those might create a cascade effect for Storå
River. Another reason is the difference in deposition of sediments for both water bodies.
Deposition refers to the settlement of material being transported inside the river and it
occurs when the river loses its energy. This effect is mostly observed in the mouth of a
river where the journey of a river ends and the energy drops. In this perspective, Skærum
Bro Station in terms of the location is more prone to deposition than Ellebæk Bro Station.
Some factors like seasonal changes, climate variability, or human activities can affect the
amount of deposition thus, water level variations. Other than aforementioned reasons,
change in biomass and some anthropological factors might help to explain the recorded
water level variation differences for Skærum Bro and Ellebæk Bro stations.
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Figure 12 | Ellebæk Brook water level measurements at Ellebæk Bro Station by 15-min
intervals (1997 - 2020).

To make the dataset consistent with other variables in terms of frequency,
resampling the water level data over one hour was performed by calculating the average
water level in an hour for both Skærum Bro and Ellebæk Bro stations. During the missing
data control, 14,661 data points were detected in the Skærum Bro water level dataset. In
imputing missing values some fast techniques were considered as discussed in theory in
section 4.2.2. Although these fast techniques could achieve filling in the data gaps
reasonably, it was foreseen that the techniques would create abrupt changes and interfere
with continuity of the time series, thus mis-presenting the physical process behind the
water flowing through the stream. To illustrate the validity of this argument, the missing
hourly values were filled with the daily mean water level value derived from yearly mean
values between 1997 to 2020 and the results are presented in Figure 13. Zoomed
representation introduced in the second plot shows an interruption in the water level
measurement presented with the blue line for two days of missing value gap. An
artificially created peak by the mean value imputation technique justifies the
disqualifications of the aforementioned techniques moving forward.
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Figure 13 | Missing value imputation using the mean value technique for Storå River
hourly water level measurements at Skærum Bro Station (1997 - 2020).

In order to avoid the problems described preceding, the linear interpolation
technique was used in imputing missing water level values. This technique imputes the
missing data by connecting dots as a straight line, thus, no discrepancy would occur The
corrected dataset for Skærum Bro Station based on this intervention is presented in
Figure 14. In the zoomed plot, the same time period is presented as above to illustrate the
ability of this imputation technique to capture the physical process of the water flow.

36



Figure 14 | Missing value imputation using the linear interpolation technique for Storå
River hourly water level measurements at Skærum Bro Station  (1997 - 2020).

Worth to mention, missing data in approximately the first quarter of the time
series was quite significant, it can be understood how dense the red dots are, and
interpolation of these gaps created unrealistic results as presented in Figure 15.
Specifically, water level values in October, 1999 and January, 2000 may not be accurate
due to the large gap in the dataset. In fact, intiutively it was expected to see some peaks
for those periods considering the behavior of water level around these months in the
whole dataset. Therefore, even linear interpolation technique was not the best fit for
missing data imputation for water level in the Storå River. However, the starting dates
across different parameters’ time series varies as presented in Table 1, and 2013 was the
limiting start date for all parameters. Effectively, the unrealistic missing data imputation
for the water level at Skærum Bro Station does not create a problem for the dates before
2013. Thus continuing with linear interpolation technique was practicable for this case
for the years in between 2013 and 2020.
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Figure 15 | Missing value imputation using the linear interpolation technique for Storå
River hourly water level measurements at Skærum Bro Station.

Missing value imputation for water level from Ellebæk Bro Station was pursued
using the same technique. When the concentration of red dots was analyzed, there was a
significant amount of data loss at the beginning of the time series and around 2008.
Linear interpolation technique again created some unrealistic results for those periods.
However, as explained above it is not a concern for this research. For this data set, the
missing value imputation with linear interpolation technique can be used for the years in
between 2013 and 2020.
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Figure 16 | Missing value imputation using the linear interpolation technique for
Ellebæk Brook hourly water level measurements at Ellebæk Bro Station (1997 - 2020).

It was moved forward with precipitation data analysis. The historical precipitation
dataset includes five different categories demonstrated in columns. Only data in columns
'timeObserved', 'stationID', and 'value' were kept; the rest were found redundant and
removed immediately. The 'timeObserved' column presents the date of data measured in
unix timestamp. Storing data in unix timestamp format is handy for computer systems
because it eliminates confusion over timezones. However, it is not easy for a human
being to understand the time from a big integer while there is a more communicable way.
To put it another way, "July 12, 2021 2:46:04 PM Central European Summer Time" is
much more understandable than the unix timestamp version, 1626101164. That's why the
unix timestamp in 'timeObserved' was converted to datetime. The 'stationID' column
consists of five different precipitation stations: Isenvad, Grønbjerg, Øby, Høgild, and
Gludsted Plantage Nv. The data was reformatted by grouping stations separately. The
'value' column presents the precipitation value in millimeters (mm), and the column was
renamed according to the abovementioned precipitation station's name.

Initial visualization of each station can be found in Figure 17 for the raw data.
Despite the preprocessing done by the organisation there was still need for further
processing because of gaps and erroneous information in the data sets as presented in the
Figure 17.

39



Figure 17 | Historical precipitation data for given precipitation stations
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Missing data control concluded with a total of 82,022 data points for Isenvad,
80,619 data points for Grønbjerg, 81,867 data points for Øby, 66931 for Høgild, and
52703 for Gludsted Plantage Nv which contributes 87%, 85%, 87%, 87%, and %86 of
data missing among the whole dataset, respectively. As described in Chapter 4.2.2
imputation of missing data, especially precipitation data is quite a difficult task due to the
spatial and temporal nature of precipitation. Nevertheless, some attempts in imputing
missing values using mean, minimum and zero values have been executed. Using mean
and minimum values ignored the dry day concept completely and caused annual
accumulated precipitation up to 7000 mm. When annual accumulated precipitation values
taken from DMI’s technical report for 1874-2011 presented in Figure 18 were considered
as a reference, 7000 mm was approximately ten times greater than the actual annual
accumulated precipitation values in Denmark. Thus, these imputing techniques were
impractical.

Figure 18 | Annual accumulated precipitation, Denmark (1874 - 2011)
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On the other hand, imputing missing values with zero gave acceptable annual
precipitation. Although filling missing data with zero does not accurately represent the
reality, especially for years 2014 and 2016 where significant gaps were displayed in the
data, it was determined to proceed with this technique, considering the limitations and the
scope of this project. Apart from gaps, some outliers were detected for the stations Øby
and Høgild. Øby Station recorded 70.6 mm precipitation on 2016-10-13 at 08:00:00.
Examining the preceding and following precipitation values together with statistics of the
time series this value was assigned as outlier and removed. In the same way, an outlier is
detected in Høgild Station with 407 mm precipitation on 2020-08-16 at 11:00:00 and
removed. For the other stations there were no obvious outliers. The removal of outlier
data was conducted after careful consideration such that peak precipitation data was not
lost in the process. In duplicated index check, multiple data points were detected for
every precipitation station and cleaned from the datasets. The final version is presented in
Figure 19.
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Figure 19 | Historical precipitation data for give precipitation stations after missing
value imputation
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The ECMWF precipitation forecast data was downloaded through the python
environment in GRIB data format. It is a file format for gridded data in order to store and
transport the information. This format is widely used for meteorological data. However,
all the other data collected by the given stations was arranged in points spatially. Thus,
conversion was required for forecasted precipitation data. For this purpose, a tool called
Panoply developed by NASA was used in conversion. Panoply allows a user to visualize
the stored data in the GRIB file as well as extract the data in the form of a map and
tabular data. After the data was extracted in tabular format some preprocessing was
required. Precipitation value is assigned in every corner of the gridded data thus, first the
sum of these total precipitation values were calculated to have one value that represents
the whole grid. After that, the time series index was created manually to resolve the
difference in downloaded time steps. Afterwards, the negative data points were detected
as visualized in Figure 20, and replaced with zero.

Figure 20 | Forecasted precipitation data (2007 - 2019).
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Relative moisture content came from simulation results from the MIKE 11-NAM
models. Therefore, no further processing was applied to this data set. L represents the
moisture in the root zone whereas U represents top soil moisture. Figure 21 resents the
soil moisture content for the aforementioned soil zones. The deeper location of the root
zone soil moisture was reflected in the longer duration between maximum of 0.9997 and
minimum of 0.1283 relative moisture content measurements. In contrast to the root zone
measurements, the top soil measurement shows more frequency cyclical durations
showing that the relative moisture content values are heavily influenced by factors such
as evapotranspiration and direct infiltration. Root zone was inclined to have high soil
moisture content at the end of winter - beginning of spring seasons and low soil moisture
content during summer season.

Figure 21 | Relative soil moisture content simulation at Skærum Bro Station by 2-day
intervals (2007 - 2019).

The discharge time series presented in Figure 22 was derived from an hydrologic
model for the area. Similar to the relative moisture content data, the discharge data was a
simulation result, and no further data and time series processing was applied to the data
set. The maximum discharge value of 63.36 m ³/s was simulated to occur in 2020-02-18
at 12:00:00 while the minimum discharge was simulated with 8.08 m ³/s during
2013-09-02 at 12:00:00 among the whole dataset. When it comes to seasonal analysis,
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the maximum discharge was simulated to occur during the winter season while a
minimum discharge of the same year occurs during the fall season for the whole dataset,
except in 2019, maximum discharge was simulated at the end of fall season. The seasonal
variation in hydrometeorological characteristics of the study area is thus reflected in the
discharge time series presented in Figure 22.

Figure 22 | Storå River discharge simulation at Skærum Bro Station by 12-hour intervals
(2011 - 2021).

5.2 Feature Selection

In feature selection filter methods were utilized in this part. It was planned to use
the wrapper method in addition to the filter methods after machine learning models start
to train. The application of hybrid method will be discussed in the next chapter.

5.2.1 Correlation Analysis

Pearson’s correlation coefficient was utilized for feature selection in predicting
the target variable of WLSB(t+48). The analysis was conducted through lagging the time
series to analyse the relationship and sequential dependencies of the target variable and
potential features. The lag refers to shifting the time series. The goal was to identify
optimal lag which represents the largest absolute value of Pearson’s correlation
coefficient. 100 was selected as an arbitrary number for lagging due to its repetitiveness
in the literature. Having absolute value of the correlation results closer 1 means the
feature has potential to be useful for predictive purposes in machine learning.
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In terms of data availability, limiting factors were defined as the observed
precipitation data for the start and simulated relative soil moisture and forecasted
precipitation data for the end (Table 1). Thus, time-lagged cross correlation analyses
among WLSB(t+48) and precipitation values from Isenvad, Grønbjerg, Øby, Høgild, and
Gludsted Plantage Nv stations were conducted separately. The combined results are
presented in Figure 23. According to the visualization, Grønbjerg Station resulted in the
highest correlation coefficient with 0.162 at 11 hours prior shift. The stations Øby,
Isenvad, Høgild, and Gludsted Plantage Nv were ordered by decreasing correlation
coefficients of 0.156, 0.147, 0.136, and 0.107 with a lag of 12, 11, 11, and 12 hours,
respectively. It was revealed that Gludsted Plantage Nv Station has relatively lower
correlation than others and can be removed in moving forward.

Figure 23 | Correlation analysis between water level at Skærum Bro (WLSB(t+48)) and
given precipitation stations.

After the removal of Gludsted Plantage Nv Station, the common starting date was
updated to 20-12-2011. The lag-time correlation analysis was repeated for each station
one more time, separately. Visualization of the correlation coefficients and lag times for
precipitation stations with the revised time series is presented in Figure 24. The
correlation results were slightly decreased for each station. However, considering the
enlarged time length gives more information that can be deployed by machine learning
algorithms, it was decided to continue with an updated time interval. Moreover, the
correlation results for precipitation stations either for enlarged time length or for the
original length can be considered as weak or poor correlation.
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Figure 24 | Correlation analysis between water level Skærum Bro (WLSB(t+48)) and
given precipitation stations after removal of Gludsted Plantage Nv Station.

Considering longer duration precipitation estimation contains less errors than
hourly estimations (Hema and Kant, 2017), a 24-hour moving window was used to obtain
accumulated precipitation, which might give a better idea about water level change in the
Storå River than the ones recorded hourly. In fact, accumulated precipitation for all four
stations had a higher correlation coefficient as presented in Figure 25. The highest
correlation coefficient result was observed in Grønbjerg Station with 0.369 and it
followed with 0.363 in Øby Station and 0.352 in Isenvad Station. Høgild Station shows
the lowest correlation with 0.315, yet it was decided to keep the station because the
correlation coefficient is relatively higher.
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Figure 25 | Correlation analysis between water level at Skærum Bro (WLSB(t+48)) and
given precipitation stations for 24-hour accumulated precipitation.

Autocorrelation is a special case of cross correlation which refers to the
correlation of a variable with itself at different times. It was used to assess the linear
dependency of consecutive water level observations at the Skærum Bro Station. The aim
was to understand whether two water level observations having 48 hours lag in between
are correlated or not. The autocorrelation result for observed water level at Skærum Bro
Station is presented in Figure 26. The correlation result among current and 48 hour
previous water level was obtained as 0.92. This shows that the water level at Skærum Bro
is highly correlated with itself even after 48-hours.
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Figure 26 | Autocorrelation for water level at Skærum Bro Station (WLSB(t-Lag)).

Cross correlation analysis was continued with water level measurements from
Skærum Bro and Ellebæk Bro stations. The result is presented in Figure 27. The highest
correlation was observed with 0.87 at time equal to zero.

Figure 27 | Correlation analysis between water level at Skærum Bro Station
(WLSB(t+48)) and water level at Ellebæk Bro Station (WLEB(t-Lag)).
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Afterwards, the correlation among water level at Skærum Bro Station and
simulated soil moisture content for both root zone and surface based on the same station
was analyzed. The result of correlation analysis is presented in Figure 28. According to
results, root zone soil moisture content was slightly higher correlated with the target
variable, 0.591 than soil moisture content on the surface, 0.587.

Figure 28 | Correlation analysis between water level at Skærum Bro Station
(WLSB(t+48)) and simulated soil moisture content for root zone, L and surface, U

components (RMC(t-Lag)).

Correlation analysis between simulated discharge and the target variable is
presented in Figure 29. The correlation coefficient of 0.865 represents a significant
correlation.
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Figure 29 | Correlation analysis between water level at Skærum Bro Station
(WLSB(t+48)) and simulated discharge (QSB(t-Lag)) at Skærum Bro Station.

Correlation analysis between forecasted precipitation and the target variable is
presented in Figure 30. The highest correlation was observed as 0.398 with a lag of 4
hours. The variations stem from the nonlinear nature of precipitation.

Figure 30 | Correlation analysis between water level at Skærum Bro Station
(WLSB(t+48)) and forecasted precipitation (PRforecast(t-Lag)).
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Based on the given Pearson’s correlation results, features were selected for the
best correlation, two hour prior and two hour posterior time steps. For highest correlation
achieved at t equal to zero, no posterior time step was considered due to unavailable
information. To summarize which features are selected, relative importances is presented
in Figure 31. As it can be seen from the distribution, the direct jump displayed after
accumulated precipitation features. Since hourly precipitation features had weak
correlations, it was decided to use only 24-hour accumulated precipitation for given
stations. The red dotted line represents a significant threshold in feature importances.

The results constitute the preliminary feature elimination based on filter method.
It helps to measure the strength of linearity for the given features and target variable.
These results can be used for any machine learning algorithm. After the first elimination
based on the correlation analysis, feature elimination was carried on with the mutual
information analysis in the next section.
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Figure 31 | Feature importance based on Pearson’s Correlation Coefficient.
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5.2.2 Mutual Information
Mutual information is a measure of dependence. The feature importance based on

mutual information among the target variable and the selected features after correlation
analysis is presented in Figure 32. The highest mutual information score was observed
for simulated discharge at Skærum Bro Station. It followed by root zone soil moisture
content, forecasted precipitation, water level at Skærum Bro Station, surface soil
moisture content, water level at Skærum Bro Station, respectively. The sum sign
represents 24-hour accumulated precipitation which was calculated by moving windows.
For the given stations those features had the lowest score among all features and were
removed as the study advanced. The red dotted line represents a significant threshold in
feature importances.

Figure 32 | Feature Importance based on mutual information.
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5.2.3 Persistence Model
Creating a basic benchmark model is beneficial for machine learning tasks. It

provides machine learning practitioners to understand the impact of an intervention
which should be abandoned or enhanced moving forward. In this research, the
persistence model was considered as a benchmark model. Persistence method constitutes
one of the easiest methods in predicting future behavior. The main feature of the
persistence model is that future values of any time series are calculated based on the
stationarity assumption. In other words, nothing will change between the current time t
and the forecast time (t+T)forecast (Paulescu et al., 2021).

5.2.4 Feature Sets
Feature sets were created in order to understand how features affect performance.

These sets were created by considering the feature selection methods. The final features
that were included in the machine learning models were discussed in the previous
section. Thus, the first feature set consists of the simulated discharge at Skærum Bro for
three time steps. The explicit features included in the feature set are presented in Table 2.
Second feature set was created as an addition of the feature that has the second highest
relative importance based on Figure 32 which is the simulated relative moisture content
at the root zone to the first feature set. Third feature set was created by addition of
forecasted precipitation features to the second feature set. Although WLSB(t) had a
slightly higher score than PRforecasted(t-4) and PRforecasted(t-5), in order to keep the addition
to sets constrained with only one information WLSB(t) was not included in the third
feature set. Water level at Skærum Bro, soil moisture content on the surface, and water
level at Skærum Bro were added in order to create the fourth, the fifth, and the sixth
feature sets, respectively.
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Table 2 | Feature sets number and description.

5.3 Data Split

Dividing the data set into training, validation, and test sets were done manually
due to TIGGE-ECMWF data limitation for dates between the end of 2016 and 2017. The
visualisation of data splits for each feature is presented in Figure 39 and 40. It was aimed
to clarify the range, time span , and relatedness of variables for all three sets. In Table 5,
the statistical details of each feature are tabulated. The minimum, maximum and mean
for all features and for all three sets were quite close to each other with some differences.
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Figure 39 | Data splits for the features of observed water level at both Skærum Bro and
Ellebæk Bro stations, and simulated discharge at Skærum Bro Station for training

(green), validation (dark blue), and test (pink) sets.
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Figure 40 | Data splits for the features of forecasted precipitation and simulated relative
soil moisture contents L and U  at Skærum Bro Station for training (green), validation

(dark blue), and test (pink) sets.

In the next chapter model improvement part, 5-fold cross validation was
introduced as data splitting. The new training set used in the 5-fold cross validation was
created by combining the datasets that were originally decided as training and validation.
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Table 5 | Statistical details of selected features for training, validation, and test sets.
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5.4 Feature Transformation and Scaling

Feature transformation and scaling were experimented in order to understand their
effect on machine learning models’ performance. For the power transformations, first the
skewness of each feature was measured. Based on the degree of skewness either a
Box-cox, Square-Root, or Log transformation technique was implemented. Box-cox
transformation can be applied to features with both positive and negative skewness. As a
rule of thumb, when the skewness is in between (-0.5,0.5), it can be considered as a fairly
symmetrical distribution (Droutsa et al., 2020). Thus, the threshold value was assigned as
0.5. If the absolute value of a feature skewness was greater than threshold and the
skewness was positive, it was considered as a positively skewed feature and log
transformation applied. If the absolute value of a feature skewness was greater than
threshold and the skewness was smaller than zero, it was considered as a negative
skewed feature and exponential transformation was used. The Box-Cox transformation
was applied for both positive and negative skewness and the technique which gives
minimum skewness was selected.

The original and post-transformation distribution plots are presented below. Since
there were more than one features for the same variable which represents just shifted
versions of each other, and they all share the almost exact statistics, only one of them was
visualized. The histogram together with probability density function for the QSB(t) time
series for original data on the left and transformed data on the right are presented in
Figure 33. Original data exhibits positive skewed distribution with most data
accumulated around left tail and longer right tail distribution. After transformation,
heavily accumulated data on the left tail was distributed in the middle and the right tail
was getting shortened. The skewness was decreased from 1.21 to 0.47.

Figure 33 | Histogram and probability density function for QSB(t) original and
post-transformation.
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The histogram and probability density function for RMC_LSB(t) time series are
presented in Figure 34 for both original and transformed data. The original data displays
negative skewness with longer left tail distribution and accumulated data on the right tail.
After transformation the skewness was significantly decreased, from -1.41 to 0.07.
Although the distribution did not resemble a bell shaped curve, the distribution was
approximately normal.

Figure 34 | Histogram and probability density function for RMC_LSB(t) original and
post-transformation.

The histogram and probability density function for PRforecast(t-2) time series are
displayed below in Figure 35. The original data distribution was positive skewed with
1.65 skewness. After transformation, the distribution became moderately negative
skewed with -0.79 skewness.
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Figure 35 | Histogram and probability density function for PRforecast(t-2) original and
post-transformation.

The histogram together with probability density function for the WLSB(t) time
series are plotted as below in Figure 36. The original data exhibited positive skewness
and after transformation it became almost normally distributed data.

Figure 36 | Histogram and probability density function for WLSB(t) original and
post-transformation.
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The histogram and probability density function for RMC_USB(t) time series are
presented for both original and transformed data in Figure 37. The original data displays
negative skewness with -0.69 skewness. After transformation, the skewness significantly
decreased to 0.32. Although the distribution still does not look like a bell shaped curve,
the distribution was approximately normal.

Figure 37 | Histogram and probability density function for RMC_USB(t) original and
post-transformation.

The histogram together with probability density function for the WLEB(t) time
series for the original data on the left and transformed data on the right are presented in
Figure 38. Original data exhibits positive skewed distribution with 1.91 skewness. After
transformation the skewness was decreased to 0.93.
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Figure 38 | Histogram and probability density function for WLEB(t) original and
post-transformation.

Although not all features are turned into Gaussian distributions, they seemed
Gaussian-like distributions and it was found to be adequate to move forward with the
scaling techniques. The tabulated form of skewness results for transformed features and
raw version are presented as a summary in Table 3.
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Table 3 | Skewness results original and post-transformation.
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Chapter 6. Results and Discussion

This chapter presents the results of the research study in line with fulfilling the
research objectives presented in Chapter 1. This chapter was designed in five sections
revolving around the assessment of feature transformation and scaling, the selection of
feature sets, the model improvement, introducing the artificial neural network, and the
overall assessment of the models. It is important to mention, in the first three parts of this
chapter the analyses were conducted using Multiple Linear Regression, Random Forest
Regression, Gradient Boosting Regression. The created Gaussian-like dataset and the
original dataset in the data analysis chapter were subjected to no-scaling and scaling
through normalization and standardization in order to investigate the effect of the feature
transformation and scaling on machine learning models’ performance on the first part.
Afterwards, in the second part the performance of the machine learning models were
examined with different feature sets. In the third part, the improvement of machine
learning models through hyperparameter tuning and the implementation of a hybrid
method in feature selection was analyzed. The Feed-Forward Neural Network model did
not include the first three parts due to time limitation. It only included the last part where
all four machine learning models were compared and assessed in terms of water level
prediction accuracy.

6.1 Part 1: Assessment of Feature Transformation and
Scaling

There is no fixed solution to choose which scaling technique to use in the data
preparation part. Therefore, in order to decide the scaling technique to be implemented,
an experiment was conducted using the original and Gaussian-like distributed data that
created Chapter 5.4. For both datasets three cases were considered based on no scaling
and scaling through normalization and standardization. In python, the MinMaxScaler
library was used for normalization and the StandardScaler library was used for
standardization. Machine learning models were trained using the training dataset created
in Chapter 5.3 using the all features and validation results for mean absolute error terms
are presented in Table 4, original data on the top and transformed data on the bottom.
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Table 4 | Mean absolute error from given machine learning models for original data (on
top) and for Gaussian-like distributed data (on bottom) considering no scaling,

normalization, and standardization. (The lower error values are highlighted for each
model).

The mean absolute error terms for the Random Forest Regression and the
Gradient Boosting Regression models displayed in Table 4 were presented after
hyperparameter tuning in order to obtain more realistic results after decreasing the
overfitting. Tree based algorithms are known as scale invariant, thus, expected behavior
of Random Forest and Gradient Boosting was no change in the error term for
normalization and standardization. However there were slight differences for no scaling
and scaling through normalization and standardization for Random Forest and Gradient
Boosting models. This can be explained by hyperparameter tuning for those models.
Later, the transformation techniques were implemented and as presented in Table 4 on the
bottom, the mean absolute error term increased. This shows transforming the data to
follow Gaussian-like distribution was not a sound intervention in this case. The uniform
distribution exists in nature so does skewed distribution as well. It is not always possible
to transform data to follow normal distribution and expect it to perform better with
machine learning algorithms as presented here. Based on the results of this procedure,
normalization techniques on raw data were to be implemented moving forward.
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6.2 Part 2: Assessment of Different Feature Sets

In this part the training and the validation results obtained through training of the
three machine learning models with predefined feature sets were investigated. Although
three different evaluation criteria were presented, the mean absolute error term will be
examined mostly due to its ability in communicating with early warning systems. In other
words, knowing the error margin coming from machine learning predictions allows flood
risk managers to have safe ground in their decision making process. As a first step, the
results of machine learning models after each feature set were compared by the
persistence model in order to understand if the machine learning models were able to beat
a simple model or not.

Persistence model serves as the base model that shifts the water level at Skærum
Bro Station 48-hour ahead of time and considers that measurement as the prediction and
48-hour previous measurement as the current water level. Thus, the error terms were
calculated among these two values both coming from the historical measurements. In
essence, this is just basic statistics in analysing trends and assuming the behavior for the
desired time period would be the same as prior trend. This actually means an assumption
that the conditions affecting water level in the Storå River are stationary.

The result of the persistence model is presented in Table 6. Without any machine
learning model, persistence model was able to predict water level in the Storå River less
than 10 cm error based on the validation set. Coefficient of determination for the train
test was higher than the validation set. This shows at the beginning of the time series
(2011-2016), water level recordings in two days were more correlated than the validation
period (2017).

Table 6 | Persistence model prediction results for training and validation set.

The first feature set contains only QSB(t), QSB(t-1) and QSB(t-2) features as an
input to machine learning models as explicitly presented in Chapter 5.2.4. The evaluation
results on both training and validation sets are presented in Table 7. For Random Forest
and Gradient Boosting models predictions were improved through hyperparameter
tuning, on the other hand in Multiple Linear Regression was stayed as it was since it does
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not have hyperparameters to tune. In the Multiple Linear Regression model the mean
absolute error was recorded 5.1 cm higher; in the Random Forest model the mean
absolute error was recorded 7.2 cm higher; and in the Gradient Boosting model the mean
absolute error was recorded 6.5 cm higher compared to the persistence model based on
validation set. It can be concluded that the persistence model outperforms the prediction
performance of machine learning models trained with the first feature set.

Table 7 | Prediction results of the given machine learning models training on the first
feature set. (Compared to the persistence model, mean absolute error values are

highlighted for the underperformed machine learning models. (*) represents
hyperparameter tuning.)

The second feature set was created by adding simulated relative moisture content
at the root zone to the existing feature set. The evaluation results on both training and
validation sets are presented in Table 8. It can be seen from the error terms and
coefficient of determination on the training set, both Multiple Linear Regression and
Random Forest models were learned from the newly added features. Although the mean
absolute error terms on the validation set were also improved slightly for these models,
the results were still not good enough to beat the persistence model. On the other hand,
the Gradient Boosting model performed worse than the previous model. The
interpretation for this can be relative soil moisture content at the root zone did not contain
useful information for the Gradient Boosting model.
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Table 8 | Prediction results of the given machine learning models training on the second
feature set. (Compared to the persistence model, mean absolute error values are

highlighted for the underperformed machine learning models. (*) represents
hyperparameter tuning.)

The third feature set was created by the addition of forecasted precipitation
retrieved from TIGGE data to the second feature set. The evaluation results on both
training and validation sets are presented in Table 9. The mean absolute error terms
decreased for all machine learning models both on training and validation sets. 3.4 cm
improvement in the mean absolute error term was observed in the Multiple Linear
Regression model. This improvement was 4.4 cm for the Random Forest model and 5.3
cm for the Gradient Boosting model. The forecasted precipitation was expected to be
very important information to affect the water level which was confirmed by the results.
However, even this much of a difference was not enough to surpass the persistence
model’s performance.

Table 9 | Prediction results of the given machine learning models training on the third
feature set. (Compared to the persistence model, mean absolute error values are

highlighted for the underperformed machine learning models. (*) represents
hyperparameter tuning.)
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The fourth feature set contains water level measurements coming from Skærum
Bro Station in addition to what the third feature set had. The evaluation results on both
training and validation sets are presented in Table 10. Error terms and coefficient of
determination were improved for both the training and the validation sets compared to
the previous models and finally outperformed the persistence model. The mean absolute
error improvements on validation set were 2.4 cm, 2.5 cm, 2.8 cm for Multiple Linear
Regression, Random Forest, and Gradient Boosting, respectively.

Table 10 | Prediction results of the given machine learning models training on the fourth
feature set. ((*) represents hyperparameter tuning.)

In the fifth feature set, the relative soil moisture content at the top soil was
included in the fourth feature set. The evaluation results on both training and validation
sets are presented in Table 11. The improvement was only observed for the Random
Forest model on validation set, whereas Multiple Linear Regression and Gradient
Boosting models’ mean absolute error terms on validation set were decreased by 2 mm
compared to the previous feature set.

Table 11 | Prediction results of the given machine learning models training on the fifth
feature set. ((*) represents hyperparameter tuning.)
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In the sixth and the final feature set which includes all 19 features after the filter
feature selection methods, water level coming from Ellebæk Bro station was added to the
fifth feature set. The evaluation results on both training and validation sets are presented
in Table 12. All three models performed better with the addition of this information. The
improvement on mean absolute error terms were 7 mm, 1 mm and 4 mm for Multiple
Linear Regression, Random Forest, and Gradient Boosting models respectively. It is
important to note that the error terms in the training dataset for all three models were
quite lower than the errors coming from the validation dataset. This is an indicator for
overfitting.

Table 12 | Prediction results of the given machine learning models training on the sixth
feature set. ((*) represents hyperparameter tuning.)

To summarize the tabulated data presented above and visualize the influence of
each feature set, a number of plots were introduced. Mean absolute error on the training
set displayed in Figure 41 for all the feature sets. This plot shows a decreasing trend on
the mean absolute error which can be explained by increasing information through added
feature sets. A steep decrease in the error was observed for feature sets 3 and 4, which
correspond to features for forecasted precipitation and water level measurements at
Skærum Bro Station. Although these two features did not have the highest importance
after the applied filter methods for feature selection, they had a remarkable contribution
on the training performance. Another noticeable mean absolute error result was observed
for the Random Forest model after training with the fifth feature set. Normally adding
more data would not inhibit the training performance. However, if more features are
added, it becomes more difficult to determine correct coefficients and increases the risk
of overfitting.
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Figure 41 | Summary of mean absolute error on the training set for given feature sets.

Mean absolute error for the validation set is displayed in Figure 42 for all feature
sets. Water level predictions were improved as more features were introduced to the
machine learning models. The error range was in between approximately 17 cm to 8 cm.
Steep decrease in the error term occured for feature sets 3 and 4 as observed in the
training set presented above.
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Figure 42 | Summary of mean absolute error on the validation set for given feature sets.

Coefficient of determination plot is presented in Figure 43 for the training set. It
showed an increasing trend for all machine learning models. For the fifth feature set a
slight decrease is observed in the coefficient of determination value for the Random
Forest model. On the other hand, the change for Gradient Boosting and Multiple Linear
Regression models were insignificant for the same feature set. This slight decrease in the
coefficient of determination for Random Forest indicates either randomness of
hyperparameter tuning due to randomized search or overfitting of the training data.
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Figure 43 | Summary of coefficient of determination on the training set for given feature
sets.

Coefficient of determination for the validation set is presented in Figure 44. An
increasing trend observed through the feature sets. For the second feature set, a slight
decrease is observed in the coefficient of determination value for the Gradient Boosting
model which can be explained by the randomness of the hyperparameter tuning process.
Addition of the forecasted precipitation on the third feature set resulted with a significant
increase in the coefficient of determination values for all machine learning models. It is
important to note that with the first feature set consisting of only one type of feature, the
machine learning models performed over 0.55 coefficient of determination value. This
shows the machine learning models perform to some degree even with the limited data.
The overall improvement observed for the Multiple Linear Regression model is 25%, for
the Random Forest model is 48% , and for the Gradient Boosting model is 43%.
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Figure 44 | Summary of coefficient of determination on the validation set for given
feature sets.
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6.3 Part 3: Model Improvement

6.3.1 Effect of Hyperparameter Tuning
In the previous part, the results presented were already tuned for hyperparameters.

In this section, the results without hyperparameter tuning were evaluated and the
improvement in the prediction performances were discussed.

The effect of hyperparameter tuning for Random Forest Regression is presented
in Figure 45. Training and validation sets were visualized with orange and purple colors,
respectively. Original results presented with straight lines and results obtained after
hyperparameter tuning presented with dotted lines. The model was trained by the sixth
feature set.

Figure 45 | Improving Random Forest Regression model through hyperparameter tuning.
Original dataset represents the data without hyperparameter tuning, presented with a

straight line and HT represents the hyperparameter tuned data, presented with a dotted
line. Orange color stands for the training dataset and  purple color stands for the

validation dataset.

The interpretation of the continuous orange line is the Random Forest Regression
model overfitted for each and every feature set. In training models, the hyperparameters
were used as it is without any alteration in the original Random Forest Regression model.
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Since there were no max_depth or other parameters assigned, the model overfitted for
each feature set training. This situation caused a lower coefficient of determination values
for validation set as presented with the purple straight line. After hyperparameter tuning
the results become more reasonable. The overall observed improvement for the validation
set is 48%.

The effect of hyperparameter tuning was elaborated by showing the train and
validation set results with and without hyperparameter tuning for the Gradient Boosting
Regressor models trained by the feature set 6. The improvement for Gradient Boosting
was minute for both training and validation sets. Only at the beginning, hyperparameter
tuning improved the accuracy of the train set. Compared to Random Forest, Gradient
Boosting is less likely to overfit on the training data.

Figure 46 | Improving Gradient Boosting Regressor model through hyperparameter
tuning. Original dataset represents the data without hyperparameter tuning, presented
with a straight line and HT represents the hyperparameter tuned data, presented with a
dotted line. Orange color stands for the training dataset and  purple color stands for the

validation dataset.
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6.3.2 Effect of Recursive Feature Elimination
Recursive feature elimination (RFE) is a wrapper feature selection method. When

it is combined with previous correlation and mutual information analyses they form a
hybrid method for feature selection. RFE was applied together with the machine learning
algorithm and ranked the features based on their importances then recursively eliminated
the features according to predefined step.

In this research RFECV class was utilized from sklearn library. The recursive
elimination was conducted one feature at a time step considering coefficient of
determination. As a minimum number of features, five features were selected. After the
elimination, 14 features remained for Multiple Linear Regression. This number even
further decreased for the Random Forest and the Gradient Boosting with 5 features for
both models. The effect of improvement is demonstrated in Figure 47.

Figure 47 | Evaluation of model improvement on validation set for original, addition of
hyperparameter tuning, and addition of recursive feature elimination presented

separately.
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6.4 Part 4: Feed-Forward Neural Network

Feed Forward Neural Network was selected as the fourth machine learning model
in predicting water level at the Storå River within the scope of the research. This model
has its own section because it was not included in the feature set experiment due to time
constraints. It was presented as another machine learning algorithm and used to compare
performance with other machine learning models presented in the previous part. The
model was built using TensorFlow and Keras libraries as mentioned in Chapter 4.3.4. The
hyperparameter tuning was implemented for the parameters activation, batch size, epochs
and learning rate. Keras tuner was utilized through random search in hyperparameter
tuning. For activation function relu and tanh functions introduced for input and hidden
layers. For the output layer linear function was used. For the batch size default, doubled
and halved values were introduced to the random search algorithm. For the learning rate
0.01, 0.001, 0.0001 were used. For the epochs 50 and 100 introduced to the random
search algorithm. Early stopping criteria was implemented monitoring the validation loss.
For the best model, the model loss plot is displayed in Figure 48. The training was forced
to stop before reaching 70 epochs due to the early stopping mechanism.

Figure 48 | Feed Forward Neural Network model loss

The recursive feature elimination technique was not implemented for this model since the
improvement was insignificant.
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6.5 Part 5: Overall Assessment of Tested Methods

This section is dedicated to water level predictions of machine learning models:
Multiple Linear Regression, Random Forest Regression, Gradient Boosting Regression
and Feed Forward Neural Network. These models were then compared based on the
evaluation criterias on the test set. The peak water levels observed in the time series were
examined with special focus. According to the observed measures there were four peaks
detected in the test set. The first peak was observed at the beginning of February at 1.621
m. The second peak is observed in the middle of March at 1.969 m. The third peak was
observed towards the end of October at 1.99 m. Finally, the fourth peak was observed in
the middle of December at 2.076 m. The machine learning models were examined based
on how close their predictions to these peak values and the predefined evaluation
criterias.

The water level prediction results from Multiple Linear Regression models with
48-hour lead time are presented in Figure 49. The first plot represents the result for the
whole test set. There were four peaks present in the observed water level time series. In
order to investigate the Multiple Linear Regression model’s performance, all peaks were
zoomed in and displayed separately. The actual water level was visualized with black
dotted line and it followed a smooth curve since during preprocessing step water level
data with 15-min interval converted into hourly mean data and the curve got smoothened.
The peak predictions showed lag and were overestimated for all four zoomed-in plots.
The predictions exhibited variations between peaks, and showed a smooth trend towards
tail. The variations in the predicted water level can be explained by using 14 features
during the training of the machine learning model. The mean absolute error was
calculated as 8.244 cm, for validation it was 8.130 cm. The improvement in the mean
absolute error according to the persistence model recorded as 3.992 cm. The calculated
root mean square error reported as 11.602 cm for the test set, 11.580 cm for the validation
set and the coefficient of determination reported as 0.921 for the test set, and 0.866 for
the validation set.

82



Figure 49 | Multiple Linear Regression water level prediction results on the test set with
48-hour lead time. First plot represents the whole test data set and the others are the
zoomed-in versions representing the prediction performance of the machine learning

model for peak values.
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The deviations from the diagonal for actual versus the predicted values in the
Multiple Linear Regression model are presented in Figure 50. The blue line represents
the diagonal which shows the perfect prediction. Depending on where the black dot lies,
the prediction power of the Multiple Linear Regression model can be interpreted. For a
good model it is expected to see symmetric scattered black points around the blue
diagonal line. The plot shows overall good results with a narrow deviation band around
the diagonal. For some low water levels overprediction was encircled on the left hand
side and some high water level underpredictions were observed in the encirclement on
the right hand side of the figure.

Figure 50 | Actual vs. predicted values on the test set for the Multiple Linear Regression
model presented with the black dots. The diagonal is presented with a blue line at 45
degrees. The blue circles represent overfitting on the left side and underfitting on the

right side.

The error distribution in the test data set for the Multiple Linear Regression is
presented in Figure 51. The error term represents the differences between actual and
predicted values of data. The most error terms were clustered around the mean of zero
with asymptotic tails both left and right. The distribution follows a Gausian-like
distribution with calculated skewness of -0.873. This shows the linear regression
algorithm made almost adequate inferences. Lower the skewness at the error distribution
better the predictive performance of the Multiple Linear Regression model.
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Figure 51 | Multiple Linear Regression error term distribution on the test set.

The water level prediction results from the Random Forest Regression model with
48-hour lead time are presented in Figure 52. The first plot represents the whole time
series for the test set, and the others are zoomed-in to the observed peak water levels in
the time series. Overall, the Random Forest model was successful in the low water level
predictions. For the first and the third peaks, lagged predictions were captured. For the
second and fourth peaks, the water level predictions were underestimated. The
fluctuations of the predicted water level is decreased compared to the Multiple Linear
Regression model due to the decrease in the number of features participated in training of
the model. The mean absolute error was recorded as 9.205 cm which is 0.961 cm higher
than the Multiple Linear Regression model’s result. Root mean squared error calculated
as 13.208 cm and coefficient of determination calculated as 0.897.
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Figure 52 | Random Forest Regression water level prediction results on the test set with
48-hour lead time. First plot represents the whole test data set and the others are the
zoomed-in versions representing the prediction performance of the machine learning

model for peak values.
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In Figure 53, the actual versus predicted values for the Random Forest Regression
model is displayed. Based on the deviations from the diagonal presented with the green
line, the model showed a narrow deviation band in predicting lower water levels which
can be interpreted as the model was more successful for those levels. Underestimation on
the peak values can be deducted from the predictions pointed with the green circle at the
bottom left side of the diagonal.

Figure 53 | Actual vs. predicted values on the test set for the Random Forest Regression
model presented with the black dots. The diagonal is presented with a green line at 45

degrees. The green circle on the right side represents underfitting.

The error distribution in the test data set for the Random Forest Regression is
presented in Figure 54. The error term was calculated similarly to the Multiple Linear
Regression model by taking the differences in between actual and the predicted values of
data. The distribution resembles a Gausian-like distribution and exhibits negative
skewness with a value of -1.009. The most error terms were accumulated around the
mean of zero and the left tail showed a longer distribution.

87



Figure 54 | Random Forest Regression error term distribution on the test set.

The water level prediction results from the Gradient Boosting Regression model
with 48-hour lead time are presented in Figure 55 for the whole testing data set and four
predefined peaks separately. The model captured the peaks with lag. In the first peak,
overestimation was observed. For the rest of the peaks the predictions were slightly
underestimated. Fluctuations in the observed water level were decreased compared to the
Multiple Linear Regression model due to utilization of less number of features during the
training of the Random Forest model. The mean absolute error was recorded as 8.511 cm
which is 0.267 cm higher than the Multiple Linear Regression model’s result. The root
mean square error was 11.602 cm and coefficient of determination was 0.921.
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Figure 55 | Gradient Boosting Regression water level prediction results on the test set
with 48-hour lead time. First plot represents the whole test data set and the others are the

zoomed-in versions representing the prediction performance of the machine learning
model for peak values.
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The actual versus the predicted plot for the Gradient Boosting Regression model
is presented in Figure 56. Compared to the first two models predicted versus actual plots,
the Gradient Boosting model showed less deviation from the diagonal presented with the
purple line. Although it showed less variation compared to other models, it was still
better in predicting lower water level values than the higher water level values which can
be deducted from the disorientation of the black dots towards the upper right side of the
plot.

Figure 56 | Actual vs. predicted values on the test set for the Gradient Boosting
Regression model presented with the black dots. The diagonal is presented with a purple

line at 45 degrees.

The error distribution in the test data set for the Gradient Boosting Regression
model with 48-hour lead time is presented in Figure 57. The distribution follows a
Gausian-like distribution with a moderate negative skewness of -0.745. Again, the most
of the residuals accumulated around the mean value of zero, the longer left tail shows the
Gradient Boosting Regression model’s predicted values were lower than the actual
values, since residuals calculated the predicted value minus the actual value.
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Figure 57 | Gradient Boosting Regression error term distribution on the test set.

The water level prediction results from the Feed Forward Neural Network model
with 48-hour lead time are displayed in Figure 58. The predictions for the first two peaks
were reasonable, yet predictions for the last two peaks were captured with lag. The water
level predictions exhibited variations among peaks, and showed a smooth trend towards
tails. The predictions exhibit less variations compared to the Multiple Linear Regression
model, although more features were used in training the Feed Forward Neural Network
model. This can be explained by the usage of the activation function which can smooth
out changes in features during training so that the effect on the target variable gets
smaller. The mean absolute error was recorded as 8.242 cm which is 0.003 cm better than
the Multiple Linear Regression model’s result. The root mean square error was 11.541
cm and coefficient of determination was 0.922.
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Figure 58 | Feed Forward Neural Network water level prediction results on the test set
with 48-hour lead time. First plot represents the whole test data set and the others are the

zoomed-in versions representing the prediction performance of the machine learning
model for peak values.
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The actual vs. predicted plot for the Feed Forward Neural Network is presented in
Figure 59. Like in the Gradient Boosting model, the Feed Forward Neural Network
showed less deviation from the diagonal presented with the orange line. Like previous
three models, this model performed better at lower water level predictions as well. When
it comes to higher water levels, some underestimation was observed.

Figure 59 | Actual vs. predicted values on the test set for the Feed Forward Neural
Network model presented with the black dots. The diagonal is presented with an orange

line at 45 degrees.

The error distribution in the test data set for the Feed Forward Neural Network is
presented in Figure 60. The distribution follows the Gausian-like distribution with a
moderate negative skewness of -0.916. Again, the most of the residuals accumulated
around the mean value of zero, the longer left tail shows the Feed Forward Neural
Network model’s predicted values were lower than the actual values, since residuals
calculated the predicted value minus the actual value.
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Figure 60 | Feed Forward Neural Network error term distribution on the test set.

In summary, the Feed Forward Neural Network model predicted the water level
with the least mean absolute error and root mean square error terms and the highest
coefficient of correlation. In terms of the mean absolute error and coefficient of
determination, the Feed Forward Neural Network model was followed by the Multiple
Linear Regression, the Gradient Boosting Regression, and the Random Forest Regression
in sequence. In terms of root mean square error, the Gradient Boosting performed slightly
better than the Multiple Linear Regression model. Among all, the Random Forest
Regression model underperformed. In Table 12, summarization of all four machine
learning models is presented.

Table 12 | Prediction results of the all machine learning models on training and test
dataset
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According to Table 12, all the machine learning methods' performances were
lower on the test set than the training set which can be an indicator of overfitting. In fact
it is very common to see better performance on the training set. During this research
some techniques were applied such as hyperparameter tuning through randomized search,
introducing k-fold cross validation, utilizing the recursive feature elimination technique
to decrease the overfitting on the training data. After all the models are overfitting way
less yet there is still room for improvement.
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Chapter 7. Conclusion and Recommendations

This final chapter summarizes all the findings of this research, draws conclusions based
on the findings, and answers the research questions proposed in the first chapter.
Moreover, the limitations encountered during the research work are discussed with
possible solutions. Finally, the recommendations for future research are presented.

7.1 Main Conclusions

The objective of this research was to study river stage forecasting using different
machine learning models and to achieve a 48-hour lead time for the Storå River,
Denmark. Creating a proper forecasting model for this area can contribute to impact
assessment of potential riverine flood, flood risk management, dissemination of
information and warning messages, and enhancing early warning systems as explained in
Chapter 1.

In Chapter 2, a review of related literature was presented in the context of the
study objectives. The next chapter was devoted to acquiring general information about
the site and the data of the case study area. In Chapter 4, the research methodology and
corresponding theory behind each procedure were discussed. In the scope of this thesis
work, the total number of machine learning algorithms applied was selected as four and
the thinking process explained in Chapter 4.3. It started from a simple model and
complexity added up both for machine learning algorithms and the data have been
utilized throughout the research project.

Sound data analysis was considered as the pillar for this research. Well prepared
data is the reason why machine learning algorithms can learn and develop themselves.
Therefore, Chapter 5 was dedicated to data analysis. The data was acquired from several
sources as described in Table 1. After the visualization of data, some missing values,
erroneous information, and outliers were detected. Hence, in the preprocessing step
several fast missing value imputation techniques were considered. Although the selected
approach was not the best fit for observed precipitation data, no further missing value
imputation techniques were performed considering the objectives of the research. The
erroneous information was replaced and the outliers were removed. Afterwards, the
feature selection was performed through the filter method. Data splitting was then
performed considering the physical and statistical properties of the time series.
Thereafter, several data transformation and scaling techniques were applied to the
dataset. The aim of this chapter was bringing the data to ready-to-use format by the
machine learning algorithms.

96



The research questions were answered in Chapter 6 together with a detailed
discussion of this research work. The impact on the machine learning model’s prediction
performance considering scaling and transformation was elaborated in 6.1 in order to
answer the first research question. Considering the importance of standard normal
distribution in statistics and in machine learning, the features were transformed to follow
normal or normal-like distributions. However, according to the results the transformed
data slightly underperformed. During this analysis, the results of scaled data using
normalization and standardization techniques were compared as well. Tree based
algorithms are scale-invariant and the results showed that this to be true. The slight
changes observed in the mean absolute error stemmed from the randomized search
hyperparameter tuning. As a result, the normalization technique applied on the raw data
gave the lowest mean absolute error for all three models and decided to utilize moving
forward.

The detailed analysis of machine learning models’ prediction performances using
different feature sets was presented in Chapter 6.2. Feature sets were created from three
features, expanding to nineteenth features. It was observed that with the addition of
features, the Multiple Linear Regression, the Random Forest Regression and the Gradient
Boosting Regression models were inclined to perform better. For sure some feature sets
influenced the performance of machine learning models more than others. Addition of
forecasted precipitation variables in feature set 3 and water level measurements coming
from Skærum Bro Station in feature set 4 made the highest influence. The reason why the
first two feature sets were included in the analysis was to observe the ability of machine
learning models to perform with limited information. Water level data has low variation,
thus, even without a forecasted precipitation it can be still expected to have good
predictions to some degree especially during dry weather conditions. Keeping the first
two feature sets helped to quantify how much the addition of the forecasted precipitation
data improves the prediction performance of the machine learning models.

The results of correlation analysis and the mutual information revealed that
precipitation has the least importance among all features on the future water level
predictions. The correlation analysis concluded water level measures at Skærum Bro
Station had the highest score. On the other hand, mutual information analysis concluded
simulated discharge at Skærum Bro Station had the highest score as described in Chapter
5. Additionally, recursive feature elimination method was explored during feature
selection and it is concluded even after dropping approximately 74% of the features ergo
information, Random Forest and Gradient Boosting models continued to perform. In fact,
the predictive performance for hereinabove models performed slightly better as
elaborated in Chapter 6.3.2. Thus, combining filter and wrapper methods improved the
machine learning prediction performance as answering the third research question.

For the last research question, comparing the predictive performance of machine
learning models, it can be concluded that each model had some advantages and some
flaws. In terms of mean absolute error, the Feed Forward Neural Network performed
slightly better. However, the difference between the Multiple Linear Regression model
was only 0.003 cm. Previous research showed that Feed Forward Neural Networks were
favorable in prediction and forecasting in general. Although this study confirmed that, it
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argues when the time, resources, or expert knowledge is limited, the Multiple Linear
Regression model can be thought as an alternative instead of the Feed Forward Neural
Network model considering the almost insignificant mean absolute error term in between.
The Random Forest Regression model underperformed among all other models.

Another interference from this research is that although the Random Forest
Regression model can deal with nonlinearity in the data, work well with the huge dataset,
generate good predictions, and handle missing data, it poses a serious difficulty when
encountering unseen data. It sticks to the range of training data and cannot extrapolate
outside of that range. In other words, predicting a target variable based on feature values
that are outside of the range of the original training dataset, the Random Forest will
assume the target variable will be around the largest number in the training set because,
in the Random Forest the trees are created based on the training data. The reason why
validation errors were considerably high for the Random Forest as presented in chapter
6.2, data split for the training and validation sets have different ranges of data for some
features. This is applicable for the Gradient Boosting Regression as well, since the
algorithm is tree based. Contrarily, the linear regression and neural networks can
extrapolate. It can also be deduced from this research that the Random Forest Regression
model is highly inclined to overfit on the training dataset unless hyperparameter tuning is
performed. Although both are tree based machine learning algorithms, the Gradient
Boosting did not suffer from the same problem as displayed in Figure 46.

The approach through predicting water level can be utilized in other sites. It was a
good practice to start with the Multiple Linear model due to its simplicity and time
efficiency. Tuning hyperparameters and feature selection through recursive feature
elimination method proved their worth in improving the predictive performance of
machine learning models.

In this research machine learning models were preferred in predicting water level
at the Storå River over numerical models. Although the numerical model is robust and
aids in managing the basin but may not be very accurate in specific locations. This
research focuses on building locally accurate machine learning models that may
complement the numerical model in managing the basin by providing locally accurate
water level forecasting.

98



7.2 Limitations and Recommendations

7.2.1 Limitations
There were some limitations encountered during this research. The first limitation

was the gap in the TIGGE data for the forecasted precipitation. This led to interruptions
in the dataset and some problems in data splitting. As discussed in the conclusion, having
different data ranges for training, validation and test data directs to the unfavorable
predictions by the tree based algorithms. Solution for this limitation using forecasted
precipitation data from local sources can be considered.

Missing value imputation for the historical precipitation by replacing them with
zero led to an underestimation for the yearly accumulated precipitation in years 2014 and
2016. Even though these variables were eliminated after the filter methods and were not
used in the machine learning models it is important to bring it as a limitation. In fact, the
reason why those precipitation features were not included in the model might be
underestimated missing value imputation. Solution for this limitation can be using
machine learning algorithms in missing value imputation or coming up with new
historical precipitation sources that can be used to merge data.

Another limitation about missing value imputation, the imputation with linear
interpolation technique would not be possible if the forecasting is on real time since the
next non-missing value is not observed yet. The solution for this can utilize other
techniques in imputing missing values that does not require the usage of upcoming data
to fill the missing value.

The time was a big constraint for this research. During randomized search only
5-fold cross validation and 10 iterations were employed due to time limitation. Although
this helped to decrease the overfitting of the machine learning models at a certain limit, it
can be improved further by increasing the number of folds in cross validation and the
iterations. It is important to note that the improvement does not follow a linear pattern. In
fact, for the number of folds in cross validation the optimum number is required to be
found, otherwise increasing the folds leads the machine learning models to work with
smaller training sets in each iteration which lowers the bias and increases run time and
variance of the estimate. Increasing the number of iterations forces the machine learning
model to try more combinations from the grid of hyperparameter values which would be
a potential time burden. Although increasing these numbers has potential to improve the
prediction accuracy of the machine learning models, it should be done carefully in order
not to end up with worse estimations and high model execution time.

Usage of the correlation analysis as a filter method might pose a limitation. If a
feature has a non-linear relationship with the target variable but not a strong linear one,
the feature selection through the correlation analysis considers eliminating that feature
due to low correlation score, although it could be useful for the non-linear methods.
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7.2.2 Recommendations
There are some aspects that can be explored for future works and have potential

to improve this research work further. Addition of new features can be counted as one of
the aspects that can be explored further. Addition of temperature, evapotranspiration,
irrigation supply, runoff, topography, land use data can be counted as some of them.
Besides, historical precipitation data from a different source would help to increase the
accuracy as well. Local observation centers can be used for this purpose. Moreover, as a
new popular technique, estimating the precipitation level through radar which provides
high spatial and temporal resolution can be employed for this purpose (Kreklow, 2020).

As another recommendation, it was demonstrated in the literature that the
machine learning model’s performance could be improved through hybridization with
other machine learning algorithms, soft computing techniques, numerical simulations,
and/or physical models (Mosavi et al., 2018). There have been several studies done
creating hybrid models by combining machine learning models and physical models
(Farfán et al., 2020; Hosseiny et al. 2020). These implementations supply higher
robustness and efficiency to the model in predicting complex hydrologic behavior which
can be considered as future work for this research.

Improving the missing value imputation techniques would help with the
performance of the machine learning models. In this research only fast imputation
techniques were harnessed. Several researchers have demonstrated the utilization of
machine learning models in missing value imputation resulted with trustable accuracy
(Gill et al., 2007; Petty and Dhingra, 2017). Employing machine learning algorithms to
get better estimation for missing values of water level and precipitation parameters can
be investigated further. Furthermore, changing the temporal resolution from hourly to
daily would smoothen the variations in the data which generates an advantage on missing
value imputation especially for precipitation data. As Hema and Kant mentioned, hourly
precipitation observations exhibit very high variation (Hema and Kant, 2017) and this
creates a challenge for the imputation of the missing values. Converting it to daily makes
the missing value computation easier which improves the prediction performance of the
machine model as well.

The station selected for water level was not highly influenced by the tidal effect
of the Nissum Fjord. The tidal influence in the selected water level station is very small
during very few days in the year. For the future works it would be interesting to use one
station that is further down closer to the fjord that has a very clear tidal effect in order to
investigate the tidal effect on the river. The tidal influence is also an important
phenomena to consider in case the findings of this research work would be utilized in
other sites that are influenced by the tides.
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Creating a stacked regression model would help to achieve more accurate
predictions than a single model can perform. The stacking regression constitutes a linear
combination of different machine learning models. In basic terms, the predictions coming
from one model are used for another model’s input (Breiman, 1996; Pavlyshenko 2018).
After going through all the improvements presented, a stacked regression model can be
created by using the presented models and several others to achieve better predictions.
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