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ABSTRACT 
 
 
 
Ramadas, Meenu. Ph.D., Purdue University, May 2015. Probabilistic Models for 
Droughts: Applications in Trigger Identification, Predictor Selection and Index 
Development. Major Professor: Rao S. Govindaraju. 
 

The current practice of drought declaration (US Drought Monitor) provides a hard 

classification of droughts using various hydrologic variables. However, this method does 

not yield model uncertainty, and is very limited for forecasting upcoming droughts. The 

primary goal of this thesis is to develop and implement methods that incorporate 

uncertainty estimation into drought characterization, thereby enabling more informed and 

better decision making by water users and managers. Probabilistic models using 

hydrologic variables are developed, yielding new insights into drought characterization 

enabling fundamental applications in droughts.  

Drought triggers are patterns in hydro-climatic variables that herald upcoming 

droughts and form the basis for mitigation plans. This thesis describes a new method for 

identification of triggers for hydrologic droughts by examining the association between 

the various hydro-climatic variables and streamflows over two study watersheds in 

Indiana, USA. The method combines the strengths of principal component analysis 

(PCA) for dimensionality reduction and copulas for building joint dependence. The 

expected values and ranges of predictor hydro-climatic variables for different streamflow 

quantiles are utilized to develop drought triggers for one-month lead time. 
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Accurate prediction of droughts requires a clear understanding of the dependence 

patterns among various influencing hydro-climatic variables and streamflows. A 

graphical modeling technique, employing conditional independence, is proposed to 

quantify the interrelationships between streamflows and a suite of available hydro-

climatic variables, and to identify a reduced set of relevant variables for parsimonious 

model development. The graphical modeling approach is compared to the state-of-the-art 

method for predictor selection based on partial mutual information. For both a synthetic 

benchmark non-linear dataset and a watershed in southern Indiana, USA, this approach 

shows more discriminating results while being computationally efficient. The 

parsimonious models performed equally well as the models with the full set of original 

predictors. 

In agricultural drought studies, soil moisture in the root zone of the soil is 

predominantly used to characterize agricultural droughts, but crop needs are rarely 

factored into the analysis. Accounting for crop responses to soil water deficits will 

provide a better representation of agricultural droughts, and is investigated in this thesis 

using crop stress functions available in the literature. A new probabilistic agricultural 

drought index is then developed within a graphical model (hidden Markov model) 

framework. This new index allows probabilistic classification of the drought states while 

taking into account the stress experienced by the crop due to soil moisture deficit. The 

method identified critical drought events and several drought occurrences that were not 

detected by popular indices such as standardized precipitation evapotranspiration index 

(SPEI) and self-calibrating Palmer drought severity index (SC-PDSI), and shows promise 

as a tool for agricultural drought studies. 
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An understanding of the role of hydrologic variables, either singly or in 

combination, is useful for assessment of overall drought status over a region. A 

multivariate cumulative density function (CDF)-based index is constructed using copulas, 

and probabilistic drought classification is performed using hidden Markov models. The 

resulting drought indices with various combinations of hydrologic variables are utilized 

to understand the roles of hydrologic variables for integrated drought assessment at 

watershed scales. In this thesis, the methodology is demonstrated using streamflow, 

precipitation and soil moisture variables to develop univariate and multivariate CDF-

based indices at 1-, 3- and 6-month time scales. Drought characterization varied across 

the univariate, bivariate and trivariate drought models in the case study. Results are found 

to be watershed specific, and multivariate models tend to better capture the early onset of 

drought events and persistence of the drought states. 
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 CHAPTER 1.   INTRODUCTION 
 
 
 

1.1 Background 

Drought, as a prolonged status of water deficit, is perceived as one of the most 

expensive and the least understood natural disasters. In monetary terms alone, a typical 

drought costs American farmers and businesses $6-8 billion dollars each year, more than 

damages incurred from floods and hurricanes [FEMA, 1995]. The consequences tend to 

be more severe in areas where agriculture is a major economic driver. Dracup et al. 

[1980] stated that proper definition of drought depends on the nature of water deficit 

relevant to the study area.  More than 150 definitions of droughts exist including both 

conceptual and operational definitions [Wilhite and Glantz, 1985].  

Broadly, droughts have been classified into meteorological, agricultural, 

hydrologic and socio-economic droughts [Wilhite and Glantz, 1985; Mishra and Singh, 

2010]. As water moves through the various components of the hydrologic cycle, 

precipitation deficits (meteorological droughts) lead to low soil moisture levels 

(agricultural droughts) that translate into low streamflows, reservoir and/or groundwater 

levels (hydrologic droughts). Drought conditions have a huge impact on allocation of 

resources, and hence affect the socio-economic status of dependent areas [Alcamo et al., 

2007; Burn et al., 2008].   
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Drought assessment has long been conducted by comparing current conditions of 

different variables related to the aforementioned types of droughts to their long-term 

averages, with the magnitude of the deficit reflecting severity of the drought. Variables 

such as precipitation, soil moisture, streamflow, snowpack, water storage and availability, 

evaporation and crop production, are valuable entities in drought studies. A drought 

index, on the other hand, has the information derived by comparing current conditions to 

historical conditions or long term averages expressed using statistical formulae, providing 

a measure for quantifying droughts and their magnitude [Fuchs, 2014]. Palmer drought 

severity index [PDSI; Palmer, 1965], crop moisture index [CMI; Palmer, 1968], 

standardized precipitation index [SPI; McKee et al., 1993], soil moisture drought index 

[SMDI; Hollinger et al., 1993], vegetation condition index [VCI; Liu and Kogan, 1996], 

surface water supply index [SWSI; Shafer and Dezman, 1982], and reclamation drought 

index [RDI, developed as a part of the Reclamation States Drought Assistance Act of 

1988] are some of the popular drought indices currently in use. They provide information 

on the major attributes of droughts namely the intensity, duration, severity and spatial 

extent. Each index has its advantages and limitations, and may be suitable for a specific 

application. Efforts to develop drought indices capable of addressing the probable 

causes/impacts of droughts have been underway for several decades [Panu and Sharma, 

2002]. Existing practices of drought characterization (for instance, the United States 

Drought Monitor) follow a hard classification system using popular drought indicators. 

This methodology is, however, limited by a serious disadvantage of not being able to 

account for uncertainty in drought categorization.  
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A clear distinction can be made between a drought indicator, a trigger and an 

index. A drought trigger is the specific value of a drought indicator that dictates the onset 

and retreat of a drought, and determines the need for management and mitigation 

[Steinemann et al., 2005]. This information, regardless of the type of drought, is useful 

for making drought management decisions. Triggers can be expressed as range of values 

of drought indicators leading to a particular magnitude of drought, that help plan the 

timing of the response, and magnitude of damage expected. Long records of drought 

episodes that can be identified from historical records of drought-related variables and 

associated drought indicator values are required to develop drought triggers for any 

spatial location and at any time scale. Unlike drought indices that are defined, 

identification of drought triggers is recognized as a very challenging problem [Palmer et 

al., 2002].  

Hydrologic variables are linked in complex ways. Precipitation and evaporation 

are acknowledged drivers of streamflows [Najjar, 1999; Chen et al., 2012]. In addition, 

soil moisture affects streamflow generation by controlling the partitioning of rainfall into 

runoff and infiltration [Western et al., 1999; Aubert et al., 2003]. Soil moisture possesses 

an intrinsic memory longer than several weeks to months [Entin et al., 2000; Koster et al., 

2010], and hence, including soil moisture enhances hydrological modeling at seasonal 

lead times [Anctil et al., 2008; Mahanama et al., 2008]. Variables such as temperature, 

pressure and wind speed are also important, as they control evapotranspiration losses and 

subsequently the amount of soil moisture. Surface air temperature, evaporation and mean 

sea level pressure are known to influence the magnitude and occurrence of rainfall over a 

region, and consequently streamflows [Ward, 1992; Parthasarathy et al., 1993; Trenberth, 
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1999]. Researchers rely on models to improve drought predictions using these variables. 

However, including all the predictors in the model increases the dimensionality of the 

problem, and does not always guarantee the best prediction results. The knowledge of 

interdependencies between variables could be utilized to include only the relevant 

predictors to yield parsimonious hydrological models. Predictor selection is therefore an 

integral component of the development of prediction models for streamflows and 

hydrological droughts. Among these, data-driven algorithms have been found to possess 

computational ease and robustness in predictor identification and model development. 

The droughts of the 1930s, 1950s, 1980s and 1990s in the last century in the 

United States had significant impact on the agricultural sector [Narasimhan and 

Srinivasan, 2005]. The most recent 2012 Midwest drought in the US severely affected the 

agricultural activities across the Corn Belt [Elliot et al., 2013] and the Midwest states 

[Mallya et al., 2013a]. Al Kaisi et al. [2013] conducted a detailed study of the 

unfavorable soil conditions and changes in soil strata in the state of Iowa as a result of the 

2012 drought. The authors state that changing soil water relationships could have 

detrimental effects on cultivation. Agricultural droughts develop when soil moisture 

deficits adversely affect crop growth, health, and yields, and are aggravated by periods of 

inadequate irrigation. They are characterized by lack of soil moisture, driven by 

prolonged periods of precipitation deficits, and followed by adverse effects on crop 

productivity [Heim, 2002; Wilhite, 2005]. Meteorologic and hydrologic drought indices 

(e.g., SPI and PDSI) have been often used in agricultural drought studies [Narasimhan 

and Sreenivasan, 2005]. The PDSI uses both precipitation and surface air temperature as 

inputs, in contrast to SPI that uses precipitation alone. However, PDSI is limited as an 
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indicator of soil moisture status or as being capable of identifying agricultural droughts; it 

demonstrates good correlation with soil moisture content during warm seasons but weak 

correlation in spring as the underlying model does not account for the effect of snowmelt 

[Dai et al., 2004]. Palmer [1968] developed the crop moisture index (CMI) as an index 

for short-term agricultural droughts from procedures similar to the PDSI. The CMI is 

computed from evapotranspiration deficits for monitoring short-term agricultural drought 

conditions that modulate crop growth. Meyer et al. [1993] developed a crop specific 

drought index (CSDI) for corn using evapotranspiration estimates. An alternative drought 

index standardized precipitation evapotranspiration index (SPEI)−that possesses the 

merits of PDSI and SPI in terms of sensitivity to temperature-driven evaporation that is 

important in crop growth and multi-scalar properties, respectively, was proposed by 

Vicente-Serrano et al. [2010]. The performance of SPEI in drought impact analyses and 

climate change studies is well documented [Yu et al., 2013; Potop et al., 2012; Vicente-

Serrano et al., 2010]. However, studies in the past have not addressed crop water stress-

based drought characterization schemes for agricultural droughts. There is a growing 

need for more research to understand and develop models/tools to monitor agricultural 

droughts. It is also desirable to design these models to account for uncertainty in drought 

classification.  

An overall drought assessment model over a watershed requires that variables 

representing different types of droughts, namely hydrological, meteorological and 

agricultural droughts, be included in the analysis. Numerous studies have recommended 

multivariate drought indices with different choice of variables [Keyantash and Dracup, 

2004; Karamouz et al., 2009; Vicente-Serrano et al.; 2010; Kao and Govindaraju, 2010; 
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Rajsekhar et al., 2014; Hao and Aghakouchak, 2014]. Drought characterization varies 

with different combinations of hydrologic variables present in the model. Among the vast 

suite of variables that drive droughts, a smaller subset if identified, could be used for 

efficiently performing overall drought monitoring and assessment. Previous studies have 

not directly addressed these aspects. 

  

1.2 Motivation 

Although probabilistic models exist for hydrological modeling and drought 

prediction and several indices have been designed for addressing drought assessment 

over the past century, these formulations are not suitable for development of triggers that 

require identification of ranges of predictor variables that herald a particular drought. 

Proven methodologies for parsimonious and robust models for drought analyses are 

lacking. Two major limitations are encountered in drought applications, namely the large 

dimensionality of predictor hydro-climatic variables, and modeling the joint dependence 

of predictands and relevant predictors. The motivation for this research is to develop and 

demonstrate the utility of probabilistic approaches to overcome these limitations, and 

bring uncertainty estimation into drought characterization thereby enabling informed 

decision making by water users and managers. This is accomplished by filling in some of 

the research gaps identified in the extraction of hydrologic drought triggers, predictor 

selection techniques for drought forecasting, developing probabilistic models for 

agricultural droughts, and the role of choice of hydrologic variables in multivariate 

drought monitoring. 
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1.3 Objectives of the Thesis 

The objectives of this research are as follows:  

i. To explore patterns in hydro-climatic variables as potential precursors to 

hydrologic droughts in watersheds.  

The joint distribution of streamflows and the important principal components of 

precursor hydro-climatic variables is modeled using an appropriate copula family for two 

study watersheds in Indiana, USA. The PCA-copula framework is then utilized to 

develop drought trigger information. While copulas and PCA have been widely used 

individually, no prior studies exist for identifying drought triggers in this fashion.  

ii. To extract the conditional independence structure between streamflow and 

prominent hydro-climatic variables, so as to develop a parsimonious multivariate 

statistical approach to streamflow/drought forecasting while honoring the 

dependence structure among the competing predictor variables.  

A graphical model-based approach allows for predictor selection as well as 

development of a streamflow forecasting model. The efficacy of this approach for 

supervised predictor selection from a pool of interdependent variables has not been 

evaluated in hydrologic applications.  

iii. To develop a probabilistic drought assessment model for agricultural droughts 

based on the concept of crop water stress using graphical models.  

Using a crop water stress function rather than soil moisture data will allow for 

characterization of agricultural droughts based on crop needs. By taking into account the 

crop-specific soil moisture requirements, the drought categorization from this index will 
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be more reflective of crop needs. Graphical models, specifically hidden Markov models, 

are utilized for probabilistic classification using the proposed index. 

iv. To explore the choice of hydrologic variables in overall drought monitoring at a 

watershed scale, over multiple time scales. 

Different hydrologic variables could be combined to yield models for overall 

drought assessment. Drought evolution in the different models is studied to understand 

the roles of selection of variables for drought classification. Use of cumulative 

probabilities from joint cumulative density functions (CDFs) as drought indicators in a 

hidden Markov model (HMM) framework allow for probabilistic drought categorization.  

 

1.4 Organization of the Thesis 

The current chapter provides background and motivation for this study. In 

Chapter 2, the first objective, the identification and development of hydrological drought 

triggers is discussed in detail. The predictor selection problem for streamflows and 

hydrological droughts, i.e., the second objective, is described in Chapter 3. The 

methodology and results for the third objective, to develop a new agricultural drought 

index that accounts for crop water stress, are presented in Chapter 4. In Chapter 5, the 

results of a case study on multivariate probabilistic drought analysis at multiple time 

scales are discussed. Chapter 6 contains the summary and conclusions derived from the 

drought studies.  

  

 
  

 

 



9 
 

CHAPTER 2.   IDENTIFICATION OF HYDROLOGIC DROUGHT TRIGGERS 
FROM HYDRO-CLIMATIC PREDICTOR VARIABLES 

 
 
 

2.1 Abstract 

Drought triggers are patterns in hydroclimatic variables that herald upcoming 

droughts and form the basis of mitigation plans. This chapter develops a new method for 

identification of triggers for hydrologic droughts by examining the association between 

various hydroclimatic variables and streamflows. Since numerous variables influence 

streamflows to varying degrees, principal component analysis (PCA) is utilized for 

dimensionality reduction in predictor hydroclimatic variables. The joint dependence 

between the first two principal components, that explain over 98% of the variability in 

the predictor set, and streamflows is computed by a scale-free measure of association 

using asymmetric Archimedean copulas over two study watersheds in Indiana, USA, with 

unregulated streamflows. The M6 copula model is found to be suitable for the data and is 

utilized to find expected values and ranges of predictor hydroclimatic variables for 

different streamflow quantiles. This information is utilized to develop drought triggers for 

1 month lead time over the study areas. For the two study watersheds, soil moisture, 

precipitation, and runoff are found to provide the fidelity to resolve amongst different 

drought classes. Combining the strengths of PCA for dimensionality reduction and 

copulas for building joint dependence allows the development of drought triggers. 
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2.2 Introduction 

The occurrence and magnitude of hydrologic droughts are heralded by triggers 

that may be manifested in specific patterns of hydro-climatic variables. Identification of 

these triggers at appropriate lead times is necessary for devising effective drought 

mitigation plans. Estimating water deficits and drought categories at weekly, monthly, 

seasonal, and annual lead times are needed for scheduling irrigation events and managing 

water resources of a region. Drought characterization is currently accomplished by 

indices such as Standardized Precipitation Index (SPI), Palmer Drought Severity Index 

(PDSI), Crop Moisture Index (CMI), Surface Water Supply Index (SWSI), and 

Reclamation Drought Index (RDI; developed as a part of the Reclamation States Drought 

Assistance Act of 1988). Drought indices are typically designed for assessing current 

conditions, and have little predictive capability. Large scale oceanic and atmospheric 

indicators such as the El Niño-Southern Oscillation (ENSO) phases, North Atlantic 

Oscillations (NAO), Pacific North American index (PNA), Atlantic Multidecadal 

Oscillations (AMO), and Pacific Decadal Oscillations (PDO) are used as long term 

precursors to annual/seasonal forecasts of precipitation [Ropelewski and Halpert, 1996; 

McHugh and Rogers, 2001; Maity and Kumar, 2008a]. However, for many parts of the 

world, including Indiana, USA, these indicators have been found to have little to no 

influence [Charusombat and Niyogi, 2011]. Further, their incapability to provide short-

term predictions (several weeks, to 6-month range) render them unsuitable as drought 

triggers for such time scales. We hypothesize that hydrological droughts, reflected in 

unregulated streamflows, would have precursors in local hydro-meteorologic variables 
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related to rainfall and soil moisture over the corresponding watersheds. McKay et al. 

[1989] suggested that accurate drought predictions will need models that link between 

climate and weather factors to streamflows and river stage data. 

Several considerations come into play for the development of drought triggers 

including drought types, data availability, choice of hydrologic variables (precipitation, 

temperature, streamflows, storage levels, etc.), temporal scales and validity of the trigger. 

Over the past two decades, drought triggers have been developed by several states and 

utilities [Steinemann, 2003]. However, these have met with limited success because of (i) 

anomalies between results from different drought indicators, and (ii) lack of a strong 

record length for proper model development and validation exercises. Moreover, these 

triggers are often defined as some preset thresholds to be crossed by various drought 

indices at the same instance of time for which drought status is being analyzed. Thus, 

they may not recognize early warning signals that may be present in the record. 

Though droughts are fundamentally triggered by insufficient precipitation, the 

evolution of water deficits from precipitation to soil moisture and to streamflows is not 

instantaneous and is controlled by complex physical mechanisms. As hydrologic 

droughts are based on abnormally low flows, estimation of streamflows is therefore a 

necessary prerequisite to drought analysis. Since a drought trigger governs the level of 

future response, it is important that the trigger be based on methods that convey 

predictive uncertainty. There are many methods available for estimation of streamflows, 

classified mainly into physics-based, conceptual, and data-driven approaches. Several 

watershed models have been developed that rely upon the physical knowledge of the 

watershed and the hydrological cycle, often resulting in complex representations that 
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require intensive computer effort for model calibration and corroboration. Data-driven 

techniques do not require detailed understanding of the inherent physical mechanisms, 

but have shown comparable accuracy for streamflow prediction as physics-based models 

[Wu et al., 2009]. The time-scale of one-month lead forecasts is particularly challenging 

because physics-based models (HEC-HMS, MIKE-SHE, etc.) are not able to project 

using input data beyond several hours to days without a disaggregation procedure. 

Process-based models such as SWAT perform simulations at a daily time step [Srinivasan 

and Arnold, 1994], and model outputs have to be aggregated to obtain monthly values. 

However, the strength of such models lies in examining long-term consequences of 

management practices rather than monthly forecasts. There are many conceptual lumped-

parameter models developed in the last four decades, mainly for flood forecasting, with 

one day or shorter time resolutions [Xu and Singh, 2004], but their predictive capabilities 

are very limited if the time horizon exceeds several days.  

Statistical approaches have been utilized to model the complex relationships 

between streamflows and the large-scale atmospheric circulation phenomena [Anmala et 

al., 2000; Maity and Kumar, 2008b]. The predictors used in majority of these data-driven 

approaches were hydro-climatic variables such as mean temperature, mean sea level 

pressure, soil moisture, precipitation, runoff and wind speed. While these studies have 

stressed the importance of hydro-climatic variables for enhancing streamflow prediction, 

they were primarily targeted towards long-range forecasting [Salas et al., 2011]. Even 

with the predictor set identified, new approaches are needed for achieving short-term 

(few weeks to months) forecasts. The use of advanced statistical models based on 

Markov properties [e.g. Mallya et al., 2013] have helped in probabilistic classification of 
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drought states and alleviated the need for user-specified thresholds for drought 

categorization. Thus, though robust models exist for forecasting streamflows and 

upcoming hydrologic droughts, these models are not suitable for development of triggers 

that require identification of the ranges of predictor variables that herald a particular 

drought.  

The joint probability density function between streamflows and hydro-climatic 

predictor variables is needed to identify and develop drought triggers. Copulas are a 

natural choice for this task [Nelsen, 2006]. They allow the dependence structure to be 

modeled without any restriction on the distributions of the marginals [Genest and Favre, 

2007], and have been gaining popularity with hydrologic applications. Favre et al. [2004] 

used Frank and Clayton 2-copulas to model the dependence between streamflow peaks 

and volumes. Salvadori and De Michele [2004] adopted copulas in their study of the 

return period of hydrological events. Zhang and Singh [2006] used copulas to determine 

bivariate distributions between flood peaks, volumes and durations, and employed them 

to define joint and conditional return periods needed for hydrologic design calculations. 

The joint distribution of intensity, duration and severity of droughts was modeled using 

copulas by Shiau et al. [2007], Wong et al. [2010], and Madadgar and Moradkhani 

[2013]. Maity and Kumar [2008a] analyzed the dependencies among the teleconnected 

hydro-climatic variables using copulas for the prediction of response variables using 

large scale oceanic and atmospheric indicators. Kao and Govindaraju [2010a] utilized 

copulas to construct an inter-variable drought index, where the dependence structure of 

precipitation and streamflow marginals was preserved. The review by Mishra and Singh 

[2010] highlights the expanding role of copulas in drought assessment studies. 
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Given the large number of potential hydro-climatic variables in the predictor set, 

the direct use of copulas to model their joint dependence with streamflows is impractical 

because of the mathematical complexity in constructing higher-dimensional copulas. If 

the dependence between all the interacting variables cannot be represented by 

multivariate Gaussian (or meta-elliptical) copulas, then models at even the trivariate level 

can be very challenging [Kao and Govindaraju, 2008, 2010b]. Moreover, with multiple 

interacting variables, the curse of dimensionality adds further challenges to estimation of 

model parameters from limited record lengths. While many options exist for modeling 

bivariate dependence between variables, models for higher dimensions are not easily 

available. 

Principal Component Analysis (PCA) provides an elegant way of projecting the 

precursor hydro-climatic variables onto a feature space, and representing the original data 

through a reduced number of effective features called principal components [Jolliffe, 

1986; Preisendorfer, 1988]. If the first few (two in this case) features are able to explain 

most of the variability (>90%) in the original data set, then substantial dimensionality 

reduction may be achieved through unsupervised learning. PCA is recognized as the most 

widely used tool for dimensionality reduction for multivariate data problems. Lins [1985] 

utilized PCA to construct parsimonious models for multi-site streamflows. Maurer et al. 

[2004] showed the effectiveness of PCA for both reducing the dimensionality of large 

data sets and better graphical representation of the modes of variability in streamflows. 

Tripathi and Govindaraju [2008] developed algorithms for data compression using PCA 

for data sets with noise. PCA was adopted by Keyantash and Dracup [2004] to achieve 

dimensionality reduction for developing an aggregate drought index. 
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The goal of this chapter is two-fold. The first goal is to model the joint 

distribution of streamflows and the important principal components of precursor hydro-

climate variables using an appropriate copula family for two study watersheds in Indiana, 

USA. This copula model is tested for its capability to forecast low streamflows that are of 

concern for hydrologic droughts. The second goal is to utilize the PCA-copula framework 

to develop drought trigger information. While copulas and PCA have been widely used 

individually, to the best of my knowledge, no prior studies exist for identifying drought 

triggers in this fashion. The details of study watersheds are provided in section 2.3. The 

methodology adopted in the study with details of principal components analysis (PCA), 

copula models and drought trigger analysis are explained in section 2.4. These are 

followed by results and discussion in section 2.5, and the summary and conclusions of the 

study in section 2.6. 

 

2.3 Study Area and Data Used 

2.3.1 Study Area 

The study was carried out over two watersheds in the state of Indiana, USA. Both 

the watersheds form a part of the Ohio River Basin. The first watershed (WS I) extending 

from 38°34’N to 39°49’N and 85°24’W to 86°31’W spreads over 6259 square 

kilometers. The second watershed (WS II) lies between 40°47’N to 41°24’N and 85°8’W 

to 86°20’W and extends over an area of 1657 square kilometers. The two watersheds are 

shown in Figure 2.1. The land use in these watersheds consists of mainly agricultural and 

forest lands, followed by public and urban built-up lands. Agriculture being the major 
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economic activity prevalent in WS I and WS II, high irrigation water demands exist 

during the growing season. The choice of the watersheds was governed by the need to 

conduct drought analyses for locations, where streamflows were not influenced by human 

activities. 

 

2.3.2  Data Used 

The 30 m resolution DEMs obtained from USGS National Elevation Data set was 

used to delineate the watersheds. Though the choice of coarser resolution affects the 

identification of drainage features in low relief landscapes, there is substantial reduction 

in computational efforts involved in the processing of the 30 m digital elevation model 

(DEM) over a high-resolution DEM. Modeling the dependencies and analysis of drought 

triggers require a long record of historic observations. Therefore, monthly data with a 

minimum record length of 50 years were adopted in the present study. The various 

hydroclimatic variables used in the study are listed in Table 2.1. The 0.5° grid resolution 

climate prediction center (CPC) global monthly data sets [Huang et al., 1996; Fan and 

van den Dool, 2004], available from 1948 onwards, were used. The land model was 

treated as a one-layer ‘bucket’ water balance model, when generating the CPC data sets. 

The data used in our study include modeled monthly soil moisture values, modeled 

monthly runoff values, observed monthly precipitation values, observed monthly 

temperature values, and modeled monthly evaporation values. The location of CPC 

stations is marked by circles in Figure 2.1. Given the small watershed sizes determined 

by the need for unregulated streamflows, the number of CPC grid points directly over the 

study areas is quite small. The variables: sea-level pressure, u-wind, and v-wind were 
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obtained from the NCEP/NCAR Reanalysis-1 project data, at a spatial resolution of 2.5° 

X 2.5° [Kalnay et al., 1996]. The resultant of the u-wind and v-wind components was 

adopted as the wind speed variable in the present study. Given the monthly time scale 

chosen for this study, the time of concentration for these watersheds is in the order of 

days. Thus, variables were multiplied by the Thiessen weights at different grid points to 

obtain their spatially averaged values over the study watersheds. The US Geological 

Survey (USGS) monthly streamflow data from 1958 to 2010 recorded at the USGS 

03371500 (East Fork White River near Bedford, Indiana) were used for WS I, while the 

data at USGS streamflow gage 03328500 (Eel River near Logansport, Indiana) from 

1948 to 2010 were used for WS II. 
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Figure 2.1 Map of the study watersheds WS I and WS II 
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Table 2.1 List of variables used in the study 

Sl. No Variables Used Abbreviation Unit 
1 Soil moisture SMTR mm 
2 Precipitation PPTN mm 
3 Temperature TEMP °C 
4 Runoff RNF mm 
5 Evaporation EVPN mm 
6 Sea level pressure PSSR mbar 
7 Wind Speed WIND m/s 
8 Streamflow SF m3/s 

 

2.4 Methodology 

2.4.1 Dimensionality Reduction Using Principal Components Analysis 

The formulation of a dependence model between the seven predictor variables in 

Table 2.1 and streamflows is impractical even when using copulas. PCA was performed 

to transform the set of correlated n-dimensional (n=7 here) predictor set into another set 

of n-dimensional uncorrelated vectors (called principal components). The PCs are 

arranged in order of their ability to explain the variability in the data. The conventional or 

standard PCA, which is formulated as an eigenvalue problem, was used for unsupervised 

dimensionality reduction [Jolliffe, 1986]. Prior to extracting the principal components, 

the mean value was subtracted from each of the predictors to obtain a series of predictor 

anomalies. The covariance matrix was obtained for the anomaly data sets, and the 

eigenvalues and eigenvectors of this covariance matrix were computed. The degree of 

dimensionality reduction achieved in the predictor set was determined by variance 

explained by the first two principal components.  
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2.4.2 Asymmetric Archimedean Class of Copulas 

A copula is a function that models the dependence between multiple random 

variables, regardless of their marginals. A d -dimensional copula is a multivariate 

cumulative density function (CDF) C  defined in the unit d -dimensional space [ ]0,1 d

with uniform margins [ ]0,1 and with the following properties: (i) [ ] ( )0,1 , 0du C u∀ ∈ =  

if at least one coordinate of u  is equal to 0, and ( ) kC u u=  if all the coordinates of u  are 

equal to 1 except ku ; (ii)  and [0,1]da b∀ ∈  such that [ ]( ), , 0,ca b V a b≤ ≥  where V  is 

the C -volume [Nelsen, 2006]. The copula approach to dependence modeling has its roots 

in the theorem by Sklar [1959], according to which a d -dimensional CDF with 

univariate margins 1 2, ,..., dF F F  is defined by 

1 2 1 1 2 2 1 2( , ,.., ) ( ( ), ( ),..., ( )) ( , ,..., )d d d dH x x x C F x F x F x C u u u= =                                       (2.1) 

where ( )k k kF x u= for 1, 2,...,k d=  with ( )1,0UU k ∈  if kF  is continuous. 

Archimedean copulas are very popular, with both symmetric and asymmetric 

forms available in the literature [Joe, 1997; Nelsen, 2006]. They possess closed form 

expressions and allow modeling of a variety of different dependence structures. An 

Archimedean symmetric d -copula is of the form 

1

1
( ) ( )

d

k k
k

C u uϕ ϕ−

=

 
=  

 
∑                                                                                                   (2.2) 

where the function ϕ  (called the generator of the copula) is a continuous strictly 

decreasing function from [ ]0,1  to [0, )∞ , such that (0)ϕ = ∞  and  (1) 0ϕ = , and its 
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inverse 1ϕ−  is completely monotone on [0, )∞  i.e., 1ϕ−  has derivatives of all orders 

which alternate in sign [Nelsen, 2006]: 

( ) ( )1

1 0
k

k
k

d t
dt
ϕ−

− ⋅ ≥                                                                                                        (2.3) 

for all t  in [0, )∞  and 1,2,..., .k d=   

In equation (2.2), if a certain ku  is assigned the value 1, then the joint distribution 

of 1 2( , ,..., | )d ku u u u  is obtained. Since ( ) 0kuϕ =  when 1,k =  the ( 1d − )-dimensional 

marginal of the symmetric Archimedean copula is also an Archimedean copula. The 

expressions for these ( 1)d − -dimensional copulas are identical regardless of the choice 

of k . As a result, only one Archimedean 2-copula is required to model all mutual 

dependencies among the variables. This exchangeability property that can be modeled by 

symmetric copulas limits the nature of the dependence structures. Since the study took 

into account correlated variables such as streamflows and principal components that 

possess different bivariate dependence structures, a more general multivariate extension 

of the Archimedean 2-copula, namely the fully nested or asymmetric copula as described 

in Whelan [2004], was adopted here. This copula is given by 1d −  distinct generating 

functions as: 

( ) ( )( )( )1 2 1 2 1 1 2 1, ,..., , ,..., , ...d d d dC u u u C u C u C u u− −=                                                      (2.4) 

For example, in a fully nested 3-copula, two variables 1u  and 2u  are coupled using 

copula 2C   and the copula of 1u  and 2u , is coupled with 3u  by copula 1C . In general, 

there are ( 1) / 2d d −  ways of coupling d  variables. When the bivariate joint probability 
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of two variables conditioned on the third variable is computed, different dependence 

structures are obtained based on the conditioning variable. Grimaldi and Serinaldi [2006] 

used asymmetric Archimedean copulas to model trivariate joint distribution of flood 

peaks, volumes and durations. A nested 3-copula was adopted in the present study to 

model the dependence between the monthly streamflow anomaly and the first two 

principal components of a set of predictor variables. There are two parameters for the 

nested 3-copula model: 1θ  and 2θ  such that 1 2θ θ≤  implying a higher degree of 

dependence for the inner nested variables. It has been found that only two dependence 

structures can be reproduced for three possible pairs [Grimaldi and Serinaldi, 2006]. 

When two variables 1u  and 2u  are likely correlated with the third one 3u , and the degree 

of dependence between 1u , 2u  is stronger than that of either 1u  and 2u  with 3u , the 

asymmetric 3-dimensional model may be applied. The dependence between the variables 

is expressed in terms of the Kendall’s correlation coefficient,τ . Kendall’s τ  for a 

random vector ( , )TX Y  is simply the probability of concordance minus the probability of 

discordance [Embrechts et al., 2003]: 

( )( ){ } ( )( ){ }Prob 0 Prob 0XY X X Y Y X X Y Yτ = − − > − − − <                                 (2.5) 

The various asymmetric Archimedean copula families selected for the study, their 

permissible θ  values, and dependence ranges are listed in Table 2.2. 
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2.4.3 Parameter Estimation 

Several copula parameter estimation methods are available in the literature 

namely, the method of moments, canonical maximum likelihood method, and inference 

from margins method. When one-parameter bivariate copulas are adopted, the popular 

approach is the simple method of moments based on inversion of Spearman’s or 

Kendall’s rank correlation [Genest and Favre, 2007]. In the multivariate-multiparameter 

case, this method becomes less elegant and may lead to inconsistencies. In such 

instances, a more natural estimation technique is the canonical maximum likelihood 

(CML) method [Genest et al., 1995; Kojadinovic and Yan, 2011]. The parameters of the 

five nested 3-copula families used in this study were estimated using the CML method. 

This method performs a non-parametric estimation of the marginals by using the 

respective scaled ranks. The dependence parameters 1θ  and 2θ  are obtained by 

maximizing the log-likelihood function ( )l θ  given by:  

( ) ( ) ( ) ( ){ }1 1 2 2
1

ˆ ˆ ˆlog , , ,
n

i i d id
i

l c F x F x F xθθ
=

 =  ∑ 
                                                        (2.6) 

where cθ  denotes the density of the copula Cθ , and ( )k̂ ikF x (also denoted as ku ) is the 

rank-based non-parametric marginal probability of thk variable given by: 

( ) ( )
1

1ˆ 1,2,...,
1

n

k ik ik ik
i

F x I X x k d
n =

= ≤ =
+ ∑                                                             (2.7) 

where ( )I   is indicator function returning 1 if the argument is true and 0 otherwise. 
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Table 2.2 Asymmetric Archimedean copula families used in the study 

 

Type Nested Copula ( )( )3 1 21 2
, ,C u C u uθ θ   2 1θ θ≥ ∈  12 23 13, ,τ τ τ ∈  Reference 

M3 ( )-1 -θ u-θ -θ -θ u -θ u (θ /θ )-1 -1 1 31 2 2 1 2 2 1 2
1  log {1-(1-e ) (1-[1- 1-e  (1-e ))(1-e )] )(1-e-θ )}  (0,∞) (0,1) Joe, 1997 

M4 θ θ (θ /θ ) θ ( 1/θ )2 2 1 2 1 1
1 2 3[(u u 1) u 1]− − − −

+ − + −  (0,∞) (0,1) Joe, 1997 

M5 ( ) ( )( ) ( ){ }
(1/θ )1(θ /θ )1 2 θ θθ θ θ 1 12 2 2

1 2 2 3 31 1 u 1 1 u 1 u (1 (1 u ) ) (1 u )− − − − + − − − + −
 
  

 (1,∞) (0,1) Joe, 1997 

M6 θ θ (θ /θ ) θ (1/θ )2 2 1 2 1 1{ ([( log u ) ( log u ) ] ( log u ) ) }1 2 3e − − + − + −
 

(1,∞) (0,1) 
Joe, 1997; 

Embrechts et al., 
2003 

M12 θ θ (θ /θ ) θ (1/θ )1 1 1 12 2 1 2 1 1
1 2 3{([(u 1) (u 1) ] (u 1) ) 1}− − − −− + − + − +  (1,∞) (0.333,1) Embrechts et al., 

2003 
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2.4.4 Goodness-of-fit Tests for Asymmetric Copulas  

When there exist more than one feasible copula families that satisfy the 

dependence range for the given data, the final selection of a suitable copula is based on 

the best fit to observations. This fit can be assessed graphically by comparing the scatter 

plots of observed and simulated data in the case of bivariate distributions, but becomes 

difficult for higher dimensions. Goodness-of-fit tests examine the null hypothesis 

0 0:H C C∈  for a copula class 0C  against 1 0:H C C∉ . These tests compare the distance 

between the empirical distribution of copula, nC  and an estimation of 
n

Cθ  of C  obtained 

under 0H  [Genest et al., 2009]. Formally, the goodness-of-fit tests are based on the 

statistic:  

( ) ( ){ } [ ]0,1
n

d
nn C u C u uθΩ = − ∈                                                                              (2.8) 

where the empirical copula of the data 1 2, ,..., dX X X  is defined by Deheuvels [1981] as: 

( ) ( ) [ ]
1

1 , 0,1
n

d
n i

i
C u I U u u

n =

= ≤ ∈∑                                                                                  (2.9) 

In this study, the rank-based versions of Cramér-von Mises and Kolmogorov-Smirnov 

statistics were used for testing the goodness-of-fit of the nested copulas. The Cramér-von 

Mises statistic nS  has been a popular goodness-of-fit test procedure for copula models 

[Genest et al., 2009]. The statistic nS  was determined using Equation (2.10), using nC , 

the empirical copula computed as per Equation (2.9), and substituting the value of Cθ  

evaluated from the copula expression: 
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( ) ( ){ }2

1

ˆ ˆ
n

n

n n i i
i

S C U C Uθ
=

= −∑                                                                                         (2.10) 

The Kolmogorov-Smirnov statistic nT  utilizes the absolute maximum distance 

between the empirical copula probability distribution and that simulated using the 

estimated parameters to measure the fit of the copulas as shown below [Genest et al., 

2009].  

( ) ( ){ }[0,1]
max | |d

nn nu
T n C u C uθ∈

= −                                                                           (2.11) 

Additionally, the probability plots of the empirical distribution and the nested 

copula families were compared to assess the performance of copulas. The family 

providing the best fit based on the above criteria was selected for subsequent analysis. 

 

2.4.5 Streamflow Forecasting and Drought Analysis 

The joint dependence modeled using the best copula was employed to estimate 1 

month ahead streamflows. The probabilistic predictions of streamflows at different 

quantiles were made using the copula function. The expected values of monthly 

streamflows during the model development and model testing periods were computed. 

The range of forecasts was quantified by estimating predictions at 2.5% and 97.5% 

probabilities, i.e., 95% confidence interval for the prediction. The forecasts of streamflow 

were analyzed to identify the occurence of extremes, particularly for droughts in the 

study area. Given the focus on streamflows in this study, hydrological droughts were 

characterized by the standardized streamflow index that is similar to the SPI introduced 

by McKee et al. [1993] for meteorological drought analysis. The long-term streamflows 

 
  

 

 



27 
 

record was fitted to a gamma probability distribution and then transformed to a standard 

normal distribution through the quantiles so that the mean standardized index for a 

certain location and particular period (1 month) is zero [Edwards and McKee, 1997]. A 

positive value of the index shows the degree of wetness, while a negative value indicates 

the severity of streamflow deficit. The ranges of this drought index for different 

hydrological conditions, labeled exceptionally dry (D4) to exceptionally wet (W4), are 

presented in Table 2.3. This drought severity classification based on SPI values was 

adopted from http://droughtmonitor.unl.edu/classify.htm. The streamflows estimated 

using copula were used for the prediction of droughts in the study areas. 

 
Table 2.3 Range of drought index for different hydrological states 

State Description Drought Index 
D4 Exceptional drought -2 or less 
D3 Extreme drought -1.6 to -1.9 
D2 Severe drought -1.3 to -1.5 
D1 Moderate drought -0.8 to -1.2 
D0 Abnormally dry -0.5 to -0.7 
Normal Normal condition -0.4 to 0.4 
W0 Abnormally wet 0.5 to 0.7 
W1 Moderately wet 0.8 to 1.2 
W2 Severely wet 1.3 to 1.5 
W3 Extremely wet 1.6 to 1.9 
W4 Exceptionally wet 2 or more 

 

2.4.6 Analysis for Drought Triggers 

The occurrence of hydrological extremes in the study areas was highly correlated 

with the local hydroclimatic variables at 1 month lead times, and as such short-term 

predictions of droughts could be achieved. The joint dependence information contained in 
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the copula was exploited to obtain the expected values of the climate precursor anomalies 

conditioned on a streamflow anomaly. This allowed for identification of patterns in the 

precursors that could trigger hydrological droughts of different categories. 

 

2.5 Results and Discussion 

2.5.1 Principal Components Analysis 

The anomalies of hydroclimatic predictors and streamflows at monthly scale were 

obtained by subtracting their respective monthly means. The dependence between the 

first two principal components of the anomalies of these variables was represented by a 

joint asymmetric copula in the present study and was used to predict streamflows. The 

data from January 1958 to December 1993 were used for developing the statistical model 

for WS I, whereas model development period for WS II was from January 1948 to 

December 1990. Thus, two thirds of the data were used for model training and the 

remainder used for evaluating model performance. 

Starting from the large suite of potential predictors, PCA was used for 

dimensionality reduction. The results of principal components analysis performed on the 

predictor variables for the two watersheds are given in Table 2.4. As the first two 

components (PCs) were found to explain more than 98% of the variance, only these were 

selected for modeling streamflows. Next, the correlation values of different pairs 

(streamflow anomaly and two PCs) for different lags (1–3 months) were computed. PCs 

from predictor variables lagged by only 1 month were adopted for streamflow 

forecasting, as significant correlations were observed at this lag for both WS I and WS II.  
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Table 2.4 Principal components and the explained variance 

Principal Component Eigenvalues Explained Variance (%) 
WS I WS II WS I WS II 

1 4158.98 3535.89 80.52 81.17 
2 943.94 773.00 18.27 17.75 
3 33.95 29.50 0.66 0.68 
4 22.83 11.54 0.44 0.26 
5 2.96 3.13 0.06 0.07 
6 2.19 2.59 0.04 0.06 
7 0.51 0.57 0.01 0.01 

 

2.5.2 Analysis of Asymmetric Archimedean Copula  

The joint dependence between the streamflow anomaly, PC-1 and PC-2 requires 

that the nature of association between them be identified. The scatter plots of the pairs of 

predict and predictor variables indicated a higher degree of dependence between the 

streamflow anomaly and PC-1 with a correlation of 0.43 and 0.37 for WS I and WS II, 

respectively. The correlation between streamflow anomaly and PC-2 is 0.08 and 0.02, 

respectively, for WS I and WS II, whereas the first two PCs are uncorrelated by nature. 

Correlations between higher order PCs are very close to zero. 

The scatter plots indicate that the pairs of variables have different bivariate 

dependence structures that cannot be modeled by the symmetric copulas (not included 

here for brevity). The Kendall’s τ  values of the various pairs of these variables are listed 

in Table 2.5. Given this nature of dependence, a class of asymmetric Archimedean 

copulas were adopted wherein the streamflow anomaly and PC-1 was coupled by a 

copula C2, and this structure was then associated with PC-2 by another copula C1. 
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From the streamflow anomaly values and the two PCs, their rank-based 

nonparametric marginal probabilities 1 2 3, ,u u u , respectively, were calculated for modeling 

the copula function. The properties of asymmetric Archimedean copulas are mentioned in 

section 2.4.2. However, as the study data set did not conform to the requirement of the 

M12 nested 3-copula family that 12 21 13, , [0.333,1]τ τ τ ∈  (Table 2.2), this copula family was 

rejected for both study watersheds. 

 

2.5.3 Parameter Estimation 

The parameters of the nested copula were estimated using the canonical 

maximum likelihood  (CML) method [Genest et al., 1995; Kojadinovic and Yan, 2011]. 

The parameter values must conform to the range specified for each class of copula. The 

condition that the more nested variables have a stronger degree of dependence among 

them i.e. 2 1 [0, )θ θ≥ ∈ ∞  was satisfied by the M3 and M4 families, and the condition 

2 1 [1, )θ θ≥ ∈ ∞  was satisfied by the M5 and M6 families of copula. The estimated values of  

the copula parameters and the maximum likelihood value obtained for each of the copula 

families are listed in Table 2.5. 

 

2.5.4 Goodness-of-fit Tests  

From the copula families evaluated in the study, the best copula was selected 

using popular goodness-of-fit measures. The probability distribution function of different 

copula families and the empirical copula are plotted in Figure 2.2. The performance 

statistics computed for the probability distribution function between the empirical and 
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estimated copulas are given in Table 2.6. The M6 copula family was found to have 

lowest value of nS  and nT  statistics calculated for WS I. The goodness-of-fit for this 

copula family is also evident from Figure 2.2(a).  The lowest value of nS  and nT  was 

obtained for M6 copula in the case of WS II. It also provided the best distribution fit 

among all copula models in Figure 2.2b. Plots in Figure 2.3 show the performance of 

only the M6 copula for different months, suggesting that the dependence structure of the 

first two principal components of anomalies of the hydroclimatic variables and 

streamflow anomalies could be modeled by the same M6 copula family for all months in 

both the watersheds. 

 

Table 2.5 Parameter θ  for different copulas 

Nested 
Copula 
Family 

Maximum Likelihood Estimate 

1θ  2θ  Maximum likelihood 
value 

 WS I WS II WS I WS II WS I WS II 
M3 0.005 0.185 3.35 2.71 55.71 47.12 
M4 0.005 0.001 0.69 0.63 45.34 48.93 
M5 1.08 1.10 1.57 1.35 44.73 28.33 
M6 1.04 1.05 1.45 1.31 56.17 41.01 

 

Table 2.6 Goodness-of-fit test statistics for different copulas 

Nested Copula 
Family 

nS  nT  

WS I WS II WS I WS II 
M3 0.064 0.061 0.038 0.038 
M4 0.105 0.116 0.051 0.044 
M5 0.046 0.053 0.040 0.044 
M6 0.043 0.043 0.038 0.041 
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Figure 2.2 Comparison plots of probability distributions of different copula families used 
in (a) WS I and (b) WS II 

 

 

Figure 2.3 Plots showing M6 copula fit for each month in (a) WS I and (b) WS II 
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2.5.5 Streamflow Prediction Using Copula 

Given 2u  and 3u  (the rank-based values of PCs extracted from the predictors), the 

probability distribution of 1u  (derived from streamflow anomalies) was generated using 

the M6 copula model (Table 2.2). The streamflow anomalies corresponding to different 

quantiles were calculated from this CDF. The rank-based non-parametric marginal 

probabilities at 0.025, 0.5 and 0.975 quantiles were calculated and transformed into the 

streamflow anomaly values; subsequently, the estimates of streamflows for the next 

month were obtained. Streamflows simulated for the model development period were 

compared with the observed flows for evaluating model performance. 

The model developed for WS I was tested for the period January 1994 to 

December 2010, while model testing was carried out for the period 1991-2010 for WS II. 

The PCA coefficients obtained for predictors during model development period were 

used to obtain the PCs for the testing period as well. The predicted streamflow values for 

the model development and testing periods are compared with corresponding observed 

flows in Figures 2.4a, 2.4b, 2.5a and 2.5b for the two watersheds. The uncertainty in the 

predictions is quantified by the plot of interquantile range of predicted streamflows. Most 

of the observed flows lie within the predicted range during the model development 

periods in WS I. Typically, low flows in the late 1960s and 1970s are in close agreement 

with the expected values of streamflows obtained from the model (Figure 2.4a). The low 

flows during the testing period, especially in the 1990s, match well with the expected 

values in Figure 2.4b. However, this is not the case with high flows in WS I during both 

training and testing periods, where 1 month lead forecasts underestimate the observed 
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peaks. In WS II, the recorded flows fall within the range of probabilistic predictions 

offered by the developed model. In Figure 2.5a, the predicted low flows in the 1950s, 

1960s, and 1980s conform to observations. During the testing period also, the model 

performed well with low flow predictions (Figure 2.5b). The peak flows for both training 

and testing periods were typically underestimated perhaps because of the small numbers 

of training samples in this range. Additionally, the box plots for model development and 

testing periods in WS I and WS II in Figures 2.4c and 2.5c, respectively, indicate that 

though the model performance is not satisfactory in the case of high flows, low flows are 

estimated well. Overall, the predictive capability of the model was found to favor low 

flow conditions, prompting us to explore the development of droughts over the two study 

watersheds. The coefficients of determination (R2) values obtained were 0.64 and 0.53, 

respectively, for the model development and testing periods in WS I, and 0.58 and 0.50, 

respectively, for WS II. Comparisons with state-of-the-art statistical models [Tripathi and 

Govindaraju, 2008] using the same set of predictors for streamflow showed similar 

performance, but the results are not reported here for brevity. 
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Figure 2.4a Comparison plots of observed and predicted streamflows in WS I during 
model development period (lower and upper quantile curves correspond to 0.025 and 

0.975 quantiles, respectively) 

 

 

Figure 2.4b Comparison plots of observed and predicted streamflows in WS I during 
model testing period (lower and upper quantile curves correspond to 0.025 and 0.975 

quantiles, respectively) 
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Figure 2.4c Box plots for observed and predicted (expected) values of monthly 
streamflows during model development and testing periods in WS I. On each box, the 
central mark is the median, the edges of the box are the 25th and 75th percentiles, the 

whiskers extend to the most extreme data points not considered outliers, and outliers are 
plotted with a ‘+’ symbol 

 

 

Figure 2.5a Comparison plots of observed and predicted streamflows in WS II during 
model development period (lower and upper quantile curves correspond to 0.025 and 

0.975 quantiles, respectively) 

 
  

 

 



37 
 

 

Figure 2.5b Comparison plots of observed and predicted streamflows in WS II during 
model testing period (lower and upper quantile curves correspond to 0.025 and 0.975 

quantiles, respectively) 

 

 

Figure 2.5c: Box plots for observed and predicted (expected) values of monthly 
streamflows during model development and testing periods in WS II. On each box, the 
central mark is the median, the edges of the box are the 25th and 75th percentiles, the 

whiskers extend to the most extreme data points not considered outliers, and outliers are 
plotted with a ‘+’ symbol 
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2.5.6 Drought Analysis 

The results of the drought analysis carried out for the model development period 

(January 1948-December 1993) for WS I are shown in Figure 2.6a. There were few 

occurences of D3 and D4 classes of droughts during the model development periods, and 

mild (D0) and moderate (D1) droughts prevailed in most of the drought months. The 

drought index values obtained from the expected streamflows provided good forecasts of 

dry as well as wet conditions. The drought analysis was then carried out for the testing 

period and compared with the observed conditions. Few occurences of D2 and D1 classes 

of droughts marked the testing period. Wet conditions dominated during this period, with 

most of them being underestimated by the model (Figure 2.6b). The plots for drought 

indices calculated for WS II in Figure 2.7a and 2.7b also indicate that different drought 

categories were better predicted than the wet categories. The sequences of drought 

months in different sub-periods during the entire model development and testing periods 

were also well predicted.  

 

 

Figure 2.6a Drought index values during the model development period in WS I 
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Figure 2.6b Drought index values during the model testing period in WS I 

 

 

Figure 2.7a Drought index values during the model development period in WS II 

 

 

Figure 2.7b Drought index values during the model testing period in WS II 
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Apart from visual inspection, the model performance for multiple category 

classification of streamflows was assessed by computing the contingency coefficient C , 

proposed by Pearson [1904]. This coefficent is a measure of degree of association 

between multiple categories in a contingency table classifying N  samples [Gibbons and 

Chakraborti, 2011] and mathematically expressed as: 

QC
Q N

 
=  + 

                                                                                                            (2.12) 

where, Q  is a statistic that tests the null hypothesis that there is no association between 

observed and predicted categories.  

Q  is expressed as: 

( )2

1 1

r k
ij i j

i j i j

NX X Y
Q

NX Y= =

−
=∑∑ YY

YY

                                                                                           (2.13) 

where r  and k  are the number of categories, ijX  is the number of cases falling in thi  

observed and thj  predicted category, .
1

k

i ij
j

X X
=

=∑  and .
1

r

j ij
i

Y X
=

=∑ . 

The statistic Q  approximately follows chi-square distribution with degrees of 

freedom (dof) equal to ( )( )1 1r k− − . Thus, the null hypothesis (no association) can be 

rejected if the p-value is very low. Higher values of C  correspond to better association. 

The value of C  cannot exceed 1 theoretically and has an upper bound of 

( )( )max ( 1) / where min ,C t t t r k= − = [Gibbons and Chakraborti, 2011]. The ratio 

max/C C  is often used as a measure of degree of association.  
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In order to ensure sufficient data for robust statistics, a contingency table with 

three different categories: dry, normal and wet was prepared. The extreme categories 

were merged to ensure that the observations and predictions are available sufficiently in 

all categories. These contingency tables are shown in Tables 2.7a and 2.7b for WS I and 

WS II, respectively. Thus, both r  and k  are 3, and dof is 4. The statistic Q , contingency 

coefficient C , and the measure of degree of association max/C C  are shown at the end of 

Tables 2.7a and 2.7b. The low p-values for the statistic Q  indicate that the null 

hypothesis of no association between observed and predicted categories should be 

rejected. The degree of association was found to be reasonable for both the watersheds 

during model development as well as testing periods. 

 

Table 2.7a Contingency table and degree of association between observed and predicted 
drought categories for WS I 

 

Predicted 
Category 

Model development period 
(1958-1993) 

Model testing period 
(1994-2010) 

Observed Category Observed Category 
Dry Normal Wet Dry Normal Wet 

Dry 71 18 11 18 9 5 
Normal 78 38 39 30 23 16 

Wet 31 62 84 8 30 65 
Q 85.75 52.92 

DOF 4 4 
p-value < 0.0001 < 0.0001 

C 0.407 0.454 
Cmax 0.817 0.817 

C/Cmax 0.498 0.556 
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Table 2.7b Contingency table and degree of association between observed and predicted 
categories for WS II 

 

Predicted 
Category 

Model development period 
(1948-1990) 

Model testing period 
 (1991-2010) 

Observed Category Observed Category 
Dry Normal Wet Dry Normal Wet 

Dry 107 24 23 40 14 15 
Normal 63 50 45 24 19 13 

Wet 33 80 91 12 39 64 
Q 105.54 54 

DOF 4 4 
p-value < 0.0001 < 0.0001 

C 0.412 0.429 
Cmax 0.817 0.817 

C/Cmax 0.505 0.525 
 

2.5.7 Extraction of Drought Triggers 

Using the modeled asymmetric copula dependence function, the conditions that 

trigger hydrological droughts or extremes in the watershed were examined. The triggers 

for various streamflow conditions were generated using the conditional copula. The 

procedure is illustrated as follows. Given a certain streamflow anomaly quantile α , let 

1yα  and 2yα  correspond to the first and second PCs conditioned on the streamflow 

anomaly value. The quantities 1yα  and 2yα  are obtained from the M6 copula for the 

particular watershed. Since these two PCs explain over 98% of the total variation, the 

other principal components remain unaffected by the choice of the streamflow quantile. 

Our goal is to find the expected values of the precursor variables , 1, 2,...,7ix iα =  that 
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would correspond to this particular streamflow quantile. If ija  are the PCA coefficients 

for the data set, then the following equation provides the conditional expectation of the 

precursor variables: 

[ ]{ } { }A x yα α=                                                                                                             (2.14) 

where ija  is the thij  element of the matrix [ ]A , 1yα and 2yα  are computed from the M6 

copula, and , 3, 4,...,7jy j =  are simply the expected values of the principal components

( 0)≈ . 

The expected values of PC-1 and PC-2 conditioned on various streamflow 

anomaly quantiles(corresponding to different α  values)  are shown in Table 2.8 for both 

watersheds. The expected anomaly values of all the predictor variables for different 

values corresponding to different streamflow anomalies are shown in Tables 2.9a and 

2.9b. Low flows correspond to smaller values of soil moisture, temperature, precipitation, 

evaporation and runoff of the previous month in both watersheds. Sea level pressure 

anomaly varied inversely with the streamflow anomaly for WS I and WS II, suggesting 

that increase in sea level pressure from the long term mean can enhance the chances of 

droughts in the regions. Increase in wind speed was found to trigger droughts in WS I, in 

contrast to the trend observed in the case of WS II. The dissimilar trends in some 

variables suggest that drought triggers are likely to be specific to each watershed. 

The conditional expectations of anomalies of different precursors corresponding 

to different streamflow quantiles (Table 2.9) were utilized to develop potential triggers 

for each drought category. The long-term monthly means of hydroclimatic variables were 

added to their expected anomaly values to carry out this analysis. The resulting precursor 
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values were then associated with the 1 month lead drought index values. From the 

expected streamflow anomaly, streamflows for each month were computed and 

corresponding drought indices were calculated. The trigger analysis is limited to low flow 

conditions corresponding to drought reflecting the better model performance for flows in 

this range. The plots in Figures 2.8a and 2.8b show the expected precursor range in each 

month obtained for different drought classes for WS I and WS II, respectively. If the 

values of the hydroclimatic variables fall within the suggested range for any class of 

drought, then that drought would likely occur in the succeeding month. For WS I, soil 

moisture, precipitation, and runoff are able to offer a range of predictor values for 

different drought categories as shown in Figure 2.8a. Some months (May to July) do not 

show any range of potential predictor values for certain drought classes, implying the 

likelihood of such droughts being very low in those periods in WS I. While soil moisture, 

precipitation, and runoff show some variability with drought classes in WS II, the other 

variables stay within a very tight band for any given month (Figure 2.8b). Thus, only 

these three variables are capable of resolving amongst different drought classes for the 

study watersheds. Low variability is manifested in the expected anomaly values of 

temperature, evaporation, sea-level pressure, and wind speed in Table 2.9.  

The precursor ranges developed in this manner were validated by means of scatter 

plots between the observed and modeled values of variables over the model development 

and testing periods (Figures 2.9a and 2.9b) for all classes of droughts. These scatter plots 

demonstrate good agreement between the observed and modeled triggers in both 

watersheds. The scatter is less in the case of soil moisture, precipitation, runoff, 

evaporation, and temperature in both watersheds. Among the predictors, wind speed 
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shows the most scatter making it the least reliable precursor for both watersheds. The 

modeled triggers for soil moisture, precipitation, and runoff values are underpredicted 

compared to observations during calibration as well as validation. Additionally, 

correlation values for all the trigger variables were calculated and tabulated in Table 2.10. 

High correlations in some predictors (for example, temperature and evaporation in WS I 

and WS II), however, were not useful as they were found incapable of resolving among 

the different drought categories. 

The results indicate that drought trigger information retrieved in this manner has 

potential for applications in hydrologic drought preparedness. Even though individual 

variables show scatter, if multiple variables fall close to their trigger values, the 

confidence in their effectiveness as hydrologic drought triggers will improve. Hence, the 

combined behavior of predictor variables needs to be considered when estimating 

potential drought triggers. 

 

Table 2.8 Expected principal component values for various quantiles of streamflow 

Streamflow 
anomaly 
quantile 

Streamflow anomaly 
(cumecs) 

Expected PC-1 
value 

Expected PC-2 
value 

WS I WS II WS I WS II WS I WS II 
0.01 -172.84 -27.65 -49.10 -34.41 -3.79 -5.33 
0.1 -99.47 -17.27 -34.31 -23.69 -3.25 -4.86 
0.2 -63.19 -10.62 -26.54 -17.36 -2.44 -4.03 
0.4 -27.13 -4.86 -15.73 -6.11 -1.97 -3.26 
0.5 -16.94 -3.26 -8.79 -1.98 -1.64 -3.10 
0.6 -5.71 -1.20 -1.63 2.98 -0.96 -1.79 
0.8 58.38 8.79 25.20 18.02 0.57 -0.86 
0.9 123.30 20.38 43.28 31.62 1.08 0.54 
0.99 310.66 53.54 121.66 80.46 4.20 5.56 
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Table 2.9 Conditional expectations (in terms of anomalies of hydro-climatic variables) associated with streamflow anomaly 

Expected 
Streamflow 

anomaly 
(cumecs) 

(a) Hydro-climatic triggers in terms of expected values of anomalies in WS I 

Soil moisture 
anomaly (mm) 

Temperature 
anomaly (°C) 

Precipitation 
anomaly 

(mm) 

Evaporation 
anomaly 

(mm) 

Sea level 
pressure 

anomaly (mbar) 

Wind speed 
anomaly 

(m/s) 

Runoff 
anomaly 

(mm) 
-172.84 -37.33 -0.0032 -31.28 -1.26 0.21 0.0017 -7.18 
-99.47 -25.74 -0.0072 -22.35 -0.86 0.15 0.0005 -5.02 
-63.19 -19.94 -0.0050 -17.23 -0.67 0.12 0.0005 -3.88 
-27.13 -11.52 -0.0072 -10.63 -0.38 0.07 -0.0003 -2.31 
-16.94 -6.12 -0.0085 -6.38 -0.19 0.05 -0.0008 -1.30 
-5.71 -0.74 -0.0070 -1.72 -0.01 0.01 -0.0008 -0.25 
58.38 19.96 -0.0096 14.94 0.69 -0.10 -0.0024 3.66 

123.30 34.22 -0.0157 25.74 1.18 -0.17 -0.0040 6.29 
310.66 95.51 -0.0345 73.30 3.29 -0.49 -0.0100 17.70 

Expected 
Streamflow 

anomaly 
(cumecs) 

(b) Hydro-climatic triggers in terms of expected values of anomalies in WS II 

Soil moisture 
anomaly (mm) 

Temperature 
anomaly 

(°C) 

Precipitation 
anomaly 

(mm) 

Evaporation 
anomaly 

(mm) 

Sea level 
pressure 

anomaly (mbar) 

Wind speed 
anomaly 

(m/s) 

Runoff 
anomaly 

(mm) 
-27.65 -27.61 -0.127 -20.92 -0.94 0.126 -0.046 -3.42 
-17.27 -18.44 -0.102 -15.45 -0.62 0.097 -0.036 -2.37 
-10.62 -13.29 -0.080 -11.73 -0.44 0.075 -0.028 -1.74 
-4.86 -3.80 -0.050 -5.75 -0.17 0.042 -0.016 -0.64 
-3.26 -0.27 -0.041 -3.66 0.01 0.031 -0.012 -0.24 
-1.20 3.47 -0.016 -0.17 0.13 0.008 -0.004 0.26 
8.79 16.20 0.023 7.75 0.57 -0.036 0.012 1.74 
20.38 27.44 0.065 15.39 0.95 -0.079 0.027 3.08 
53.54 67.84 0.215 42.84 2.34 -0.238 0.082 7.89 

 
  

 

46 



47 
 

 

Figure 2.8a Contour plots showing expected ranges of different hydro-climatic variables 
as precursors to droughts in WS I 

 

 

Figure 2.8b Contour plots showing expected ranges of different hydro-climatic variables 
as precursors to droughts in WS II 
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Figure 2.9a Scatter plots of different hydro-climatic precursors (modeled versus 
observed) for model development and testing periods in WS I 

 

 

Figure 2.9b Scatter plots of different hydro-climatic precursors (modeled versus 
observed) for model development and testing periods in WS II 

 

Table 2.10 Correlation values between observed and modeled drought precursors. 

Hydro-climatic precursor WS I WS II 
calibration validation calibration validation 

Soil moisture 0.57 0.58 0.41 0.44 
Precipitation 0.35 0.29 0.48 0.44 

Runoff 0.59 0.47 0.41 0.45 
Evaporation 0.80 0.83 0.80 0.82 
Temperature 0.81 0.82 0.82 0.85 

Sea-level pressure 0.58 0.43 0.50 0.52 
Wind speed 0.45 0.56 0.48 0.52 
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2.6 Summary and Conclusions 

This chapter provides a novel method for developing drought triggers by 

combining the strengths of PCA for dimensionality reduction and copulas for modeling 

the joint dependence between variables. The first two PCs were found capable of 

explaining the variability in the anomaly set of predictor variables for both study 

watersheds. The joint dependence of the streamflow anomaly and the two principal 

components was modeled by a scale-free association using a suitable asymmetric 3-

copula selected based on goodness-of-fit statistics. The developed model was first tested 

for forecasting streamflows in two study watersheds. 

The chapter focused on 1-month lead predictions because correlations between 

the principal components and streamflow anomaly diminished rapidly beyond a lag of 1 

month. Under-prediction of peak flows was observed in the results of both watersheds, 

but low streamflows were reasonably predicted allowing hydrologic drought studies. 

Drought index values based on standardized flows were computed to identify the 

occurrences of droughts during the model development and testing periods in the two 

study regions.  

The conditional dependence of the principal components PC-1 and PC-2 on 

streamflow anomaly was used to determine the drought triggers in the two watersheds. 

The precursors to droughts were expressed in terms of the anomaly values of the climatic 

variables. Negative anomalies of soil moisture, precipitation, evaporation, temperature, 

and runoff, and increased sea-level pressure and wind speeds were obtained as potential 

drought triggers for WS I.  
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Similarly, increased sea level pressure conditions and reduced soil moisture, 

precipitation, evaporation, temperature, runoff, and wind speeds from their respective 

long-term means led to drought conditions in WS II.  

Further, the patterns of various hydroclimatic variables as potential precursors to 

different categories of droughts were examined for the two watersheds. The ranges of 

predictor values that led to different drought conditions were estimated from the expected 

precursor values for low streamflow quantiles. The trigger analysis results were validated 

by comparing the observed hydroclimatic variables with their expected trigger values for 

the model development and testing periods. The correlation values computed indicated 

that the analysis could yield reliable information on the pattern of drought triggers for 

both the watersheds.  

The following conclusions are derived: 

i. Drought triggers are likely to be specific to watersheds. Even though the two 

study watersheds are located in the same part of the world and have similar land 

use distribution, local conditions influence streamflows especially at monthly time 

scales.  

ii. Using copulas, conditional expectations of first two PCs based on different 

quantiles of streamflow anomalies provide a method for estimating drought 

triggers. Among all the precursors, soil moisture, precipitation, and runoff showed 

the greatest potential for assessing different classes of droughts for both 

watersheds. The other variables, despite showing strong seasonal trends, 

demonstrated little capability for resolving the different drought classes. 
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iii. Validation results for triggers over all drought classes show results with different 

degrees of variability. Even with the scatter present for single (individual) 

variables, if triggers for multiple variables fall within expected ranges, the 

confidence in the trigger would improve. Hence, it is recommended that 

precursors for droughts be examined in combination by using multiple input 

variables.    

 

Even though the results and conclusions are specific to study watersheds, the 

method shows promise for application to different watersheds. An important limitation is 

that the level of dimensionality reduction that can be achieved in different watersheds 

cannot be known a priori. If multiple predictors were to be important, the model for 

constructing the joint distribution would be too complex for practical purposes except in 

limited cases modeled using Gaussian copulas. Data limitations also continue to be a 

serious challenge for many hydrologic studies. Large amount of data need to be used for 

capturing the trigger behaviors in drought studies. The model development and testing 

periods were short in this study, and the methodology performs reasonably well even for 

the small record lengths available here. Future efforts employing more hydroclimatic 

variables and different watersheds will help develop better understanding of trigger 

mechanisms for droughts. 

 
  

 

 



52 
 

CHAPTER 3.   PREDICTOR SELECTION FOR STREAMFLOWS USING A 
GRAPHICAL MODELING APPROACH 

 
 

3.1 Abstract 

Streamflows are influenced by various hydroclimatic variables in complex ways. 

Accurate prediction of monthly streamflows requires a clear understanding of the 

dependence patterns among these influencing variables and streamflows. A graphical 

modeling technique, employing conditional independence, is adopted in this study to 

quantify the interrelationships between streamflows and a suite of available hydroclimatic 

variables, and to identify a reduced set of relevant variables for parsimonious model 

development. The nodes in the undirected graph represent relevant variables, and the 

strengths of the connections among the variables are learnt from the data. The graphical 

modeling approach is compared to the state-of-the-art method for predictor selection 

based on partial mutual information. For a synthetic benchmark dataset and a watershed 

in southern Indiana, USA, the graphical modeling approach shows more discriminating 

results while being computationally efficient. Along with artificial neural networks and 

time series models, results of the graphical model are used for formulating a variational 

relevance vector machine to predict monthly streamflows and perform probabilistic 

classification of hydrologic droughts in the watershed being studied. The parsimonious 

models developed for prediction at different lead times performed as well as the non-
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parsimonious models during both the calibration and testing periods. Drought forecasting 

for the study watershed at 1-month lead time was performed using the two selected 

predictors−soil moisture and precipitation anomalies alone, and the model performance 

was evaluated. The graphical model shows promise as a tool for predictor selection, and 

for aiding parsimonious model development applications in statistical hydrology. 

 

3.2 Introduction 

Prediction of streamflows is an important component of hydrologic modeling, 

water quality, resource management and impact assessment studies. The utility of models 

in analysis and design of water resources systems is well known, be it for understanding 

the processes involved, to simulate system behavior and interactions, and to perform risk 

analysis [Praskievicz and Chang, 2009]. Hydrologists and water engineers around the 

globe have built robust prediction and forecasting models, yet there are several 

uncertainties associated with spatial and temporal variability in hydrological variables 

replicated in these models [Tian et al., 2014; Livneh and Lettenmaier, 2012]. Unplanned 

excess or shortage of water supply affects the socio-economic status of dependent areas 

through floods or droughts [Alcamo et al., 2007; Burn et al., 2008]. 

 Monthly streamflow prediction at a basin scale is a challenging problem because 

of the complex roles of multiple interacting hydro-climatic variables such as 

precipitation, temperature, soil moisture, mean sea level pressure, sea surface 

temperature, runoff, wind speed and mean sea level pressure, that contribute to flow 

generation. Thus, while streamflows are known to depend on various hydroclimatic 
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variables, dependence patterns among these predictor variables and streamflows are site-

specific, and methods for identifying relevant predictor variables are needed for 

forecasting purposes. 

Competent predictor selection is an important part of the development of skillful 

forecast models [Makkeasorn et al., 2008], and poses a challenge for streamflow 

prediction models. Apart from selecting variables based on our understanding of the 

physical system [Robertson and Wang, 2009], temporal relations between the predictor 

set and predictand need to be accounted for using techniques such as time series 

correlation and cross-correlation analyses [Besaw et al., 2010]. Inclusion of all possible 

hydroclimatic variables that govern streamflows at a basin scale, and at multiple lags, 

will yield a prohibitively large number of variables in the predictor set resulting in highly 

complex prediction models and pose serious challenges in parameter estimation, in 

addition to being burdened with redundancy.  

Prioritizing the relevant features in the vast set of potential predictor variables has 

several advantages: (i) better understanding of the data, (ii) improvement in classification 

of extremes, and (iii) avoiding the curse of dimensionality. Feature transform techniques 

(principal components analysis, PCA, and independent component analysis, ICA), and 

feature selection algorithms (wrapper, filter and online methods) have been used in 

several classification and pattern recognition studies [Maity et al., 2013; Maier et al., 

2010; Crone and Kourentzes, 2010; Peng et al., 2005; Hsu et al., 2002]. Wrapper 

approaches utilize the performance of the resulting model to select the relevant features, 

whereas online methods incrementally add/remove variables during model development 

[Bonev, 2010]. Filter approaches, on the other hand, perform statistical tests on the 
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variable set, and extract input features possessing maximum mutual information with the 

desired output. In this regard, Sharma et al. [2000] used partial mutual information (PMI) 

to identify predictors of quarterly rainfall from a suite of hydroclimatic variables, and 

Hejazi and Cai [2009] employed minimum redundancy maximum relevance (MRMR) 

algorithm based on mutual information for input variable selection in a reservoir release 

prediction model. The PMI criterion facilitated selection of predictors by considering the 

partial or additional dependence added by a new variable to an existing predictor set. 

Bowden et al. [2005] investigated utility of two approaches: PMI in conjunction with 

general regression neural network (GRNN), and self-organizing map (SOM) with hybrid 

genetic algorithm (GA)-GRNN for input selection. Based on tests on synthetic data sets 

whose dependence relations are known, PMI-based method selected all significant inputs 

unlike the SOM-GAGRNN method that required an appropriate objective function and 

involved additional parameters (population size and number of generations) of the 

genetic algorithm. A major drawback in applying the PMI algorithm to large data sets is 

the computational burden in computing the 95th percentile randomized sample statistic 

[May et al., 2008]. Modifications were made to the PMI algorithm-based predictor 

selection by May et al. [2008] and Fernando et al. [2009], using a Hampel distance-based 

score [Davies and Gather, 1993] as the termination criterion. Besides, there are ranking 

measures for variables based on information theory such as Shannon entropy, Kullback-

Leibler measure, Euclidian distance, and Kolmogorov dependence that are commonly 

used in machine learning [Bonev, 2010]. Several hydrologic studies have used 

correlations and partial correlations between the predictors and predictand, in an iterative 

fashion, to extract the most useful predictors [Phatak et al., 2011; Traveria et al., 2010; 
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Prasad et al., 2010]. In addition to these, Gamma test (GT), and forward selection (FS) 

are other popular techniques employed to reduce the dimensionality of an input variable 

set [Noori et al., 2011; Moghaddamnia et al., 2009]. Maity and Kashid [2011] developed 

a Birnbaum importance measure-based technique to identify the set of important inputs 

from an initial pool of predictor variables. A tree-based iterative input variable selection 

(IIS) scheme was recently proposed by Galelli and Castelletti [2013], yielding a rapid 

predictor selection algorithm. However, the sensitivity of this model to parameters 

requires trial and error based fine-tuning for the regression problem.  

When multiple predictors are likely to govern the response of hydrological 

systems, probabilistic graphical models offer an attractive model-free method (i.e. by 

avoiding model performance assessment) for parsimonious predictor selection. A 

graphical model is a family of probability density functions that incorporate a specific set 

of conditional independence constraints listed in an independence graph [Jordan, 2004; 

Jensen and Nielsen, 2007; Whittaker, 2009]. A graph can therefore be perceived as a 

compact representation of interdependencies that exist in a multivariate distribution as 

well as a skeleton for factorizing a distribution. Establishing a graphical model is a 

powerful way of summarizing the interactions manifest within a set of variables. The 

technique offers (i) simplicity in condensing the multivariate data set without eliminating 

or obscuring any interesting associations, (ii) an ability to quantify the interrelationships 

between several variables by utilizing conditional independencies among variables, and 

(iii) an intuitive framework for statistical analysis of continuous data summarized by a 

correlation matrix [Lauritzen, 1996; Whittaker, 2009]. Graphical models are useful for 

describing and understanding many natural phenomena [Fiori et al., 2012]. Multi-scale 
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graphical models were used in climate dynamics to capture the interactions among 

Gaussian random variables in satellite imagery [Willsky, 2002] and to model spatial and 

temporal patterns of rainfall observed at multiple stations [Ihler et al., 2007]. Yu et al. 

[2012] proposed a copula Gaussian graphical model to capture the conditional 

dependence among extreme events across space, which could then be used to predict 

extreme values at unmonitored sites. 

Once the predictor set has been identified, prediction models for streamflows can 

be built from the selected hydroclimatic variables using state-of-the-art regression 

techniques. Linear regression, artificial neural networks (ANNs), and autoregressive 

moving average models (ARMA) are popular approaches [Bowden et al., 2005; Wang et 

al., 2009; Gao et al., 2010]. Kernel-based approaches such as support vector machines 

(SVMs) and relevance vector machines (RVMs) have found several applications in 

hydrologic studies, and yield good predictions [Khalil et al., 2005; Asefa et al., 2006; 

Tripathi et al., 2006; Ghosh and Mujumdar, 2008; Karamouz et al., 2009; Dogan et al., 

2009; Maity et al., 2010; Tripathi and Govindaraju, 2007, 2011; Kisi and Cimen, 2011; 

Hoque et al., 2012]. Variational RVMs [VRVMs; Bishop and Tipping, 2000; Faul and 

Tipping, 2001], for instance, operate in a fully Bayesian paradigm to deal with outliers 

that otherwise affect model robustness. 

The main objective of this chapter is to propose graphical models as a novel 

approach to predictor selection for monthly streamflow prediction. The conditional 

independence structure between the predictand variable and predictors is extracted using 

a Gaussian graphical modeling technique to find the relevant predictors, and then this 

reduced variable set is utilized for streamflow prediction. The proposed method of 
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identifying predictor variables is shown to be superior to state-of-the-art methods. Such a 

graphical modeling-based approach for supervised predictor selection from a pool of 

interdependent hydroclimatic variables has not been evaluated in hydrologic applications. 

Following predictor selection, monthly streamflows for different lead times in future up 

to four months are forecasted using the reduced set of predictors at current time step and 

three statistical models, namely artificial neural networks (ANNs), autoregressive moving 

average model with exogenous inputs (ARMAX), and variational relevance vector 

machines (VRVM), to demonstrate the robustness of the predictor selection method 

across a suite of models. The application of this method is demonstrated for probabilistic 

classification of hydrologic droughts at monthly time step over a watershed in Indiana. 

The remainder of this chapter is organized as follows. In section 3.3, details are provided 

for the study area and data used for the present analysis. Section 3.4 describes the 

graphical model-based predictor selection methodology and its application to test cases 

and to future streamflows over the study area, followed by results and discussion in 

section 3.5. Summary and conclusions derived from the study are presented in section 

3.6. 

 

3.3 Study Area and Data Used 

3.3.1 Study Area 

The study was carried out over an agricultural watershed in southern Indiana, 

USA. The watershed extending from 38°34’ N to 39°49’ N and 85°24’ W to 86°31’ W 

spreads over 6,259 square kilometers, and is a subwatershed in the Ohio River basin, 
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delineated based on unregulated USGS streamflow station 03371500 (East Fork White 

River near Bedford, Indiana). The study area predominantly includes forested land 

followed by agricultural land. Figure 3.1 shows a map of the study area with the 

delineated stream network. The choice of the study area was motivated by the fact that 

drought analyses need to be conducted for unimpaired watersheds, where streamflows 

have not been influenced by upstream diversions, dams, or storage reservoirs. 

 

Figure 3.1 Map of study watershed and data points 
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3.3.2 Data Used 

Streamflows depend on many variables. Over the US region, Huang et al. [1996] 

had identified precipitation, temperature, runoff, and evaporation as variables of interest 

at a basin scale for soil moisture modeling studies. Along similar lines, soil moisture, 

precipitation, temperature, runoff, and evaporation were identified as relevant variables 

for streamflow prediction over the study area. These data sets have been made available 

by National Weather Service (NWS)-Climate Prediction Center (CPC) established by 

National Oceanic and Atmospheric Administration (NOAA). Out of these five variables, 

precipitation and temperature are observational records. Runoff has been calculated from 

the observed precipitation, using the procedure described in Georgakakos [1986]. 

Evaporation was obtained using temperature records and by using the relationship in 

Thornthwaite [1948]. Further, soil moisture was estimated by Huang et al. [1996] using 

the leaky bucket model. Nearly 10 grid points were identified relevant for the study area 

at a resolution of 0.5o x 0.5o and monthly CPC data from 1958 to 2010 were used for the 

first five variables listed in Table 3.1. Monthly streamflow data from 1958 to 2010 

recorded at the USGS 03371500 (Figure 3.1) were utilized in this study. Two other 

variables - mean sea level pressure and wind speed - were also included in the analysis to 

examine the capability of the graphical modeling technique in identifying and discarding 

extraneous variables. The National Center for Environmental Prediction-National Centre 

for Atmospheric Research (NCEP-NCAR) reanalysis 1 project data [Kalnay et al., 1996] 

were used as proxy data for mean sea level pressure, and zonal (U-wind) and meridional 

(V-wind) wind speeds near the surface. The variable wind speed data (resultants of zonal 

and meridional winds) were utilized in the analysis. The monthly data for the variables 
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used in the study were obtained for the period 1958-2010 at a grid based resolution of 

2.5o x 2.5o, for four relevant grid points around the study area. The grid locations are 

shown in Figure 3.1.  

 

Table 3.1 List of variables considered in the analysis 

Sl. No Variables Used Unit Period 
1 Soil moisture mm 1958-2010 
2 Precipitation mm 1958-2010 
3 Temperature °C 1958-2010 
4 Runoff mm 1958-2010 
5 Evaporation mm 1958-2010 
6 Sea level pressure mbar 1958-2010 
7 Wind Speed m/s 1958-2010 
8 Streamflow m3/s 1958-2010 

 

3.4 Methodology 

The method requires data processing and quantification of conditional 

independence structure between different variables using graph theory. Details regarding 

initial data processing and the adopted graphical modeling technique are provided in this 

section. 

 

3.4.1 Data Processing 

Data for different variables of interest are available at various grid points within 

and in the neighborhood of the watershed being studied (Figure 3.1). Using thiessen 

polygon approach, grid station data were averaged over the entire study area to obtain a 

single monthly time series for each variable. The monthly anomaly time series were 
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constructed from all variables by subtracting their respective monthly means. With 

appropriate transformations, it was ensured that the predictors and predictand follow a 

normal distribution, so as to identify the connections using a Gaussian graphical model, 

and thus the potential predictors for developing a probabilistic streamflow forecasting 

model. 

 

3.4.2 Graphical Models 

3.4.2.1 Identifying the Conditional Independence Structure 

Conditional independence is the cornerstone of graphical modeling technique, 

offering ease of interpretation and application [Lauritzen, 1996]. In this study we 

consider use of Gaussian graphical models, i.e. multivariate Gaussian distributions 

defined on undirected graphs, where the nodes denote variables and the edges provide an 

idea of statistical dependence structure [Malioutov et al., 2006]. A Gaussian graphical 

model is therefore an undirected graph ( ; )G V E=  where V  is the set of nodes (or 

vertices) and E  is the set of edges connecting pairs of jointly Gaussian variables. 

Specifically, Gaussian graphical models facilitate the development of sparse and 

statistically sound models for forecasting applications [Bach and Jordan, 2004]. Several 

steps are involved in identifying the conditional independence structure for a multivariate 

Gaussian distribution and are listed below [see Edwards, 2000; Whittaker, 2009]. 
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Let 1 2( , , , )kX X X X=   be a k -dimensional multivariate Gaussian random 

variable with mean vector 1 2( , , , )kµ µ µ µ=
   

 and covariance matrix J such that 

( , )ij i jJ Cov X X= . In the present context, the vector X  includes both the predictand and 

predictor variables. For a finite data set of size N , the sample mean and variance may be 

denoted by µ̂


 and V̂


. Let S  denote the inverse of the sample covariance matrix (also 

called as precision matrix). The precision matrix is rescaled, so that each row is divided 

by the corresponding diagonal element. 

( , ) ( , ) / ( , )cS i j S i j S i i=                                                                                           (3.1) 

The off-diagonal elements of the rescaled precision matrix are set to zero if they 

are smaller than a specified threshold. The threshold value chosen for pruning the inverse 

scaled precision matrix was adopted corresponding to a 5% significance level for the 

length of the record. The information stored in scaled precision matrix is used to 

construct the conditional independence graph, such that a zero term in the scaled 

precision matrix corresponds to the absence of an edge between two variables [Dempster, 

1972]. The variables that share strong relationships with the predictand variable are 

shown in the graph. Once the conditional independence graph between different variables 

is obtained, the next step is to determine the connection strengths. In the case of k -

dimensional multivariate Gaussian random variable 1 2 3( , , , )kX X X X X=  , the 

information divergence for measuring the conditional independence of 1X  and 2X  when 

3( , , )kX X are given, for instance, is a simple function of the partial correlation between 

1X  and 2X  when 3( , , )kX X  are given. This conditional information is expressed as: 
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2
1 2 3 1 2 3( , | , , ) 0.5log{1 ( , | , , )}k kInf X X X X corr X X X X= − −                               (3.2) 

This expression is based on the concept of Kullback-Leibler information 

divergence [Cover and Thomas, 1991] between two density functions and Shannon 

entropy. Equation (3.2) gives a measure of the strength of a connection in the 

independence graph. For visualization purposes, stronger connections (strength greater 

than the threshold) between variables are denoted by thick black lines and weaker ones 

by lighter shaded edges. 

3.4.2.2 Model Performance on Synthetic Data 

The performance of the proposed graphical model-based predictor selection was 

first evaluated using a test case whose conditional independence structure is known a 

priori. In this example, Y  is the predictand, and variables 1 2 3 4, , ,X X X X  are randomly 

generated from different Gaussian distributions (mean and standard deviation are given in 

the parenthesis), and 5 6,X X  are functions of 3 1,X X  respectively. Predictor variables for 

Y are 3 4,X X  and 6X : 

1 2

2
3 4 5 3 6 1

3 4 6

Predictors: (120,15), (479,47);

                  (30,5), (300,134), ,
Predictand: 14 12 8

X N X N

X N X N X X X X
Y X X X

= =

= = = =

= + − +

                             (3.3) 

The pruned inverse scaled precision matrix for this test case identified three 

predictors: 3 4 6, ,  and X X X . Even though 5X  is a function of 3X , and 1X  is a function 

of 6X , and are considered in the initial predictor set, the graphical model-based predictor 

selection algorithm discarded 1X  and 5X  in the presence of variables 6X  and 3X  

respectively, implying conditional independence of the selected inputs.  
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For identifying predictors, Sharma [2000] utilized PMI on five synthetic 

stochastic linear models and two non-linear models. The stopping criterion for the 

predictor selection algorithm comprised of ascertaining whether the computed PMI was 

greater than the 95th percentile randomized sample PMI. However, for the synthetic non-

linear two variable Threshold Autoregressive order 2 model (TAR 2) in their test data set, 

the PMI criterion could not correctly identify the predictors, as the method selected an 

additional predictor, as observed by Sharma [2000]. Since this was the most challenging 

synthetic data, the TAR 2 model was selected for testing the graphical modeling 

technique. The TAR 2 model is given by: 

6 10 6

10 6

0.5 0.5 0.1   if  0
         0.8 0.1                  if     0

t t t t t

t t t

x x x e x
x e x

− − −

− −

= − + + ≤
+ >

                                                                   (3.4) 

where tx  is a non-linear time series, and te  is Gaussian noise. The predictor set consists 

of 15 previous values of tx  (i.e. 1 2 15, , ,t t tx x x− − − ). Additional details of this synthetic 

data set can be obtained from Sharma [2000]. 

The pruned inverse scaled precision matrix for this model identified two 

predictors: 10tx −  and 6tx −  in decreasing order of their connection strengths. The threshold 

value for pruning the graph was based on the length of the data, as described in the 

previous section. PMI-based selection had wrongly identified an additional predictor for 

this test case, and calculation of the 95th percentile randomized sample statistic required 

substantial computing effort as it involved bootstrapping the predictand variable 

numerous times (~100) to determine the 95th percentile confidence limits.  
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Results of graphical model-based predictor selection for the above model 

indicated that the proposed methodology was better, computationally efficient, and 

accurate in identifying predictors when compared to PMI-based algorithm.   

 

3.4.3 Streamflow Prediction Modeling 

Using the proposed graphical modeling approach, predictors were identified for 

the monthly streamflow anomaly prediction model. Datasets for calibration period were 

used to identify the structure of conditional independence graph between all the variables. 

After pruning the graph by using only variables connecting to streamflow anomaly, the 

final subset of variables formed the dataset for a parsimonious prediction model. For 

notational convenience, the predictand variable is labeled as Y , and the remaining 

variables in the reduced set as selX


. The conditional independence structure implies Y  is 

independent of selX X Y− −
 

 given selX


. Since the ordering of variables is arbitrary, let 

the reduced predictor set be denoted as: 

1 2( , ,..., )sel rX X X X=


                                                                                                     (3.5) 

where 1r k≤ −  and indicates the degree of dimensonality reduction achieved by the 

conditional graph. The performances of statistical models incorporating the whole 

predictor set X Y−


, and selected predictors selX


 were compared to establish the merits of 

using graphical models as a means of parsimonious selection of input variables. 
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3.4.4 Statistical Models for Streamflow Prediction 

The regression model for streamflow prediction used in the present study is 

variational relevance vector machines (VRVM). Additionally, ANNs and ARMAX 

models were used to compare performance of the parsimonious and non-parsimonious 

models. The performance statistics-coefficient of determination (R2), Nash-Sutcliffe 

efficiency (E), and root mean square error (RMSE) were employed to judge the 

predictive capabilities of the models. 

VRVM differs from standard RVM in its complete Bayesian treatment of RVM 

using principles of variational inference. A brief description of VRVM model is provided 

here, further details of which can be obtained from Bishop and Tipping [2000] and 

Tripathi and Govindaraju [2007, 2011]. Given N  observations of a set of input vectors 

{ }iX = x and output { } where 1, ,iY y i N= =   such that ix  denotes the thi observation in 

a d -dimensional space, i.e. 1[ , , ]i i idx x=x  , the predictand-predictor relationship in 

VRVM framework can be represented as 

1
( , ) ( )

M
T

i m m i
m

y f w xε f ε ε
=

= + = + = Φ +∑x w w                                                                (3.6) 

where 2~ ( | 0, )N εε ε σ  is the Gaussian error term with mean zero and variance 

2 2 (with precision )eee  sts   −= . { }mw=w  are the weights associated with the basis 

functions { }mφΦ = , and 1,2, ,m M=  . The non-linear basis function or the kernel 

function K , chosen in this application is a Gaussian or radial basis function (RBF) 

defined as: 
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( )2

2
1

( , ) exp
d

ik jk
ij i j

k jk

x x
K x xφ

σ=

 − = = −
 
 
∑                                                                           (3.7) 

where 1[ , , ]j j jdσ σ σ=
d

  is the width of the RBF kernel, which is assumed to be constant 

for all ( , )K • • , and hereafter referred to as the kernel width parameter kerσ .  

The conditional distribution of the output variable given the input vector is 

Gaussian, and hence, the likelihood of the data set is of the form 

[ ]22
ker 22

1 kerker

1 1( | , , ) exp ( , )
22

N

i i
i

p y y fσ
σpσ=

 
= − − 

 
∏x w x w                                 (3.8) 

The model bias and weight vectors are then assigned prior distributions 

(hierarchical priors) of the form 

1( , ) ( | 0, ) where 1, ,m m m mp w N w m Mα α −= =                                                              (3.9) 

where mα  is the hyperparameter assigned to mw . Unlike the standard RVM, VRVM 

assigns hyperpriors for each of the hyperparameters and noise variance:  

0 0

0 0

( ) Gamma( | , ) where 1, ,
( ) Gamma( | , )

m mp a b m M
p c dee

aa
τ τ

= =
=



                                                        (3.10) 

The priors were made non-informative to avoid initial bias, by setting 

3
0 0 0 0 10a b c d −= = = =  [Tripathi and Govindaraju, 2011]. In the above described 

Gaussian kernel VRVM model framework, the predictive distribution is given by 

( | , , ) ( | , , ) ( , | , )P y X Y P y P X Y d dε ε ετ τ τ= ∫∫x x w w w                                        (3.11)  

The true posterior ( , | , )P X Yετw  is then approximated by factorizing the joint 

distribution of parameters into independent distributions denoted by Q , using variational 
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principles (i.e., ( , | , ) ( , ) ( ) ( )wP X Y Q Q Q
εε ε τ ετ τ τ≈ =w w w ). Upon further simplifications 

that are detailed in Bishop and Tipping [2000], the predictive distribution in Eq. (3.11) 

becomes 

2

2

( | , , ) ( | , , ) ( )

                     ( | ( ), )
1where ( ) ( ) ( )

w

T
w

T

w

P y X Y P y Q d

N y x

x x x

e

e

τ

µ φ σ

σ φφ
τ

=

=

= +

∫

∑

x x w w w

                                                                (3.12) 

The prediction was extended to a testing period to validate the calibrated models 

for the study area. Results from the VRVM-based streamflow prediction model were then 

utilized in preparing probabilistic forecasts of droughts. 

 

3.5 Results and Discussion 

Seven different variables (see Table 3.1) that are likely to influence future 

streamflows were identified to form the pool of predictors, and the lumped (averaged 

over the entire watershed) monthly time series for all the variables were prepared for the 

period 1958 to 2010. Further, streamflow values at the current time step were also 

considered as an influencing variable for the forecast models at lead times ranging from 

one to four months. The models were calibrated and tested using data sets from Jan 1958-

Dec 1993 and Jan 1994-Dec 2010 respectively. The monthly anomaly series were 

computed for all the variables by subtracting the corresponding monthly mean values 

obtained from the calibration period data. The reason for working with anomalies was to 

develop a model that would do better than simply the long term mean. The lumped 

monthly time series for each variable anomaly was tested for fit to a Gaussian distribution 
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using Kolmogorov-Smirnov (KS) test at a 5% significance level, for both calibration and 

testing periods. In the present study, a two-step approach was adopted for transforming 

non-normally distributed continuous variables [Templeton, 2011]. Firstly, the variable 

was transformed into a percentile rank, resulting in uniformly distributed probabilities. 

The second step applied the inverse-normal transformation to the results of the first step 

to form a variable consisting of normally distributed z-scores. 

 

3.5.1 Graphical model-based predictor selection 

The graphical modeling technique was used to reveal the dependence patterns 

between anomalies of streamflows and predictor hydroclimatic variables at monthly time 

step for the calibration period. Four separate graphical models were developed for the 

four forecasting horizons (1 to 4 months) using the calibration period (1958-1993) data. 

The threshold value chosen for pruning the inverse scaled precision matrix was adopted 

as 0.0863 corresponding to a 5% significance level for the length of the record. The graph 

obtained for the one month-ahead prediction model is shown in Figure 3.2. Predictors 

relevant for streamflow prediction are outlined by thick boxes, and thick dark connecting 

lines represent a strong connection between the two variables at the ends. 

The graph summarizes the interactions that manifest within transformed 

anomalies of different variables. Since the main objective was to identify predictors and 

model streamflows at lead time of one month (predictand), the focus was on the 

association between streamflow anomaly (SFt+1) and the other predictors. Figure 3.2 

reveals that prediction of one-month ahead streamflows is highly influenced by 

precipitation (PPTN) and soil moisture (SMTR) anomalies with maximum connection 
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strengths. The connection strengths between streamflow anomaly, and rest of the 

predictor anomalies are negligible. Figure 3.2 further suggests that, given anomaly values 

of precipitation and soil moisture, streamflow anomaly is independent of the remaining 

predictors thereby resulting in a parsimonious model construction. 

Table 3.2 lists the selected predictors for the two-, three- and four-months forecast 

models (graphs not shown for brevity). In case of two-month ahead streamflow forecast, 

soil moisture, precipitation and runoff anomalies possess strong connections with 

streamflow anomaly. Thus, parsimony could be achieved even as the streamflow 

forecasting time horizon changed to two months, but at a reduced level compared to one-

month lead time. For a three-month time horizon, significant connection strengths were 

observed between anomalies of streamflows and soil moisture, runoff, temperature, and 

evaporation. In the case of four-month ahead forecasts, only soil moisture anomaly shows 

significant connection with streamflow anomaly (Table 3.2). 

 
Table 3.2 Graphical model-based predictor selection for the four streamflow forecast 

models 

 Selected Predictors selX


 

Forecast model 1 month 
(SFt+1) 

2 months 
(SFt+2) 

3 months 
(SFt+3) 

4 months 
(SFt+4) 

Streamflow anomaly (SFt)     
Soil moisture anomaly (SMTRt)         
Precipitation anomaly (PPTNt)       
Temperature anomaly (TEMPt)      

Runoff anomaly (RNFt)       
Evaporation anomaly (EVPNt)      

Sea-level pressure anomaly (PSSRt)     
Wind speed anomaly (WINDt)     
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Figure 3.2 Graphical models for one month-ahead monthly streamflow anomaly 
prediction . Thick black lines and boxes indicate connections and predictors, respectively, 
relevant for streamflow prediction in the watershed. SFt+1 is streamflow anomaly at one-

month lead time; SFt, PPTNt, SMTRt, TEMPt, RNFt, EVPNt, PSSRt, and WINDt  
represent anomalies of streamflows, precipitation, soil moisture, temperature, runoff, 

evaporation, pressure and wind speed, respectively, at current time step t 

 

While the graphs and connection strengths establish conditional independence 

relationships and help identify the reduced predictor sets, they do not necessarily reveal 

the structure of the model to be employed, nor do they indicate the level of performance 

that will be achieved by these models. However, some preliminary insights are offered by 

the graph. Figure 3.2, for instance, reveals that the watershed behaves as a reservoir 

(linear or otherwise) for a one-month time horizon. The output (streamflows) is entirely 

determined by the input (precipitation), and storage (proxied by soil moisture), and hence 

hydrologic reservoir models might offer an alternative for modeling streamflows. At two- 

and three-month lead times, more variables surfaced as necessary inputs offering less 

dimensionality reduction compared to one-month lead time (Table 3.2). Soil moisture 

anomaly was found to have a connection for the four-month time horizon, suggesting that 

of all predictors being considered, soil moisture possesses the longest memory. However, 

Predictor variable 
anomalies for SFt+1 
in decreasing order 

of strength 

 
PPTNt 

SMTRt 

 PPTNt 

TEMPt 

WINDt 

PSSRt 

EVPNt 

SFt 

RNFt 

SMTRt 

SFt+1 
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it is unlikely that a good model for streamflows can be built on soil moisture anomaly 

alone, and such a model would provide at best only a marginal improvement over the 

long-term mean. Thus, the utility of the various predictors to update streamflow forecasts 

beyond the long-term mean decreases with increasing time horizons and establishes our 

limits of predictability. While the focus was on streamflows, the graphs also reveal the 

nature of the connections between other input variables. This information would be 

useful in other hydroclimatic studies.   

The variable anomalies that share connections with streamflows were also ranked 

in decreasing order of their connection strengths and have been shown in Figure 3.2. For 

one month-ahead streamflow forecasts, precipitation and soil moisture anomalies have 

the highest rankings with nearly equal strengths. Precipitation anomaly is expected to be 

a strong predictor as precipitation is the primary driving force for streamflow generation, 

and the strong role of antecedent moisture conditions is reflected in the equally high rank 

for soil moisture anomaly. As the lead time increases to two months, graphical models 

revealed that streamflow anomaly is no longer dominated by precipitation and soil 

moisture anomalies alone (even though they are ranked among the strongest predictors), 

as runoff anomaly also comes into play. The other variables: anomalies of temperature 

and evaporation become significant predictors at longer forecast horizons. However, 

beyond a forecast horizon of 1 or 2 months, the model prediction capabilities were poor.  

The feature selection capability of the graphical modeling approach was 

compared with the state-of-the-art PMI-based approach, using two stopping criteria: (a) 

95th percentile randomized sample statistic [Sharma, 2000], and (b) the Hampel-based 

score [May et al., 2008; Fernando et al., 2009]. The 95th percentile randomized sample 
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statistic measure listed in Table 3.3 suggests that the variable is to be selected as a 

potential predictor when its PMI is greater than this threshold value. The results using 

PMI on the calibration period data with criterion (a) suggested that the entire set of 

predictors would be selected in this instance (see Table 3.3), thereby achieving  no 

dimensionality reduction for any of the forecasting horizons. Another disadvantage of the 

PMI-based method was the computational time involved in the 95th percentile 

randomized sample statistic estimation.When using PMI along with criterion (b), as the 

variables are correlated with each other, predictor identification was thwarted by the 

masking effect that was also noted by previous researchers [May et al., 2008; Fernando et 

al., 2009]. While PMI-based methods are useful for predictor selection, the present study 

found the graphical model approach to be more effective for the hydroclimatic data set 

pertaining to the watershed. 

 

Table 3.3 Details of stepwise predictor selection using PMI criterion 

*  denotes the 95th percentile randomized sample PMI score 
 

Variable 
anomaly 

Model 1 Model 2 Model 3 Model 4 
PMI 95thPMI* PMI 95thPMI* PMI 95thPMI* PMI 95thPMI* 

SF 0.155 0.016 0.066 0.020 0.036 0.021 0.042 0.020 
SMTR 0.166 0.020 0.080 0.022 0.054 0.020 0.053 0.017 
RNF 0.151 0.020 0.050 0.022 0.038 0.019 0.048 0.017 

TEMP 0.061 0.019 0.062 0.019 0.054 0.020 0.044 0.019 
PPTN 0.140 0.018 0.043 0.018 0.028 0.021 0.027 0.019 
EVPN 0.079 0.018 0.070 0.018 0.053 0.019 0.035 0.019 
PSSR 0.063 0.019 0.065 0.021 0.045 0.019 0.036 0.022 
WIND 0.051 0.018 0.045 0.017 0.044 0.018 0.033 0.019 
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3.5.2 Streamflow Prediction  

Once the nature of conditional independence was revealed between anomalies of 

streamflows and different hydroclimatic variables using the graphical modeling approach, 

the set of variables with strong connections to streamflow anomaly were considered for 

the second objective of developing a parsimonious model for predicting streamflows at 

each of the different lead times. Streamflows were predicted for the four lead time 

horizons (1 to 4 months) in the following two ways: (i) using all the variables in X Y−


 

as predictors, and (ii) using the reduced variable set selX


, consisting of selected 

predictors. The model first predicted the streamflow anomaly, which was then converted 

into streamflows. The coefficient of determination (R2), Nash-Sutcliffe Efficiency (E), 

and root mean square error (RMSE) values obtained between predicted and observed 

values of streamflows for both calibration and testing periods for the four forecasting 

horizons are listed in Table 3.4. For all the four lead times, the performance evaluation 

measures calculated for the VRVM model for the two cases- using X Y−


 and selX


 as 

predictors are very similar. The R2, E and RMSE calculated for the parsimonious ( selX


-

based) one-month lead time forecast model is 0.69, 0.48 and 81.3 respectively, and those 

are close to results of the X Y−


-based model (0.71, 0.5, and 79.6, in Table 3.4) during 

calibration. In certain instances (lead times = 1, 3 and 4 months), it is observed that the 

parsimonious selX


-based model outperforms the X Y−


-based model during the testing 

period.  
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In addition to using VRVM, popular statistical tools such as ANN and ARMAX 

were used to compare the performance of X Y−


 and selX


-based models. ANN regression 

model adopted in the study comprised of input nodes corresponding to X Y−


 and selX


, 

streamflow anomaly as the output node, and n  hidden neurons that are arranged in the 

hidden layer. The neurons in different layers interact with each other via weighted 

connections. A feed-forward network ANN was used in the present study, using 

Levenberg-Marquardt backpropagation scheme as the learning algorithm. The third 

model: ARMAX ( , ,p q r ) consists of p  autoregressive, q  moving average, and r  

exogenous input predictor terms. While the autoregression model (AR) specifies the 

dependence of the output variable Y  on its value at previous p  time steps, the moving 

average (MA) part is a linear regression of current and previous q  white noise error 

terms. The white noise error terms are normally distributed. In this study, the predictors 

in X Y−


 and selX


 are the exogenous inputs in the ARMAX model. The R2, E and RMSE 

values calculated for these two regression techniques for all the forecast models  are 

provided in Table 3.4.  During ANN model calibration, while the X Y−


-based model 

results are slighly superior to selX


-based models, they performed equally well during the 

testing period. Whereas using ARMAX regression, especially for the 1-, 2-, and 4-months 

forecasts, the parsimonious models performed as well as the X Y−


-based model. At two, 

three and four-months lead times, models with autoregressive lags of 1, 4 and 1, 

respectively, performed better. However, the best performing parsimonious ARMAX 

models at all lead times agree with the graphical model-based predictor selection; they do 
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not use any previous month streamflows. In Table 3.4, also provided are the RBF kernel 

width kerσ , the number of hidden neurons in the hidden layer n ,  and the AR and MA 

lags { ,p q } corresponding to the best VRVM, ANN and ARMAX models, respectively. 

The selection criterion for kerσ  for VRVM was based on achieving high variational lower 

bound value while preserving good generalization capabilities [Tripathi and Govindaraju, 

2011]. The results from different regression techniques for X Y−


- and selX


-based 

models indicate that given the reduced set of predictor variables with strong connections 

selX


 through conditional independence, no extra information from other variables 

selX X Y− −
 

 was needed to improve streamflow prediction performance using the three 

models, thus resulting in parsimonious models.  

The prediction of streamflow anomaly using the hydroclimatic precursor 

anomalies selected by the graphical model is expected to be more reliable if the selected 

variables have relatively high connection strengths. In the present study, models for one-

month lead time forecasts revealed strong dependence patterns between anomalies of 

streamflows and selected hydroclimatic variables. As expected, results in Table 3.4 

indicate that relatively more confidence can be placed in making streamflow predictions 

for one-month lead time when compared to other longer lead times. To explore other 

applications, further study was restricted to streamflow predictions for only one-month 

lead time. In this case, two hydroclimatic variables (precipitation and soil moisture) are 

identified by the graphical modeling approach as exhibiting strong connections with 

streamflow anomaly (Figure 3.2). 
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Table 3.4 Coefficient of determination (R2), Nash-Sutcliffe efficiency (E) and root mean 
square error (RMSE, in cumecs) values for comparing calibration and validation 

performance of monthly streamflow prediction models: VRVM, ANN and ARMAX 
using all hydroclimatic predictors, and using parsimonious models (GM-VRVM, GM-

ANN, and GM-ARMAX) at lead times - 1 to 4 months 

 
Note: σker is the kernel width parameter used in VRVM, n is the number of hidden 
neurons in ANN model, and p and q are respectively the number of auto-regressive and 
moving average lags in ARMAX model. 

      VRVM ANN ARMAX 

le
ad

 ti
m

e 
= 

1 
m

on
th

     VRVM 
(σker=200) 

GM-VRVM 
(σker=200) 

ANN 
(n=3) 

GM-ANN 
(n=3) 

ARMAX 
(p=0,q=6) 

GM-ARMAX 
(p=0,q=2) 

C
al

ib
ra

tio
n R2 0.71 0.69 0.74 0.70 0.70 0.70 

E 0.50 0.48 0.55 0.49 0.49 0.49 
RMSE 79.60 81.30 75.40 79.90 79.96 80.04 

V
al

id
at

io
n R2 0.61 0.62 0.58 0.61 0.62 0.62 

E 0.33 0.36 0.32 0.36 0.37 0.36 
RMSE  117.80 115.70 119.27 115.78 114.8 115.27 

                

le
ad

 ti
m

e 
= 

2 
m

on
th

s    VRVM 
(σker=220) 

GM-VRVM 
(σker=150) 

ANN 
(n=4) 

GM-ANN 
(n=3) 

ARMAX 
(p=1,q=1) 

GM-ARMAX 
(p=0,q=1) 

C
al

ib
ra

tio
n R2 0.63 0.62 0.66 0.63 0.63 0.63 

E 0.40 0.38 0.43 0.40 0.40 0.40 
RMSE  87.20 88.60 84.76 87.48 86.61 86.79 

V
al

id
at

io
n R2 0.47 0.46 0.46 0.46 0.48 0.48 

E 0.16 0.16 0.15 0.15 0.17 0.18 
RMSE 131.90 132.10 132.92 133.15 130.92 130.85 

                

le
ad

 ti
m

e 
= 

3 
m

on
th

s    VRVM 
(σker=220) 

GM-VRVM 
(σker=150) 

ANN 
(n=2) 

GM-ANN 
(n=2) 

ARMAX 
(p=4,q=3) 

GM-ARMAX 
(p=0,q=1) 

C
al

ib
ra

tio
n R2 0.61 0.61 0.65 0.64 0.64 0.62 

E 0.37 0.37 0.42 0.40 0.40 0.38 
RMSE 88.89 89.50 85.79 86.75 86.48 87.81 

V
al

id
at

io
n R2 0.49 0.50 0.50 0.49 0.50 0.49 

E 0.18 0.19 0.18 0.18 0.19 0.18 
RMSE  131.80 131.09 131.28 131.36 130.55 131.82 

                

le
ad

 ti
m

e 
= 

4 
m
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th

s    VRVM 
(σker=200) 

GM-VRVM 
(σker=255) 

ANN 
(n=2) 

GM-ANN 
(n=2) 

ARMAX 
(p=1,q=1) 

GM-ARMAX 
(p=0,q=3) 

C
al

ib
ra

tio
n R2 0.62 0.61 0.64 0.60 0.62 0.62 

E 0.39 0.37 0.40 0.37 0.39 0.38 
RMSE  88.40 89.30 87.05 89.80 87.82 88.37 

V
al

id
at

io
n R2 0.49 0.50 0.50 0.49 0.51 0.51 

E 0.17 0.19 0.19 0.18 0.19 0.19 
RMSE  136.15 135.16 135.19 135.27 134.94 134.97 
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The VRVM streamflow prediction model was used for further analysis because it 

yields predictive distributions of forecasted streamflows instead of point estimates 

allowing for probabilistic classification. The calibrated VRVM model for one-month lead 

time with parsimonious inputs had kernel width kerσ =200, and its performance was 

evaluated for both calibration (1958-1993) and testing (1994-2010). The R2 values were 

0.69 and 0.62, and RMSE values were 81.3 and 115.7 respectively during calibration and 

testing periods (Table 3.4). Comparisons between observed and predicted one month-

ahead streamflows for some years in calibration and testing (forecasted using the 

parsimonious model) are shown in Figure 3.3. 

The plots indicate that the developed model could capture the trends in flows both 

during the calibration and testing periods. These plots also show error band of one-

standard deviation about the predicted values for the selected years. There is good 

agreement between observed and predicted monthly streamflows, especially during low 

flow months in 1981-82, 1984, 1986, 1988, and 1991 as shown in Figure 3.3a. The high 

flows/peaks in some months (in 1986, 1988 and 1992) matched well with the predicted 

values. As seen in Figure 3.3b, low flows were predicted well in 2002, and during the 

years 2005-2009 of the testing period. The predicted flows for the years 1999-2001 

closely followed the observed values. There are some observed high flows that are 

outside the prediction band during the testing period. Flow peaks of such magnitudes 

occurred only in this time window (Figure 3.3b), and were not present during calibration 

period causing these discrepancies. Figure 3.3 also contains the plots of inputs to the 

parsimonious prediction model−monthly precipitation and soil moisture values. As 

expected, the flow peaks in the years shown are associated with increased monthly 
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precipitation and soil moisture values. Extremely low flows during the calibration period-

for instance, in 1984, 1988, 1992, and during the testing period–in 1999, 2007 and 2010, 

are well correlated with the low values of both the inputs. 

Additionally, the resulting graphical model imparts useful information about the 

underlying hydrologic model. If we consider only streamflows as the output of interest, 

low streamflow values are generally associated with baseflow conditions where soil 

moisture plays a dominant role in determining the fluxes that maintain streamflows. Any 

precipitation likely pushes the existing soil moisture towards the stream. For peak 

streamflows, even though these two variables are still the prominent predictors for one-

month lead time (Figure 3.3), it is likely that all the non-linearities are not well captured 

in the prediction model. The implication is that the model is more capable of predicting 

low streamflow values and is therefore more suitable for conducting drought-related 

studies. Such a model could serve as a trigger for one-month ahead hydrologic droughts, 

and would be useful for allocating surface water rights for irrigation purposes. 
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Figure 3.3 Comparison of observed and predicted monthly streamflows during (a) 1980-
1993 in the calibration period and (b) 1997-2010 in the testing period. The upper and 
lower prediction bounds correspond to one standard error of prediction. Inputs to the 
parsimonious prediction model – monthly soil moisture (SMTR) and precipitation 

(PPTN) are shown above the respective streamflow plots 

 

3.5.3 Application to Hydrological Droughts 

The standardized streamflow drought index was used for drought analysis in the 

watershed [Shukla and Wood, 2008]. This index is similar to the standardized 

precipitation index (SPI) calculated for categorizing meteorological droughts [McKee et 

al., 1993]. A positive value of this index quantifies the degree of wetness, while a 

negative value indicates the degree of dryness. Table 3.5 presents the drought severity 

classification suggested by the United States Drought Monitor (USDM; http://drought 

monitor.unl.edu/classify.htm) for different hydrological conditions ranging from 

exceptional drought (D4) to normal conditions to exceptionally wet (W4).  
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Table 3.5 Drought categories and corresponding standardized streamflow drought index 
range 

Drought Category Description Range* 
D4 Exceptional drought (-∞ to -2.0] 
D3 Extreme drought (-2.0 to -1.6] 
D2 Severe drought (-1.6 to -1.3] 
D1 Moderate drought (-1.3 to -0.8] 
D0 Abnormally dry (-0.8 to -0.5] 

Normal Normal condition (-0.5 to 0.5) 
W0 Abnormally wet [0.5 to 0.8) 
W1 Moderately wet [0.8 to 1.3) 
W2 Severely wet [1.3 to 1.6) 
W3 Extremely wet [1.6 to 2.0) 
W4 Exceptionally wet [2.0 to ∞) 

*( ) – open ended boundary; [ ] – closed ended boundary 
  

In order to assess the drought forecasting ability of the model, the Heidke skill 

score (HSS) was computed [Doswell et al., 1990; Jolliffe and Stephenson, 2003; Wilks, 

2006]. The HSS gages the accuracy of the model forecast relative to the accuracy of 

random chance. The range of HSS is -∞ to 1. A score of 0 reflects no skill, a score of 1 is 

attained with perfect forecasts, whereas, negative scores indicate that chance forecasts are 

better than the predictions. Table 3.6 provides a quantitative assessment of the drought 

prediction ability of the model during both calibration and testing periods. During the 

model calibration, out of a total of 179 droughts observed, the model identified 114 

instances. For the testing period, the model predicted drought 32 times out of the 54 

observed droughts. The HSS scores shown in Table 3.6 indicate acceptable performance 

[Barnston, 1992]. 
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Table 3.6 Contingency table showing drought prediction performance during calibration 
and testing periods 

Drought 
Forecast 

 calibration*  testing# 
 Drought observed  Drought observed 
 Yes No  Yes No 

Yes  114 60  32 26 
No  65 193  22 124 

Note: * Heidke Skill Score: HSScalibration = 0.41,   # HSStesting = 0.40 

 

 
Figure 3.4 Observed and predicted values of standardized streamflow drought index for 

the model testing period (1994-2010) 

 
The standardized streamflow index values computed from predicted and observed 

one month-ahead streamflows during the testing period are shown in Figure 3.4. The 

different drought and wet categories are shown by horizontal shaded bands for easier 

interpretation. Inspection of Figure 3.4 shows good predictions by the model for the dry 

periods. The most severe hydrologic droughts were observed in 1994, 1999, 2001, 2007 

and 2010, and are predicted by the model too. Continuously dry months predicted during 

1999 and the summer of 2001 and 2007 match well with observations. In the testing 

period, overall, normal-to-wet conditions dominated streamflows; while there were some 

observed streamflow deficits, the model predicted more droughts, both in number and in 

severity.  
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The conditional independence-based model developed in the study was used for 

analyzing low flow predictions during the testing period. To disaggregate the soil 

moisture and precipitation anomaly data corresponding to drought and non-drought 

conditions, the means of these predictors for both the categories were determined. For 

any new pair of soil moisture and precipitation anomaly data, the Euclidean distances to 

the centers of drought and non-drought cases were computed as a  and b , respectively, 

as shown in Figure 3.5. During the testing period, streamflows were predicted for all the 

data sets falling in the drought category (i.e. a b<  in Figure 3.5) using the conditional 

model developed for low values of streamflows during the calibration period. The 

predicted streamflows were categorized into different drought states based on thresholds 

in Table 3.5 for probabilistic analysis.  

Probabilistic prediction of different drought categories performed during the 

testing period is shown in Figure 3.6. The height of the designated color bar for each 

drought category in any drought event reflects the probability of that particular class, thus 

providing a probabilistic classification and expressing model uncertainty in assigning a 

drought class to predicted streamflow events. This drought classification was performed 

only when the precursors—precipitation and soil moisture anomalies from the previous 

month—suggested drought conditions. Overall, the results are consistent with low 

streamflow values corresponding to higher probabilities of drought categories.  

Whenever a drought was observed, the associated probabilities of drought classes 

were markedly high compared to non-drought classes. If we examine the exceptional 

drought (D4) events during the testing period (Figure 3.6), in August and November 

months of 1999, D4 droughts were predicted by the model with a probability of 44 and 
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38 percent respectively, during summer of 2001, on an average 30% probability for D4 

drought was obtained, and in November 2010, a 43% D4 drought was predicted. In most 

of these cases, the observed droughts were of similar severity. A smaller number of 

drought occurrences were reported during the testing period in this watershed. The 

normal cases were accurately predicted by the model, and a few wet scenarios had a high 

chance despite existing drought conditions. These differences highlight some of the 

limitations of the approach, but are also reflective of the level of uncertainty and limits of 

predictability that can be achieved from one-month hydrologic drought trigger 

information for this watershed. 

 

 

Figure 3.5 Scatter plot between Soil Moisture (SMTR) and Precipitation (PPTN) anomaly 
data showing centers of ‘Drought’ and ‘Non-Drought’ categories. Whenever a<b (i.e. 

drought category), a probabilistic prediction of drought categories are made 
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Figure 3.6 Probabilistic prediction of different drought categories during the testing 
period (1994-2010) 

 

3.6 Summary and Conclusions 

This chapter utilized a graphical modeling technique employing conditional 

independence to address predictor selection in hydroclimatic analysis. Tests with linear 

and non-linear synthetic data sets demonstrated the dimensionality reduction achieved by 

this approach. Comparisons with other state-of-the-art predictor selection method based 

on PMI showed that the proposed graphical modeling approach was more robust and 

incurred smaller computational burden. 

Using the streamflow data for an Indiana watershed, results were examined for 

four different time horizons using a set of eight variables that are expected to influence 

the monthly streamflows. The graphs revealed that given precipitation and soil moisture, 

other variables are not needed for one month-ahead streamflow forecasts, while runoff 

would be needed for two-month lead time forecasts. Soil moisture and precipitation, apart 

from being conditionally important as predictors, also possessed the strongest connection 

 
  

 

 



87 
 

strengths. Temperature, runoff, and evaporation shared an on-and-off relationship with 

streamflows at longer lead times. However, the long-term mean of streamflows would 

likely not be improved upon with the help of other hydroclimatic variables for lead times 

greater than two months.  

The graphical modeling approach allowed for development of a parsimonious 

VRVM-based probabilistic model for prediction of streamflows. The forecast model was 

used for prediction of streamflows and hydrological droughts over the study area. The 

prediction performance was evaluated in terms of R2, E and RMSE values (Table 3.4) 

and the resulting parsimonious models demonstrated similar performance as the higher 

dimensional model. The predictive capabilities were equally good while using the 

parsimonious model during model testing. Results from popular statistical techniques 

such as ANN and ARMAX yielded similar results. Drought analysis results using a 

contingency table showed that more than 50% of drought incidents during the calibration 

and testing periods were successfully captured, indicating overall model robustness. On 

the other hand, the PMI-based predictor selection had suggested to retain the entire 

predictor set as shown in Table 3.3.   

The following conclusions are drawn from the graphical model-based predictor 

selection study: 

i. The graphical modeling approach utilized here was successful in establishing 

conditional independence that led to reduced model complexity especially for 

one-month lead time. 

ii. The method allowed development of parsimonious models that were used for 

conducting an exploratory analysis into droughts.  
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iii. The general results and conclusions about the importance of soil moisture and 

precipitation for short-term streamflow predictions are likely to hold for other 

similar-sized watersheds as well. The same is true for the level of prediction 

capability at one-month lead times. 

iv. However, the specific graphs are likely to be different for different watersheds 

even for the same time lag, as relative importance of variables for streamflow 

prediction would depend very much on precipitation rates, travel times and 

storage capacities of individual watersheds. These properties are known to be 

scale-dependent, and the evolution of these graphs with spatial scale would allow 

us to determine how the roles of predictor variables change with scale−a topic of 

future study.  

 

Overall, this method holds promise for applications in statistical models where 

predictor selection is of concern, for example, in downscaling studies. The method would 

serve as a useful first step before construction of complex models is undertaken, 

especially when physics-based models are either not available or are too complex for 

practical use. The conditional independence structure would provide useful insights into 

the construction of models for various hydrologic applications. 
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CHAPTER 4.   PROBABILISTIC ASSESSMENT OF AGRICULTURAL DROUGHTS 
USING GRAPHICAL MODELS 

 
 
 

4.1 Abstract 

Agricultural droughts are often characterized by soil moisture in the root zone of 

the soil, but crop needs are rarely factored into the analysis. Since water needs vary with 

crops, agricultural drought incidences in a region can be characterized better if crop 

responses to soil water deficits are also accounted for in the drought index. This chapter 

investigates agricultural droughts driven by plant stress due to soil moisture deficits using 

crop stress functions available in the literature. Crop water stress is assumed to begin at 

the soil moisture level corresponding to incipient stomatal closure, and reaches its 

maximum at the crop’s wilting point. Using available location-specific crop acreage data, 

a weighted crop water stress function is computed. A new probabilistic agricultural 

drought index is then developed within a hidden Markov model (HMM) framework that 

provides model uncertainty in drought classification and accounts for time dependence 

between drought states. The proposed index allows probabilistic classification of the 

drought states and takes due cognizance of the stress experienced by the crop due to soil 

moisture deficit. The capabilities of HMM model formulations for assessing agricultural 

droughts are compared to those of current drought indices such as standardized 

precipitation evapotranspiration index (SPEI) and self-calibrating Palmer drought 
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severity index (SC-PDSI). The HMM model identified critical drought events and several 

drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise 

as a tool for agricultural drought studies. 

 

4.2 Introduction 

The onset of an agricultural drought event is typically marked by a decline in the 

soil moisture level below a threshold value that affects crops. Precipitation, soil moisture, 

and temperature are the common variables adopted for agricultural drought studies 

[Mishra and Singh, 2010]. Various indices for characterizing agricultural droughts are 

listed in Maity et al. [2013]. Among these, Palmer drought severity index [PDSI; Palmer, 

1965], crop moisture index [CMI; Palmer, 1968], soil moisture anomaly index [Bergman 

et al., 1988], and vegetation condition index [VCI; Liu and Kogan, 1996] are popular.  

Researchers typically regard soil moisture as the most appropriate indicator of 

agricultural droughts [Keyantash and Dracup, 2002; Karamouz et al., 2004; Sheffield and 

Wood, 2008]. Estimation of soil moisture from ground measurements is difficult due to 

heterogeneity caused by the spatially varying precipitation, land cover, soil and 

topography [Margulis et al., 2002; Vereecken et al., 2008]. Temporal and spatial 

resolution of soil moisture is also crucial for predicting adequate soil profile wetting and 

drying between precipitation events. The role of soil moisture in recurring droughts in 

North America was studied by Oglesby and Erickson [1989]. Sheffield et al. [2004] used 

soil moisture estimates from the variable infiltration capacity (VIC) model to develop a 

drought index that showed major drought events of the past and had good correlations 
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with PDSI. Lakshmi et al. [2004] found that the deep layer soil moisture was capable of 

characterizing droughts in the Mississippi River Basin. The soil moisture deficit index 

(SMDI) developed by Narasimhan and Srinivasan [2005], based on weekly soil moisture 

deficits, had good correlation with indices such as SPI and PDSI, and offered better 

performance because of its fine spatial and temporal resolution. The authors used soil 

water assessment tool (SWAT) model to simulate daily soil moisture values at 4 km X 4 

km spatial resolution that were then aggregated to a weekly time scale. Tang and 

Piechota [2009] explored the possibility of deep layer soil moisture as an indicator of 

climate extremes, and linked it to PDSI, precipitation, and streamflows. Their study 

utilized soil moisture as a drought indicator for characterizing the hydrologic status for 

the Colorado River Basin, and further identified the spatial and temporal variability of 

soil moisture in response to drought events in the region. 

Root-zone soil moisture availability is used by agencies such as the United States 

Department of Agriculture (USDA)-International Production Assessment Division 

(IPAD)−as a major factor influencing crop yield forecasts [Bolten et al., 2010]. When Wu 

et al. [2011] performed drought vulnerability assessment for China, seasonal crop water 

deficiency, available soil water-holding capacity and irrigation were adopted as the 

important drought indicators. The soil water holding capacity is a function of soil type, 

and varies spatially across a region creating patterns of crop water stress and water 

resource availability. Maity et al. [2013] characterized drought proneness of Malaprabha 

Basin, India, via a copula model for resilience and vulnerability values calculated from 

modeled soil moisture data for the region. 
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Since water needs vary with crops, agricultural drought incidences in a region can 

be assessed better if crop responses to soil water deficits are also accounted for in the 

index. Water stress influences rate of photosynthesis and stomatal closure and affects 

crop production [Scholes and Walker, 1993]. Denmead and Shaw [1960] studied the 

effect of soil moisture deficit on the development and yield of corn, by imposing soil 

moisture deficit at different growth stages. Holt et al. [1964] investigated the effect of 

stored soil moisture at planting on corn yields, and developed regression equations for 

relating soil moisture to corn yield.  

A quantitative understanding of the plant response to water stress requires 

detailed study of soil moisture dynamics that include soil-water-air interaction, nutrient 

uptake by plants, and transpiration. Soil moisture deficits directly control the plant water 

potential that determines transpiration losses and the turgor pressure in plant cells 

[Porporato et al., 2001]. The role of water stress in the structure and functioning of 

vegetation in African savannas (grassland ecosystems) was studied by Rodriguez-Iturbe 

et al. [1999a,b]. The authors proposed a measure of “static” vegetation stress that can be 

calculated from soil moisture levels corresponding to plant wilting and full turgor. The 

“static” stress is zero when soil moisture is above the level of incipient stomatal closure 

(full turgor) and reaches a maximum value of one when soil moisture is at the wilting 

point of a plant. These two stages are based on the effects of water stress on plant 

physiology [Hsiao, 1973]. Porporato et al. [2001] later introduced “dynamic” water stress 

to address the mean intensity, duration and frequency of soil moisture deficits. Laio et al. 

[2001] developed a stochastic model for soil moisture and water balance studies. 
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Drought conditions for crops in the Midwest are, by and large, determined by the 

soil water availability rather than by precipitation or evaporation. The plant response to 

water stress in the root zone of a soil could be used to develop a new agricultural drought 

index. Such an index would take due cognizance of crop needs. However, the changing 

soil moisture status and different crop rotation patterns followed in agricultural fields 

require that the drought analysis be performed in a statistical sense. A probabilistic 

assessment would convey the uncertainty in agricultural drought classification that 

popular indices (SPEI, PDSI, SPI) do not provide. Madadgar and Moradkhani [2013, 

2014] developed a probabilistic forecast model for future hydrologic droughts in a 

Bayesian framework that allows probabilistic predictions and accounts for uncertainty in 

drought characterization.  In this study, agricultural drought events in the state of Indiana 

are investigated in a probabilistic framework using graphical models−specifically hidden 

Markov models (HMMs)−given the temporal dependence that exists between drought 

states. The crop stress function values derived from soil moisture data are used to define 

agricultural drought states (1-near normal, 2-moderate drought, 3-severe drought, and 4-

extreme drought).  

Hidden Markov models have been used for solving numerous practical problems 

in speech processing [Leggetter and Woodland, 1995], signal processing [Crouse et al., 

1998], genomics [Yau et al., 2011], tunneling design [Leu and Adi, 2011], meteorological 

studies [Hocaoğlu et al., 2010] and air quality modeling [Zhang et al. 2012]. Mallya et al. 

[2013a] utilized HMMs to model meteorologic and hydrologic droughts. Many of these 

applications used Gaussian emission distributions [Leggetter and Woodland, 1995; 

Burget et al., 2010; Mallya et al., 2013a]. Alternatively, atmospheric ozone levels were 
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modeled using Gamma hidden Markov models by Zhang et al. [2012], and Sun et al. 

[2013] used HMMs with log-normal, Gamma and generalized extreme value (GEV) 

distributions to predict particulate matter concentrations. 

Unlike previous studies [Mallya et al., 2013a; Zhang et al., 2012], the crop water 

stress function used in this study is bounded between [0,1], and as a result, previously 

utilized emission distributions are not suitable. This chapter describes a new class of 

HMMs with beta emission probability distributions. These new models were used for 

developing probabilistic classification models for agricultural droughts in Indiana. The 

merits of HMM-based probabilistic agricultural drought index over SPI, self-calibrating 

PDSI and SPEI were investigated. The organization of rest of the chapter is as follows: 

section 4.3 describes the study area and data used, section 4.4 explains the methodology 

adopted in the development of the probabilistic index, followed by results and discussion 

in section 4.5, and finally the conclusions derived from the study are presented in Section 

4.6. In addition, Appendix A provides derivations of equations used in the methodology. 

 

4.3 Study Area and Data Used 

4.3.1 Study Area 

To examine the applicability of the graphical model, the state of Indiana, USA is 

chosen as the study area. Indiana is nationally ranked for agricultural production, major 

cultivated crops being corn and soybean. For instance, Figure 4.1 illustrates the 

cultivation pattern followed in a small patch of land in Lake County in northern Indiana 

during the period 2000-2012, where corn and soybean are predominant. Crop rotation, 
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fallow land, and double cropping practices have been adopted in this area. Winter wheat, 

alfalfa and pasture grass were grown as minor crops in alternate years. Livestock and 

dairy farming thrive on agriculture over such farmlands in Indiana and other Midwest 

states.  

Unfortunately, droughts are common in the Midwest, and hamper the prospects of 

large yields from these farms. Consequences of the recent 2012 drought in US can be 

found in Mallya et al. [2013b] and Kerr [2012]. Figure 4.2 shows the extent of drought 

extremes over Indiana evaluated by United States Drought Monitor (USDM) for July 24, 

2012. The USDM map identifies regions experiencing different drought categories 

ranging from D0 (abnormally dry) to D4 (exceptionally dry) for that particular day, and 

the classification criteria are described in http://droughtmonitor.unl.edu/AboutUs 

/ClassificationScheme.aspx.  More than half of the state was affected by an extreme 

drought (Figure 4.2). The major impact of agricultural droughts is on crop cultivation in 

the affected regions. From an economic point of view, droughts have a detrimental effect 

on corn and soybean prices in Indiana under the current agricultural conditions, and are 

particularly devastating to livestock producers (http://www.ibrc.indiana.edu/ 

ibr/2012/outlook/articles/agriculture.pdf). 

 

4.3.2 Data Used 

The yearly cropping pattern of Indiana was obtained from Cropland Data Layer 

(CDL) that is hosted on CropScape [Han et al., 2012; http://nassgeodata. 

gmu.edu/CropScape/]. The CDL is a raster, geo-referenced, crop-specific land cover data 

layer created annually for the continental United States using moderate resolution 
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satellite imagery and extensive agricultural ground truth. It is developed by the National 

Agricultural Statistics Service (NASS) of the United States Department of Agriculture 

(USDA). This data is available from 2000-2012 for Indiana. Average crop distribution in 

acreage for this time window was extended to cover the 1948-2012 period. 

For soil moisture data, the Climate Prediction Center’s (CPC) 0.5° x 0.5° 

resolution global monthly datasets [Fan and van den Dool, 2004] were used. The data sets 

have sufficiently long record lengths needed for robust modeling. Huang et al. [1996] 

outline the procedure for constructing this monthly soil moisture time series data sets 

over the entire continental U.S. with a 1600 mm deep one-layer soil moisture model. 

Their model is based on the water budget in the soil and uses monthly temperature and 

monthly precipitation as inputs. Estimated evapotranspiration, runoff and groundwater 

loss used in the CPC soil moisture model are derived from these two inputs. A total of 52 

CPC grid points fall over Indiana, and soil moisture data from the period 1948-2012 were 

extracted at these grid points for this study. 
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Figure 4.1 Cropping pattern in a small patch of agricultural field in Lake County, Indiana, 
US during 2000-2012 where the yearly changes in land use and land cover are evident 

(adapted from http://nassgeodata.gmu.edu/CropScape/) 

 

 

Figure 4.2 Extent and magnitude of 2012 drought in Indiana- in July 2012, one of the 
hottest months of the year, captured by the U S Drought Monitor with D0 being the least, 

and D4 being the most intense drought categories listed. (The U.S. Drought Monitor is 
jointly produced by the National Drought Mitigation Center at the University of 

Nebraska-Lincoln, the United States Department of Agriculture, and the National 
Oceanic and Atmospheric Administration. Map courtesy of NDMC-UNL)  
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4.4 Methodology 

Development of an HMM-based probabilistic drought index required estimation 

of crop water stress, studying the temporal dependence between drought states, choice of 

emission distribution, parameter estimation, and model selection. These various steps are 

briefly described in this section. 

 

4.4.1 Estimation of Crop Moisture Stress Function 

Plant water potential is controlled by the soil moisture present in the root zone. 

With excess moisture, the plant water potential increases and turgor in leaves is very 

high, as a result of which stomatal pores open and evapotranspiration is in full swing. 

However, under conditions of soil moisture deficit, there is a drop in the water potential 

in plants, inhibiting their ability to  take up water from the soil, as a result of which the 

stomatal openings close to avoid loss of available water. The sequence of events that take 

place in plants in response to water stress can be understood based on the varying levels 

of stomatal closure. Incipient stomatal closure is among the first symptoms, and finally as 

the plant starts wilting, complete closure would take place. Rodriguez-Iturbe et al. 

[1999a,b] quantified the plant water stress as a function of soil moisture level in the soil 

at that instant (“static” water stress) ζ  −such that it is zero when soil moisture is above 

the level of incipient stomatal closure and has its maximum value of 1 when the soil 

moisture causes wilting (denoted as *s and ws  respectively). Between *s and ws , the 

authors suggested a non-linear increase of plant water stress with soil moisture deficit as 
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where ( )s t  is the soil moisture content at time t , and m  is a measure of the non-linearity 

desired in the crop water stress model. A value of 2m =  is used for crops in this study. 

The values of ,ws *s  and m  vary with plant species.  

The crop distribution information at various CPC grid points over the Indiana 

region were extracted to develop corresponding weights for dominant agricultural crops 

and multiplied to the crop water stress value of each crop. The resulting monthly 

effective crop stress time series at each grid point was used for agricultural drought 

analysis in the region. 

The crop distribution information at various CPC grid points over the Indiana 

region were extracted to develop corresponding weights for dominant agricultural crops 

and multiplied to the crop water stress value of each crop. The resulting monthly 

effective crop stress time series at each grid point was used for agricultural drought 

analysis in the region.A hidden Markov model (HMM) was used to develop a 

probabilistic classification model to define agricultural droughts. A schematic of the 

graphical model used in the study is shown in Figure 4.3. It illustrates the concept of 

estimating crop stress ζ  using soil moisture and crop information. The non-linear 

increase in ζ  between *s and ws  is represented in the graph in Figure 4.3. The HMM 

graph structure with the hidden drought states (in dashed boxes) is shown in the same 

figure. In this approach, a certain range of crop water stress values define a drought state, 
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and the range varies spatially. Brief description of the theory of HMMs is provided in 

subsequent sections. 

 

 

Figure 4.3 A schematic of the HMM used in this study. The hydrologic variable tζ  

represents the crop water stress. The hidden drought state tq  represents one of near 
normal, moderate, severe or extreme drought states. The subscript t  is the time index. ζ  
is estimated from soil moisture content values s , ws  (at wilting point) and *s (at incipient 

stomatal closure), and m  is the measure of non-linearity in the estimation of  tζ . 

 

4.4.2 Temporal Dependence in Drought States 

In the realm of statistical models, hidden Markov models are suitable for cases 

where temporal dependence in the drought states needs to be preserved. Otherwise, 

mixture models would suffice as a simpler tool for probabilistic modeling [Mallya et al. 

2013a]. Mutual Information (MI) statistic is used in this study to determine the nature of 

temporal dependence between drought states at one-month interval. The drought states 

are based on a standardized crop-drought index calculated using the crop stress function 

values. 
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Mallya et al. [2013a] provide a detailed analysis of the nature of temporal 

dependence between drought states for meteorological and hydrological droughts with 

durations greater than one month in which case use of a hidden Markov model was 

favored, and highlighted the merits of adopting a simpler Gaussian mixture model 

(GMM) when temporal dependence was insignificant. However, for soil moisture-driven 

droughts, Markovian dependence in time cannot be neglected without exploring the 

nature of dependence, as soil moisture holds a long-term persistent memory [Manabe and 

Delworth, 1990; Koster and Suarez, 2001]. This aspect is investigated later in the chapter. 

 

4.4.3 Graphical Models 

A graphical model is a family of distributions that can be efficiently represented 

by a directed or undirected graph. Variables of interest are denoted by nodes whereas 

their dependencies are indicated by connections/edges. The graph structure allows users 

to compute marginal and joint conditional probabilities between variables present as 

nodes in the graph [Jordan, 2004]. Graphical models have been popular in the fields of 

speech recognition, language processing, genetics, and information retrieval; recent 

applications include modeling spatial and temporal patterns of precipitation [Ihler et al., 

2007], and extreme event modeling [Yu et al., 2012].  

4.4.3.1 Hidden Markov Models 

Hidden Markov models are a class of graphical models where the graph structure 

comprises of hidden nodes with connections to observed nodes, such that temporal 

dependencies exist between the hidden nodes. In an HMM, as shown in Figure 4.3, the 

outputs/observations of the system are assumed to be dependent on a sequence of hidden 
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states. In the context of drought studies, the hidden nodes are the latent drought states, 

while the observations may be precipitation or streamflow values [Mallya et al., 2013a], 

or soil moisture-driven crop stress function as in this study. 

Consider the model where the hydro-climatic variable of interest at an instant t  is 

denoted by tx , [ ]1 2 1:1, 2, , {  and , , , }T
t N Nt N x R X x x x x= ∈ = =  . The observation tx  

is dependent on the hidden state variable 1 2 1:, { [ , , , ] }T
t N Nq Q q q q q= =  which is 

assumed to be a first order Markov process, i.e. the probability of the system being in any 

future step is independent of past states given the present state. The hidden variable tq  is 

considered a discrete variable representing one of the K possible latent states. The major 

characteristics of an HMM with K states and following first order Markov property are: 

i. Given the state of the system at time 1,t − tq  is independent of previous states i.e. 

1 2 1 1( | , , , ) ( | )t t t t tP q q q q P q q− − −= . The state transition probability matrix can be 

defined as 1{ } where ( | ), 1 ,ij ij t tA a a P q j q i i j K+= = = = ≤ ≤ .  

ii. Given the current state tq , the observation at that instant tx  is conditionally 

independent of past observations, and the probability ( | )t tP x q  is known as the 

emission distribution. The matrix { , }i iB α β= represents the parameters of the 

emission distribution. 

iii. The initial state distribution, i.e., the probability that the drought state at the 

instant 1t =  1( )P q  is given by 1{ } s.t. ( ), 1i i P q i i Kπ π π= = = ≤ ≤ . 

Besides, the following constraints hold valid for a HMM model: 
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                                                                                                      (4.2) 

That is, sum of the initial state probabilities and transition state probabilities 

respectively is equal to one. The joint distribution of the different drought states and 

observations in the HMM can then be expressed as 

1: 1: 12 1
( , ) ( | ) ( | )

N N

N N i t t t tt t
P q x P q q P x qπ −= =

= P P                                                                      (4.3) 

 

4.4.4 Model Implementation  

4.4.4.1 Emission Distribution 

Gaussian emission distributions have been favored in several continuous-HMM 

applications due to ease of computation. However, there are applications where Gaussian 

densities cannot be used, and hence, parameter estimation methods have to be designed 

from first principles. A beta emission distribution was adopted in this study for the 

following reasons: (i) it is a continuous distribution, (ii) it is well-suited for variates over 

the finite range of [0,1], (iii) it has the flexibility to model very skewed emission 

distributions that are needed for extreme events, and (iv) distributional parameters can be 

estimated in the HMM context. 

4.4.4.2 Parameter Estimation 

An important task in generating a HMM-based probabilistic model for drought 

data is parameter estimation—finding the best set of { , , }A Bπ  such that the probability of 

the observation sequence given the model i.e., ( | model)P O  is maximized. Parameter 
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estimation in HMMs was performed using Baum-Welch algorithm that uses Expectation-

Maximization [Baum et al., 1970; Rabiner, 1989]. The Baum Welch algorithm treats 

parameter estimation as a constrained optimization of ( | model)P O  subject to constraints 

in Equation (4.2), and estimation formulae  for { , , }A Bπ  are developed using a Lagrange 

multiplier technique such that the results yield maximum ( | model)P O  value. The details 

of parameter estimation including that for the shape parameters { },α β  of the emission 

distribution are provided in Appendix A. 

The initial user-input values fed into the HMM framework play an important role 

in the estimation of probabilities and parameter values as the estimation algorithm may 

run into local maxima during the simulations. In order to ensure global optima are 

achieved, random sets of initial values were tried, and the estimated values corresponding 

to maximum probability ( | model)P O  were chosen for the model. Thus parameter 

estimation was a trial and error method. In scaled HMMs, the term [ ]log ( | model)P O  is 

maximized [Rabiner, 1989]. 

Once the model parameters are estimated, the conditional probability of being in a 

particular drought state at time t , given the observations and set of model parameters is 

simply the posterior probability of falling in that state at time t  (see Appendix A, 

equation (A.10)). Probabilistic classification of drought states based on proposed crop 

water stress index is facilitated by estimating these probabilities using the HMM.  
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4.5 Results and Discussion 

4.5.1 Crop Moisture Stress Estimation 

Gridded soil moisture data at 52 locations over Indiana are used to compute the 

respective crop stress function values. Land cover data for these locations are retrieved 

from CDL provided by USDA-NASS. Only the major crops such as corn, soybean, 

sorghum, alfalfa, winter wheat, and double crops-winter wheat/soybean (WS) and winter 

wheat/corn (WC) are considered in the drought analysis. The average acreage distribution 

of various crops grown in Indiana is as follows: 35% to 55% each of corn and soybean, 

less than 10% each of winter wheat and double crop WS, and less than 1% of sorghum, 

alfalfa and WC. 

For all these crops, the water requirements over their growing seasons are 

assessed based on rooting depths at different growth stages [Evans et al., 1996]. The 

adopted rooting depth variation with crop type and time of the year is shown in Table 4.1. 

Plant rooting depths were obtained mostly from past literature [Weaver and Bruner, 

1927; Weaver, 1926; Rhoads and Yonts, 1991]. Soil water content ws  at permanent 

wilting point (PWP) and *s  at incipient stomatal closure required for crop water stress 

calculation are computed as percentages of water available in the root zone of the crops 

[Tolk, 2003], and these values are allowed to vary with different stages of plant growth. 

For instance, studies by Tolk [2003] determined PWP for corn and sorghum planted in 2-

m deep soil to be around 488 mm and 420 mm respectively. For the different crops: 

soybean, alfalfa, and winter wheat, PWP, as a percentage of rooting depth are assumed to 

be 15, 10 and 19 percent respectively. The calculated monthly ws  and *s  values (in mm) 
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for different crops are shown in Figure 4.4. There is an increase in plant water 

requirement as the growth stage advances. These values are estimated based on the 

rooting depth values in Table 4.1 and plant water requirements mentioned previously. 

Under double cropping, values for ws  and *s  throughout the year are significant, unlike 

the case of a single crop as shown in Figure 4.4. The crop stress function time series is 

computed for the growing season of crops. A weighted crop stress function time series is 

then calculated using crop acreage data at each grid location. 

 

Table 4.1 Rooting depths (in metres) for crops grown in Indiana over the annual growing 
season, where symbol ‘×’ represents absence of cultivation [Weaver, 1926; Weaver and 

Bruner, 1927; Rhoads and Yonts, 1991]. 
Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Corn × × × × 0.65 0.9 0.9 0.9 0.9 1 1 × 
Soybean × × × × 0.5 0.76 0.9 1 1.4 1.5 1.8 × 
Sorghum × × × ×  1.2 1.55 1.65 1.85 1.85 × × 
Alfalfa × × 0.13 0.5 0.9 1 1.2 1.5 2 × × × 
Winter 
wheat 0.8 1 1.2 1.3 1.3 × × × × × 0.5 0.6 

WS* 0.8 1 1.2 1.3 1.3 0.5 0.9 1 1.5 1.5 0.5 0.6 
WC# 0.8 1 1.2 1.3 1.3 0.65 0.9 0.9 1 1 0.5 0.6 

  *WS is double cropping, winter wheat + soybean 
  #WC is double cropping, winter wheat + corn 
 

 
  

 

 



107 
 

 

Figure 4.4 Monthly soil moisture content values at wilting point ( ws ), and at incipient 
stomatal closure ( *s ) for various crops in the study region calculated based on crop 

growth stage and water requirements 

 

 

Figure 4.5 Mutual information statistic between standardized crop stress function values 
of January and rest of the months for 2, 4 and 6 bins 

 

 
  

 

 



108 
 

4.5.2 Exploring Temporal Dependence between Drought States 

Figure 4.5 demonstrates the results of temporal dependence analysis conducted 

using mutual information statistic [MI; Cover and Thomas, 1991], where crop stress-

based drought states for the month of January (as an example) are compared with those of 

other months. The crop stress function values are standardized and categorized similar to 

SPI-based drought classification (ranging from W4-W0, to normal to D0-D4; McKee et 

al., 1993]. For instance, in a two bin case, W4-Normal and D0-D4 classes are grouped 

into two drought states: no-drought and drought respectively. In a similar fashion, the 

categories are grouped into 4 and 6 bins for estimating temporal dependence. For each of 

these cases, respective monthly MI statistics were computed using Equation (4.4).  

,
,

( , )
( , ) ( , ) log

( ) ( )
x y

x y
x y x y

p x y
MI X Y p x y

p x p y∈Χ ∈ϒ

= ∑∑                                                                  (4.4) 

where , , ,x y x yp p p  are joint probability of ( , )X Y , and marginal probabilities of X  and Y  

respectively. As an example, mutual information statistic values between drought states 

in January ( )X  and those in the rest of the months of the year ( )Y  were calculated from 

monthly time series of ζ  for one station, and are plotted in Figure 4.5. It is seen that the 

January drought states share temporal dependence with those of February and March, 

based on higher MI statistic values. The conclusion was same from results at other 

locations, and for other months, i.e. temporal dependence among drought states cannot be 

ignored. To account for the dependence in drought states while modeling even one-month 

droughts, HMMs are needed over the simpler mixture models.  
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As the number of hidden states increases in HMMs, the corresponding number of 

model parameters also increases, adding significantly to model complexity and data 

requirements. In the present study, HMMs with four hidden states are considered for 

probabilistic assessment of agricultural droughts. These hidden states would represent 

instances of near normal conditions, moderate, severe and extreme droughts, respectively. 

Further, as soil moisture changes slowly, the transition probabilities are modeled by a 

tridiagonal matrix, implying the system could continue in the present state or move to a 

one-level drier or wetter state over a single time step. These model constraints ensured 

smaller number of model parameters and more stable results. 

 

4.5.3 Development of Probabilistic Drought Model  

An HMM-based probabilistic drought classification was developed using the crop 

water stress values at all the 52 grid locations in Indiana as the drought states do share 

dependence in time. The parameter estimation procedure included initialization and 

estimation of initial state probabilities, transition probability matrix and beta emission 

distribution parameters. Scaled HMM [Rabiner, 1989] was used herein to facilitate 

parameter estimation. The best set of parameters was identified based on maximum 

[ ]log ( | model)P O value from the simulations obtained from random initial values. As 

noted earlier, a tridiagonal transition matrix was assumed at the second stage of 

parameter estimation, after having set the order of hidden states in increasing order of 

drought severity. The best parameter values were then obtained from simulations using 

random values as transition probabilities, with previously estimated beta emission 
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parameters to initialize the new  and a β  parameters of beta-HMM. Parameter estimates 

for the HMM model at six locations in Indiana are shown in Table 4.2 and Figure 4.6 as 

representative samples, for the sake of brevity. These are geographically widely separated 

points and are denoted by their location identifiers (loc id): 7 (41.25°N, 87.25°W), 9 

(41.25°N, 86.25°W), 12 (41.25°N, 84.75°W), 46 (38.25°N, 87.25°W), 35 (39.25°N, 

85.75°W), and 44 (38.75°N, 84.75°W) respectively. As expected, in most cases, 

preference is expressed for continuing in the present state than transitioning to a 

neighboring state.  

The emission distributions in Figure 4.6 allow for some statistical interpretation 

into the drought states. They represent the changing nature of agricultural droughts with 

spatial locations. At all locations, the emission distribution for near normal conditions 

have very peaked distributions with a large probability mass concentrated close to ζ =0. 

At loc. id 7, as seen in Figure 4.6a, the emission distributions for all drought classes have 

reasonable separation implying that the model is able to resolve these classes with less 

uncertainty. The peaked probability density functions for near normal and extreme 

drought states at all locations indicate that these categories are classified with higher 

probabilities. However, for loc. id 7 and 12, high classification uncertainty exists for 

severe and extreme droughts (Figure 4.6, plots a, c), as the emission distributions have 

more overlap for severe and extreme drought classes. Consequently, higher transition 

probabilities exist for transition of extreme drought to severe drought state at these two 

locations (Table 4.2 a, c). The moderate drought class, on the other hand has very little 

overlap in all the six cases, implying less uncertainty in its classification. 
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Figure 4.6 Estimated emission densities (beta distribution probability density functions) 
for six locations across Indiana 

 

 

Figure 4.7 Probabilistic classification of agricultural droughts during 2001-2012 period at 
(a) loc id 7 and (b) loc id 35 using the proposed crop stress-based index 
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Table 4.2 Estimated hidden Markov model probabilities- initial state ( iπ ) and transition 
state probabilities, and beta emission distribution parameters α  and β  associated with 

the four drought states (1-near normal, 2-moderate, 3-severe and 4-extreme) for six 
locations in Indiana 

 

 

Figures 4.7a and b show probabilistic classification of drought states provided by 

the crop water stress-based drought index in HMM framework. Results from only two 

locations for an example 12 year period 2001-2012 are shown here for the sake of 

brevity. The height of each bar in the plots represents the probability of a particular 

drought state in a particular month. While the lighter shade represents a near-normal 

condition, the darker ones represent increasing severity of drought induced by crop water 

stress. For instance in Figure 4.7a, July 2012 at loc id 7 had the following drought 

  (a) loc id 7  (b) loc id 9  (c) loc id 12 
Drought 
State     1 2 3 4  1 2 3 4  1 2 3 4 

 πi 1.00 0.00 0.00 0.00  1.00 0.00 0.00 0.00  1.00 0.00 0.00 0.00 

Tr
an

si
tio

n 
Pr

ob
ab

ili
tie

s                1 0.80 0.20 0.00 0.00  0.80 0.20 0.00 0.00  0.81 0.19 0.00 0.00 
2 0.21 0.62 0.17 0.00  0.34 0.27 0.39 0.00  0.23 0.60 0.18 0.00 
3 0.00 0.54 0.01 0.45  0.00 0.34 0.57 0.09  0.00 0.48 0.01 0.51 
4 0.00 0.00 1.00 0.00  0.00 0.00 0.53 0.47  0.00 0.00 1.00 0.00 

 α 1 2 17 35  1 2 9 47  2 5 15 48 
 β 221 3 7 11  188 5 7 17  37 9 10 28 
   

       
  (d) loc id 46  (e) loc id 35  (f) loc id 44 

Drought 
State     1 2 3 4  1 2 3 4  1 2 3 4 

 πi 1.00 0.00 0.00 0.00  1.00 0.00 0.00 0.00  1.00 0.00 0.00 0.00 

Tr
an

si
tio

n 
Pr

ob
ab

ili
tie

s                1 0.81 0.19 0.00 0.00  0.80 0.20 0.00 0.00  0.80 0.20 0.00 0.00 
2 0.25 0.55 0.20 0.00  0.27 0.47 0.26 0.00  0.22 0.60 0.18 0.00 
3 0.00 0.32 0.67 0.01  0.00 0.34 0.59 0.07  0.00 0.33 0.63 0.05 
4 0.00 0.00 0.51 0.49  0.00 0.00 0.57 0.43  0.00 0.00 0.46 0.54 

 α 1 4 14 13  1 3 9 34  2 4 19 43 
 β 41 9 7 2  130 9 7 12  76 12 15 14 
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probabilities: 98.2% of being in severe drought, and 1.6% and 0.2% of being in moderate 

and extreme states respectively. Similarly, HMM-based classification for August 2012 at 

loc id 35 indicates 72.5% and 27.5% probabilities of being in extreme and severe states 

respectively (Figure 4.7b). In contrast to popular indices such as SPI, SPEI and PDSI, the 

probabilistic drought state classification offered by the proposed index addresses 

uncertainty in drought characterization. Comparisons with these indices are discussed in 

the following section.  

 

4.5.4 Comparison with Popular Drought Indices 

Most drought studies have relied on the PDSI (based on a soil water balance 

equation), and the SPI (based on a precipitation time series). Instead of PDSI, a self-

calibrating PDSI (SC-PDSI) that can account for the regional variability in climate [Wells 

et al., 2004] was used for comparison purposes. As the PDSI is not multiscalar, and a 

fully meteorological-based SPI cannot provide any indication of crop water stress, both 

these indices are incapable of evaluating agricultural droughts at different locations in 

Indiana. SPEI-based analyses conducted by Vicente-Serrano et al. [2012] show that SPEI 

possesses good correlation with soil moisture in most of the sites in North America. The 

SPEI computation uses monthly precipitation minus potential evapotranspiration, i.e. a 

water balance deficit data series, that is aggregated at different time scales as in SPI 

[McKee et al. 1993], and standardized using a three-parameter log-logistic distribution 

[Vicente-Serrano et al., 2010]. SPEI time series were computed using SPEI calculator 

program developed by Beguería and Vicente Serrano [2009]; inputs for the program 

include precipitation and temperature data, as well as the latitude of the selected location. 
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Therefore, for comparison purposes, the SPEI index is also utilized, and relative merits 

and demerits of all the four indices are evaluated. 

Drought category classifications for all indices used in the study are listed in 

Table 4.3. Unlike SPI and SC-PDSI, drought categorization with SPEI is fairly recent 

[Yu et al., 2013]. For the proposed HMM-based index, there is no hard classification, and 

the probability associated with each drought state at a given time can be obtained. For 

comparison purposes, the predominance of a particular state is indicated when the 

probability of falling in it exceeds the sum of probabilities of falling in the other states.  

 

Table 4.3 Drought category classification of the common drought indices 

Hidden 
State 

Drought 
Definition 

SPI SPEI SC-PDSI 
(McKee et al., 

1993) 
(Yu et al., 

2013) 
(Wells et al., 

2004) 
1 Near normal +1 to -0.99 +1 to -0.99 +0.5 to -0.99 
2 Moderate drought -1 to -1.49 -1 to -1.49 -1 to -2.99 
3 Severe drought -1.5 to -1.99 -1.5 to -1.99 -3 to -3.99 
4 Extreme drought Less than -2 Less than -2 Less than -4 
 

Figures 4.8 and 4.9 show the probabilistic monthly drought classification offered 

by HMM and the corresponding SPEI, SC-PDSI and SPI index values during an example 

20 year period - from 1983 to 2003 at loc. id 7 and 35 respectively. The HMM-based 

method yields probabilities associated with each drought category, thus providing a basis 

for assessing classification uncertainty, unlike SPI, SPEI or SC-PDSI. At loc. id 7, 

(Figure 4.8), few extreme and severe agricultural drought events are identified in the 

years 1983-1985, 1988, 1995, 1999-2002, according to the proposed crop stress-based 

index. SPI and SPEI reported extreme droughts in 1984, 1988, 1991-1992, 1999-2000. 
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On the other hand, SC-PDSI detected very few extreme events during this period, in 

1985-1986 and 1993. Severe droughts according to the SPI and SPEI indices, occurred in 

1985-1987, 1992 and 2000, and are identified by the proposed index as well. All the 

indices suggest that near normal to moderate drought conditions are more prevalent in loc 

id 7. In Figure 4.9, at loc. id 35, very few extreme events are suggested in 1988 and 1999 

by the proposed index, and severe drought events are more prevalent. SPI and SPEI 

projected extreme droughts for years 1988, 1991, and 2002, whereas SC-PDSI reported 

extremes in 1992-1993 and 2003. Moderate drought events are observed frequently 

during June-September months. The results at these two locations therefore suggest that 

the developed probabilistic index is capable of identifying agricultural drought events 

that may not be captured by the SPI, SPEI or SC-PDSI, especially during the months of 

May-October, the growing season for most of the crops. Additionally, the probabilities 

assigned to each drought category in the HMM-based probabilistic classification reflect 

the uncertainty involved in drought identification. The other indices were not designed 

for this capability. 
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Figure 4.8 Comparison between HMM-based agricultural drought index, SPEI, SC-PDSI 
and SPI values for location id 7 (lat/lon 41.25°,-87.25°) during the 1983-2003 period 

 

 

Figure 4.9 Comparison between HMM-based agricultural drought index, SPEI, SC-PDSI 
and SPI values for location id 35 (lat/lon 39.25°,-85.75°) during the 1983-2003 period 
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Since different indices are designed for different purposes and yield different 

information, the superiority of any one index over others cannot be established. 

Comparisons between results from different indices may imply robustness if results are 

consistent. For example, the number of extreme events detected by the proposed index 

and SC-PDSI during the data period 1948-2012 in Indiana is shown in Figure 4.10, 

pooling drought information from across all the 52 locations in Indiana. Darker shades 

correspond to increased frequency of extreme droughts during 1948-2012. According to 

the proposed crop stress-based index, northern Indiana is relatively more prone to 

extreme agricultural droughts, while southwest Indiana has had relatively few instances 

over the data period. The drought maps for extreme events from the proposed index and 

SC-PDSI are markedly different, suggesting that different indices may lead to different 

conclusions. There is some agreement in the extreme drought occurrences suggested by 

the proposed index and SC-PDSI for south-eastern, south-central and central Indiana, but 

the proposed index would suggest that the state is more prone to extreme droughts. 

 Similarly, severe drought event maps were constructed for Indiana using the two 

indices and are shown in Figure 4.11. The ranges of number of severe events during the 

period 1948-2012 identified by the proposed index and SC-PDSI are vastly different. The 

proposed index reported numerous instances of severe droughts all over the region, far 

more than those identified by SC-PDSI. The SC-PDSI maps in Figures 4.10 and 4.11 

consistently indicate that west and central Indiana have experienced high frequency of 

extreme and severe category droughts over the 1948-2012 period. However, the proposed 

index suggests that central and southern Indiana are highly prone to severe droughts.  
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However, it has to be noted that one index is not superior to the other, just that 

different indices may yield different results implying the choice of an index for drought 

classification should be based on the specific needs of the user. An evaluation of relative 

drought-proneness of a region cannot be evaluated by SPI and SPEI as all locations are 

allocated the same probability of a drought class by definition.  

 

 

Figure 4.10 Extreme drought category maps for Indiana under (i) the proposed crop 
stress-based index, and (ii) SC-PDSI  

 

 
Figure 4.11 Severe drought category maps for Indiana under (i) the proposed crop stress-

based index, and (ii) SC-PDSI. SC-PDSI reports a smaller range of occurrences 
compared to the proposed index 
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4.6 Summary and Conclusions 

A probabilistic agricultural drought index that is based on crop water needs was 

formulated within a graphical model (HMM) framework, where hidden states represent 

different drought categories (from near normal to extreme droughts). The monthly soil 

moisture-based crop water stress function estimated in the study was found to have 

temporal dependence between drought states, thus suggesting the use of HMMs over 

simpler mixture models. Crop water stress was modeled using HMMs with a tridiagonal 

transition matrix and beta emission densities to develop a probabilistic model based on a 

bounded stress function. 

Retrospective comparison of drought events of an example 20 year period (1983-

2003) suggested by the proposed model and indices such as SPEI, SC-PDSI and SPI 

indicated fairly good agreement over agricultural drought conditions. Given that 

consistent definitions of corresponding SPI, SPEI and SC-PDSI index values for each 

drought state in the HMM framework−near normal, moderate, severe and extreme 

droughts are not available, direct comparisons could not be made. Focusing on the crop 

stress-based index for the 1988 and 2012 droughts at loc id 7 and 35, its severe and 

extreme category droughts were identified with very high probabilities by the index from 

as early as the summer of 1988, and their persistence was observed for a longer time, i.e. 

5 to 6 months (Figures 4.8, 4.9). The other indices−SPEI and SPI, indicated similar 

drought magnitudes for certain months of the year, however, drought withdrawal was 

relatively early. Similarly, the 2012 drought period, though not shown in the figures, was 

dominated by high probability of severe and extreme events at loc id 7, and 35, 
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respectively. Early onset of droughts and longer persistence are suggested by the 

proposed index when compared to the popular indices. Additionally, extreme and severe 

drought category maps were developed for whole of Indiana using results from the 

proposed crop water stress-based index, to study the spatial variation of drought-

proneness of the study region.  

The following observations are made regarding the probabilistic agricultural 

drought index developed in this chapter: 

i. Drought severity category is defined differently for each location by the HMM. 

Drought states evolve based on the historical crop water stress time series at each 

location, and hence, an averaged or aggregated assessment for a region cannot be 

considered accurate. 

ii. The tridiagonal transition matrix assumption adopted in HMMs in this study holds 

good for smooth transitioning of drought states and facilitates robust parameter 

estimation. However, sudden drought transitions that occur in the case of flash 

droughts may not be well captured by the model under this assumption.  

iii. The transition trends and emission distributions are not similar over Indiana. 

Results tend to be site-specific, suggesting the need for advanced regionalization 

studies for regional agricultural drought outlook. 

iv. For comparisons with existing drought indices, the predominant drought category 

after probabilistic classification was defined as the one whose probability of 

occurrence was more than the sum of probabilities of droughts in all other 

categories.  
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v. In the event that no drought category is dominant, the classification uncertainty is 

likely to be high, i.e. multiple drought categories are about equally likely. In the 

present study, predominant drought categories were distinctly identified over the 

study area.  

vi. Comparison of indices indicated that many drought events during dominant crop 

growing season (May-October) that were not identified by the SPI, SPEI and SC-

PDSI, were revealed by the proposed index.  

vii. The spatial variation of propensity of extreme and severe category droughts over 

Indiana during the 1948-2012 period was examined by the proposed crop stress-

based index (Figures 4.10 and 4.11). Such maps are useful for planning crop 

cultivation under rain-fed conditions. Since different indices yield different 

results, the choice of the index should be based on the desired end result. The 

utility of these maps need to be further explored in identifying regions where 

certain crops can be cultivated with minimum chances of crop water stress.  

 

The proposed HMM-based drought index enables classifying agricultural 

droughts in a probabilistic framework unlike the SPI, SC-PDSI or SPEI. The graphical 

model-based index highlights the inherent uncertainty in drought analysis, and the 

framework would be useful in developing reliable forecasting models. The crop water 

stress-based drought index developed using HMMs also suggests the need for alternate 

drought classification regimes that are driven by the data. 

 

 
  

 

 



122 
 

The current study has not accounted for tile drain systems that are prevalent in 

agricultural fields in Indiana. The tiles that are laid at the level of water table (usually 2-4 

feet below the surface) serve as a boundary for root growth. The crop rooting depths need 

to match the field conditions in such locations. The rooting depths are therefore lower 

than those currently used, from Table 4.1, and therefore, crop stress values could be 

lower than the current modeled values.  

Another important factor to consider is the varying water demand of crops with 

the growing season. It was assumed that the growing season was as shown in Table 4.1. 

The root depths need to be better assessed for the crops being grown at a particular 

location depending on their growing stage, and the data used in Table 4.1 can be fine-

tuned for local conditions.  

The uncertainty involved with the modeled soil moisture data used in the study 

has not been accounted for in the model results. Observed soil moisture data could be 

used to avoid data discrepancies. For instance, in few locations in Indiana, soil moisture 

sensors are installed to collect soil moisture and related data round the year 

(http://amarillo.nserl.purdue.edu/ceap/index.php). However, these data sets are not 

sufficiently long, have coarse spatial resolution, and the sensor locations are not stable. 
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CHAPTER 5.   CHOICE OF HYDROLOGIC VARIABLES FOR PROBABILISTIC 
DROUGHT CLASSIFICATION: A CASE STUDY 

 
 
 

5.1 Abstract 

Watershed-scale drought assessment is performed using cumulative density 

function (CDF)-based probabilistic drought indices in this study. To investigate the role 

of hydrologic variables, in combination, copulas are used for multivariate joint 

cumulative density functions (CDFs) combined with graphical models for probabilistic 

drought classification. Adopting a multivariable, multiscalar approach in the proposed 

framework yields a drought index that allows for examining the roles of hydrologic 

variables on integrated drought assessment. The methodology is demonstrated using 

streamflow, precipitation and soil moisture anomalies to develop univariate and 

multivariate CDF-based indices at 1-, 3- and 6-month time scales to analyze the drought 

events over an Indiana watershed. Drought characterization varied across the univariate, 

bivariate and trivariate drought models in the case study. The multivariate models were 

able to capture the early onset of drought events and persistence of the drought states, 

features that are contributed by different components of the hydrologic cycle. While short 

term drought monitoring is facilitated by 1-month models, threats to long term water-

storage in the watershed can be assessed better with longer time scale models. 
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5.2 Introduction 

Drought characterization using individual hydro-climatic variables is very popular 

within the hydrologic community, and there are drought indices that specifically cater to 

meteorological, hydrological and agricultural drought studies. Indices such as SPI 

[McKee et al., 1993], crop moisture index [CMI; Palmer, 1968], standardized runoff 

index [SRI; Shukla and Wood, 2008], and surface water supply index [SWSI; Shafer and 

Dezman, 1982], are few examples. The onset, severity and duration of droughts detected 

by the use of different hydrological variables may vary, and overall drought assessment is 

often performed by combining various hydrologic variables or by performing 

multivariate analyses. Drought studies that deviate from the standard univariate drought 

classification scheme advocate that (i) a single variable-based analysis may not be 

sufficient to address the overall drought condition at a location, and (ii) dependencies 

between hydro-meteorological variables leading to droughts should be utilized to 

characterize droughts in a better fashion. Indices such as the PDSI [Palmer, 1965], 

aggregate drought index [ADI; Keyantash and Dracup, 2004], hybrid drought index 

[HDI; Karamouz et al., 2009], standardized precipitation evapotranspiration index [SPEI; 

Vicente-Serrano et al., 2010], multivariate standardized drought index [MSDI; Hao and 

AghaKouchak, 2013,2014), joint drought index [JDI; Kao and Govindaraju, 2010], and 

the United States drought monitor [USDM; Svoboda et al., 2002], utilize information 

from multiple drought indicators for drought classification.  
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The PDSI and SPEI are based on water balance deficit computed using observed 

precipitation and precipitation, temperature and the local available water content (AWC) 

of the soil as inputs, respectively, however, neither of them account for streamflows. The 

ADI index uses the standardized first principal component of six different variables 

(precipitation, evapotranspiration, streamflows, reservoir storage, soil moisture, snow 

water content) to encompass the influence of multiple hydrologic variables on drought 

classification. Principal components (PCs), while honoring variability in the data, do not 

allow for physical interpretation. Recently, Rajsekhar et al. [2014] developed a 

multiscalar multivariate drought index (MDI) that utilized SPEI, SRI, and standardized 

soil moisture index [SMI; Hao and Aghakouchak, 2014] as inputs to account for 

meteorological, hydrological and agricultural droughts, respectively. The MDI was 

formulated using kernel entropy component analysis (KECA) to preserve the maximum 

amount of information from the input drought indicators.  

For bivariate and multivariate joint formulations, copulas are used for scale-free 

association between different variables irrespective of their marginals. The popularity of 

copulas has grown from financial and insurance models to meteorology and hydrology in 

the last two decades [e.g. Salvadori and De Michele, 2004; Grimaldi and Serinaldi, 2006; 

Favre et al. 2004; Zhang and Singh, 2006; Shiau, 2006; Kao and Govindaraju, 2008; 

Maity et al., 2013]. Shiau [2006] used the SPI to define droughts, and the marginals of 

drought duration and severity were used in copula framework to construct the joint 

distribution. Serinaldi et al. [2009] used a four dimensional student copula to model SPI 

drought properties namely the duration, mean and minimum SPI values, and drought 

mean areal extent, and to compute the joint return periods and exceedance probabilities. 
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Kao and Govindaraju [2010] used bivariate copulas of precipitation and streamflows to 

define the joint drought index (JDI). The MSDI index proposed by Hao and 

AghaKouchak [2013] for overall characterization of droughts was based on a joint 

dependence model of SPI and standardized soil moisture index (SSI) using bivariate 

Frank and Gumbel copulas. MSDI captured early onset of precipitation-driven droughts 

as well as delayed persistence of soil moisture-driven droughts. 

Steinemann [2003] had proposed a cumulative density function (CDF) or 

percentile-based index for developing, comparing and evaluating drought precursors as it 

provides a consistent basis for comparing multiple drought indicators. It was argued that 

percentiles are statistically comparable across spatial and temporal scales, irrespective of 

the drought indicator variables used in the study. The author suggested classifying the 

percentiles using thresholds for different drought categories ranging from 1 to 6 in 

increasing order of drought severity. The classification thresholds were {1, 0.50, 0.35, 

0.20, 0.10, 0.05, 0}.  

While previous drought studies have used hydrologic variables either singly or in 

combination, a question that has received little attention is the relative role of these 

hydrologic variables in drought classification. For instance, how does drought 

characterization change with different combinations of hydrologic variables? Are all 

variables needed for overall drought assessment, or would a smaller subset suffice? If so, 

what variables should be included in this smaller subset? Previous studies have not 

directly addressed these questions. The answers to these questions will change with 

location, study areas (watersheds), and perhaps how the indices are chosen.  
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The goal of this case study is to propose one method for understanding the role of 

hydrologic variables and answering the aforementioned questions. In order to assess the 

uncertainty in drought classification and preserve the temporal memory in drought states, 

graphical models, specifically hidden Markov models [HMMs; Rabiner, 1989], have 

shown promise [Mallya et al., 2013; Ramadas and Govindaraju, 2014]. These studies 

were based on a single variable, and the dimensionality of the HMM parameter space 

versus the length of available data was a crucial factor in robust parameter estimation. 

Probabilistic classification in a multivariate framework will result in a larger parameter 

space, aggravating the consequences of curse of dimensionality. Dimensionality 

reduction techniques such as principal component analysis (PCA) may be used, however, 

the PCs may not capture most of the variance in the non-Gaussian and dependent variable 

data used in drought analyses [Han and Liu, 2013]. Copulas are therefore used to 

combine drought-related variables to reduce dimensionality of the drought indicator in 

this study. The joint CDF of the hydrologic variables will yield a less complex HMM 

framework for multivariate drought models. 

In this case study, probabilistic multiscalar drought indices were utilized using 

cumulative probabilities of marginals and joint distribution functions of anomalies of 

streamflows, precipitation and soil moisture as representatives of hydrological, 

meteorological and agricultural droughts, respectively, to address overall drought status 

of an Indiana watershed. Even with only three primary hydrologic variables, there are 

seven cases to consider–three univariate, three bivariate and one trivariate drought 

classification models are examined. In contrast to copula-based drought indices such as 

JDI [Kao and Govindaraju, 2010] and MSDI [Hao and AghaKouchak, 2013], the 

 
  

 

 



128 
 

cumulative probabilities from the joint CDFs were utilized to characterize droughts. The 

CDF value ranges from [0,1], and therefore, a beta emission HMM [Ramadas and 

Govindaraju 2014] was used for probabilistic drought categorization. Comparison of 

results from univariate and multivariate analyses shed light on the dependencies between 

the meteorological, hydrological and agricultural droughts. This allows assessment of the 

merits of using a multivariate index to assess drought status of the region. Additionally, 

HMM-based model accounts for uncertainty in state classification. The study further 

discusses the implications of the results at different time scales−1-month, 3-months and 

6-months. The rest of the chapter is organized as follows: section 5.3 discusses the data 

used in the study, the methodology is elaborated in section 5.4, results and discussion of 

comparisons of indices follow in section 5.5, and conclusions from the study are 

presented in section 5.6. The model results for 3- and 6-month models are included in 

Appendix B. 

 

5.3 Data Used in the Study 

The study area is an agricultural watershed in the Ohio river basin, in Indiana, 

USA, and extends from 38°34’N to 39°49’N and 85°24’W to 86°31’W, covering an area 

of 6259 square kilometers. The watershed delineation was carried out using 30 m 

resolution digital elevation model (DEM) from USGS National Elevation Data set.  

The drought-related variables used in the study are precipitation, soil moisture and 

streamflows, all at monthly time step. Modeling the dependencies of a drought requires a 

long record of historic observations, and 50-years minimum is recommended by previous 
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studies [Bonnin et al., 2004; Kao and Govindaraju 2010]. Precipitation and soil moisture 

values were obtained from the Climate Prediction Center (CPC) soil moisture model 

[Huang et al., 1996; Fan and van den Dool, 2004] for the period 1958-2012. While 

precipitation data are observed, soil moisture values were modeled by the ‘leaky bucket’ 

hydrological model of Huang et al. [1996] assuming a soil depth of 1600 mm, and the 

data are available for locations globally at 0.5° resolution and on a monthly time step. 

The watershed-scale drought study required spatially lumped data, and thiessen polygon 

method was used to compute the spatially averaged data set from the values at various 

grid points lying in the watershed.  

The US Geological Survey (USGS) monthly streamflow data recorded at the 

USGS 03371500 (East Fork White River near Bedford, Indiana) from 1958-2012 were 

used in the present study. Hydrologic studies involving low flows have to ensure that the 

flows are not regulated, i.e., they are not influenced by any storage or release controls. 

Hence, drought analysis was carried out in an unregulated watershed in this study. 

 

 

Figure 5.1 Schematic of multivariate (d-dimensional) drought classification scheme using 
a hidden Markov model (HMM). Here, X1, X2,…,Xd are the hydrologic variables used in 
the case study, C is the joint CDF or the joint probability distribution, and q is the hidden 

drought state. Subscript t stands for time step 
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5.4 Methodology 

The schematic of a d-dimensional multivariate drought classification model at 1-

month time scale is shown in Figure 5.1. The variables−streamflows, precipitation and 

soil moisture−and their different combinations are explored as drought indicators in a 

graphical model framework in this case study. The CDF of multivariate model of 

hydrologic variables ( )C  are generated using copulas. The various steps in the 

construction of models for drought monitoring are explained in this section. 

 

5.4.1 Data Processing 

Hydroclimatic variables−precipitation, soil moisture, and streamflows−at monthly 

time step were converted into anomalies by deducting the corresponding long term 

monthly mean from these variables. Let 1 2 3,  ,X X X , represent the variable anomalies of 

streamflow, precipitation, and soil moisture- the inputs to the multivariate drought model 

shown in Figure 5.1. Then, their marginal probabilities are denoted by 

1 1 1 2 2 2( ), ( ),u F x u F x= = and 3 3 3( )u F x= . These marginals are obtained by fitting suitable 

distributions to the variable anomaly data. The candidate distributions for variable 

anomalies were extreme value, generalized extreme value (GEV), normal, and student’s t 

distributions.  
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5.4.2 Bivariate and Multivariate Copula Models   

Copulas are defined as functions that join multivariate distributions to their one-

dimensional marginals. Especially when the individual variables are non-normal, copulas 

offer a viable and straightforward alternative to modeling of different parametric families 

of distributions. According to Sklar [1959], a d -dimensional CDF with univariate 

margins 1 2, ,..., dF F F  is defined by 

1 2 1 1 2 2 1 2( , ,.., ) ( ( ), ( ),..., ( )) ( , ,..., )d d d dH x x x C F x F x F x C u u u= =  (5.1) 

where ( )k k kF x u= for 1, 2,...,k d=  with ( )1,0UU k ∈  if kF  is continuous. 

Hence, in the context of drought indicator variables, the bivariate copula of two 

variables 1X and 2 ,X and trivariate copula of three variables 1 2,X X and 3,X  are, 

respectively, 1 1 2 2( ( ), ( ))C F x F x  and 1 1 2 2 3 3( ( ), ( ), ( ))C F x F x F x . Clayton, Gaussian, Frank, 

Gumbel, and student’s t bivariate copulas were selected as candidates to model the joint 

behavior of pairs of these variables, and each of these are characterized by a single 

dependence parameter θ . For three dimensional joint distributions of variables, Gaussian 

and student’s t copulas were explored. Additionally, fully nested or asymmetric 

Archimedean copulas were used to model the trivariate joint distributions. A d-

dimensional nested copula is given by 1d −  distinct generating functions as: 

( ) ( )( )( )1 2 1 2 1 1 2 1, ,..., , ,..., , ...d d d dC u u u C u C u C u u− −=  (5.2) 

There are ( 1) / 2d d −  ways of coupling d variables in a multivariate model, as 

shown in Equation (5.2). A nested 3-copula model is characterized by two parameters, 1θ  

and 2θ  such that 1 2θ θ≤ , such that higher degree of dependence exists between the inner 
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nested variables. Two dependence structures are present for three possible pairs in this 

case [Grimaldi and Serinaldi, 2006]. The bivariate and trivariate copulas along with their 

dependence parameters are listed in Table 5.1. Among the trivariate copulas, M3, M4, 

M5 and M6 families are the fully nested copulas, and further details of these families can 

be obtained from Joe [1997] and Embrechts et al. [2003]. Using maximum likelihood 

approach, copulas in Table 5.1 were fit to the multivariate data models to obtain 

parameter estimates. For detailed definitions and unique properties of copulas, as well as 

the parameter estimation procedures, the readers are requested to refer to previous studies 

[Maity et al., 2013]. For the sake of brevity, in this study, descriptions of two- and three-

dimensional copula models, parameter estimation, and the best copula selection 

procedure, are limited to relevant details only.  

 
Table 5.1 Bivariate and trivariate copula families selected for the study 

Bivariate Families 
1 Clayton copula:  

1/
1 2 1 2( , ; ) ( 1) ;0C u u u uθ θ θθ θ− − −= + − ≤ ≤ ∞  

2 Frank copula:  
1 21

1 2( , ; ) log([(1 ) (1 )(1 )] / (1 )) ;0u uC u u e e e eθ θθ θθ θ θ− − −= − − − − − − ≤ < ∞  
3 Gumbel copula:  

1/
1 2 1 2( , ; ) exp{ (( log ) ( log ) ) } ;1C u u u uθ θ θθ θ= − − + − ≤ < ∞  

4 Gaussian copula:  
1 1

1 2 1 2( , ; ) ( ( ), ( )) ;0 1C u u u uθθ θ− −= Φ Φ Φ ≤ ≤  
where Φ  is the standard normal distribution N(0,1) with mean zero and unit variance, 
and θΦ is the bivariate standard normal distribution with correlation θ  

5 Student’s t copula:  
1 1

1 2 , 1 2( , ; , ) ( ( ), ( )) ;1 ; m mC u u t t u t uϑ ϑ ϑϑ ϑ− − ×
ΣΣ = ≤ < ∞ Σ∈ ; 

where ,tϑ Σ  is student’s t distribution with a correlation matrixΣwith ϑ degrees of 
freedom 
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Table 5.1 Bivariate and trivariate copula families selected for the study (continued) 

Trivariate Families 
1 Gaussian copula:  

1 1 1
1 2 3 1 2 3( , , ; ) ( ( ), ( ), ( )) ;0 1C u u u u u uθθ θ− − −= Φ Φ Φ Φ ≤ ≤  

where Φ  is the standard normal distribution N(0,1) with mean zero and unit variance, 
and θΦ is the trivariate standard normal distribution with correlation matrix θ  

2 Student’s t copula:  
1 1 1

1 2 3 , 1 2 3( , , ; , ) ( ( ), ( ), ( )) ;1 ; m mC u u u t t u t u t uϑ ϑ ϑ ϑϑ ϑ− − − ×
ΣΣ = ≤ < ∞ Σ∈  

where ,tϑ Σ  is the student’s t distribution with a correlation matrixΣ , with ϑ degrees of 
freedom 

3 M3 copula:
1 31 2 2 1 2 2 1 2 θ uθ θ θ u θ u (θ /θ )1 1 1

1

1

1 2 3 1 2

2

 log{ 1 (1 e ) (1 [1 (1 e )  (1 e ))(1 e )] )(1 e )};
        

( , , ; , ) θ
θ θ [0,   )                     

C u u u θ θ −− − − −− − −− − − − − − −
≥ ∈

−= −
∞

 

4 M4 copula:   
2 2 1 2 1 1θ θ (

1 2 3
θ /θ ) θ ( 1/θ )

1 21 2 23 1[(u u 1) u( , , ; , ) ; θ θ [0,1] )C u u u θ θ − − − −+ − + −= ≥ ∈ ∞  
5 M5 copula:

2 2 2 1 2 1 1 1θ θ θ (θ /θ ) θ θ (1/θ )
1 21 2 3 1 2 3

12

2 31 [{(1 u ) (1 (1 u ) ) (1 u ) } (1 (1 u( , , ; , ) ;
                                θ θ [1,

) ) (1 u ) ]
)

C u u u θ θ − − − − + − −=
≥ ∈

− −

∞
+  

6 M6 copula: 
2 2 1 2 1 1θ θ (θ /θ ) θ (1/θ )

1 21 1232 3 1 2( , , ; ([( log u ) ( log u ) ] ( log u ), ) exp{ } ;θ θ [1, ))C u u u θ θ = − ≥+ ∈− − − ∞+  

For M3, M4, M5 and M6 copulas, 1θ  and 2θ  are the dependence parameters 
 

Goodness-of-fit tests were employed to select the best copula. We examined the 

null hypothesis 0 0:H C C∈  for a copula class 0C  against 1 0:H C C∉  in the selection 

procedure. The tests compare the distance between the empirical distribution of copula, 

nC  and an estimation 
n

Cθ  of C  obtained under 0H  [Genest et al., 2009]. The empirical 

joint distribution was used as the reference for selecting the best copula. For instance, the 

empirical copula of bivariate 1 2( , )u u is defined by: 

1 2 1 1 1 2 2 2
1

1( , ) 1 ( ( )  and ( ) )
N

n i j
i

C u u F x u F x u
N =

= ≤ ≤∑  (5.3) 
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The goodness-of-fit test for the bivariate case can be analyzed using a distance measure:  

( ) ( ){ } [ ]1 2 1 2 1 2, , ; , 0,1
nnn C u u C u u u uθΩ = − ∈  (5.4) 

Using graphical plots and goodness of fit statistics [Genest et al. 2009], the best 

copulas for the multivariate models were selected. 

 

5.4.3 Computation of the CDF-based Probabilistic Drought Index 

The previous sections described construction of seven different cases, namely, 

three univariate marginals-based, three bivariate copula-based and a trivariate asymmetric 

Archimedean copula-based drought models. Indices such as SPI, SRI, MSDI, JDI are 

obtained by performing inverse Gaussian transformation to the CDF probabilities, 

however, there is a loss of information on uncertainty in drought classification. 

Additionally, adopting the CDF value directly as a drought indicator as shown in Figure 

5.1 conveys the idea that the user is simply looking at 1 1P( )X x≤  or 1 1 2 2P( , )X x X x≤ ≤  

or 1 1 2 2 3 3P( , , )X x X x X x≤ ≤ ≤ for decision making on drought status. Therefore, in this 

study, the CDF values are retained for probabilistic drought classification using graphical 

models−specifically hidden Markov models (HMMs). The use of a CDF-based 

probabilistic drought index for watershed-scale drought studies has not been explored 

previously. Adopting a multivariable, multiscalar approach in the proposed framework 

can yield a drought index that performs that is useful for short and long term drought 

monitoring. Graphical model-based drought classification using HMMs allows 

drought/non-drought states to evolve based on the long term time series of indicator 

variables at that location. The main advantages of using HMM in drought classification 
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are: (i) the thresholds for drought classes are not arbitrarily decided, but determined by 

the data, (ii) probabilistic classification is achieved implying that uncertainty involved in 

the classification is available to the users, (iii) similarities in drought state evolution in 

the seven models could be explored. 

5.4.3.1 Hidden Markov Models 

Hidden Markov models (HMMs) are a class of graphical models. In a graphical 

model, variables are denoted by nodes and their dependencies are represented by edges 

(Jordan, 2004). When the graph structure comprises of hidden nodes with connections to 

observed nodes such that temporal dependencies exist between the hidden nodes, it is 

known as an HMM. In the context of the present study, the hidden nodes are the latent 

drought states (denoted by q), while the joint CDF of hydrologic variables constitute the 

observations ( C , see Figure 5.1). HMMs have been used for drought applications by 

Mallya et al. [2013a] and Ramadas and Govindaraju [2014]. 

Detailed description of an HMM and its properties can be found in Rabiner 

[1989].  The hidden states are assumed to possess a first order Markov property, i.e. the 

probability of the system being in any future state is independent of past states given the 

present state. The hidden state at instant t, tq , is therefore a discrete variable representing 

one of the K states.  

The major characteristics of the HMM used in this study can be summarized as 

follows: 
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(i) Given the state of the system at time 1,t − tq  is independent of previous states i.e. 

1 2 1 1( | , , , ) ( | )t t t t tP q q q q P q q− − −= . The state transition probability matrix can be 

defined as 1{ } where ( | ), 1 ,ij ij t tA a a P q j q i i j K+= = = = ≤ ≤ . The following 

constraint applies for the transition probabilities: 
1

1; 1
K

ij
j

a i K
=

= ≤ ≤∑ . 

(ii) Given the current state tq , the observation at that instant tC  is conditionally 

independent of past observations, and the probability ( | )t tP C q  is known as the 

emission distribution. The observations in this case are probabilities that fall in 

[0,1] range, and as a result, beta probability emission distributions are utilized. 

The matrix { , }i iB α β= represents the parameters of the beta distribution. 

(iii) The initial state distribution, i.e., the probability that the drought state at the 

instant 1t =  1( )P q  is given by 1{ } s.t. ( ), 1i i P q i i Kπ π π= = = ≤ ≤ . Also, 

1
1

K

i
i
π

=

=∑  holds good for the initial probabilities. 

Finally, the posterior probability of being in a particular drought state at time t , 

that aids in drought state classification is given by ( | , ) ;1tP q i C B i K= ≤ ≤ . The detailed 

derivations of the posterior probabilities and parameter estimation procedure for beta-

HMMs are available in Ramadas and Govindaraju [2014]. 
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5.5 Results 

5.5.1 Estimation of Joint Probabilities 

The three input variables in the study were streamflows at the watershed outlet, 

and precipitation and soil moisture that were spatially lumped over the study watershed 

area. Anomalies of these variables denoted as 1 2 3, , ,X X X  respectively were used in the 

drought analysis. Extreme value, generalized extreme value (GEV), normal, and student’s 

t distributions were fit to these inputs, and tested using two-sample Kolmogorov-Smirnov 

(K-S) hypothesis test. Table 5.2 lists the p values and K-S test statistic obtained in the 

three cases. The best fit distribution was chosen such that its calculated p-value is greater 

than the significance level of 0.05 and the maximum among all distributions’ p values, 

and the corresponding K-S test statistic was the smallest. 2 3 and X X are best fit by 

generalized extreme value and normal distributions, respectively, as indicated by the 

results—with large p and low test statistic values (shown in bold in Table 5.2). In the case 

of streamflow anomaly 1X , however, p values are less than the significance level 0.05, 

suggesting that 1X  does not belong to any of the tested distributions. Therefore, ranked 

probability series is used as its marginal distribution 1 1( )F x . The three univariate CDFs 

1 2 3, ,u u u respectively, of 1 2 3, ,X X X are shown in Figure 5.2. These plots are useful for 

understanding different drought categories in univariate drought models. Graphical 

comparisons with the corresponding empirical CDFs assert the fit of the selected 

distributions.  
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Table 5.2 Two sample K-S hypothesis test results of fitting marginals to drought-related 
hydroclimatic variables where 1X is streamflow anomaly, 2X  is precipitation anomaly, 

and 3X  is soil moisture anomaly. The best-fit distributions with highest p value (> 0.05) 
are indicated in bold 

Variable  Distributions# and Parameters* K-S Test Results 
p value Test statistic 

X1  

EV: μ=60.17; σ=163.95 
GEV: k=0.033; σ=76.04; μ=-46.08 
N: μ=10-15; σ=105.64 
T: ν=2.44 

10-15 

0.006 
10-9 

10-128 

0.21 
0.09 
0.15 
0.61 

X2  

EV: μ=24.69; σ=55.86 
GEV: k=-0.048; σ=38.08; μ=-20.28 
N: μ=10-15; σ= 46.19 
T: ν=8.09 

10-6 

0.56 
10-5 

10-108 

0.13 
0.04 
0.12 
0.56 

X3  

EV: μ=25.98; σ=49.25 
GEV: k= -0.35; σ=55.56; μ=-17.12 
N: μ=-10-14; σ= 53.26 
T: ν=25.94 

0.15 
0.75 
0.89 
10-82 

0.06 
0.03 
0.03 
0.48 

 *Parameters: μ=location parameter; σ=scale parameter; k=shape parameter; 
ν=degrees of    freedom 

 #Distributions: EV-extreme value, GEV-generalized extreme value, N-normal, T- 
student’s t distribution 

 

 

Figure 5.2 Comparison of CDF plots from empirical and best-fit distributions for (i) 
streamflow anomaly- using ranked probabilities, (ii) precipitation anomaly using GEV 

distribution and (iii) soil moisture anomaly using normal distribution 
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The best bivariate and trivariate copulas were selected using RMSE, and distance 

measure Ω -based Cramer-von-Mises ( )nS and Kolmogorov-Smirnov ( )nT  statistics 

[Genest et al. 2009, Maity et al. 2013]. Table 5.3 lists the statistic values for each copula 

family, and the best copula selected has the smallest test statistic values. Gumbel copula 

has the best fit for bivariate copulas of 1 2 2 3( , ) and ( , )u u u u , while the pair 3 1( , )u u is best 

fit by a Frank copula. Figure 5.3 shows the scatter plots of bivariate copula-generated 

data points with the observed points of all the three pairs. The selected copulas in each 

case have captured the observation space and also the variability, especially, in the 

extreme range. The plots also show the nature of correlation between the variable 

anomalies−correlation is maximum between the pair streamflow anomaly and soil 

moisture anomaly (Figure 5.3, plot iii).  

Among the trivariate distributions tested in this study−Gaussian copula, student’s 

t-copula, and asymmetric Archimedean or nested 3-copula families, the student’s t-copula 

provides the best fit, based on goodness of fit statistics (provided in Table 5.3). The 

statistics RMSE, nS  and nT  are the lowest for this copula family. Similar to Figure 5.3, 

observed data points matched data points simulated using the best-fit copula, however, 

the plot is not included here for the sake of brevity. Figure 5.4 shows the plot of empirical 

and the best-fit copula CDFs. For ease of interpretation, data of different months of the 

year are shown by different symbols, and the selected student’s t-copula fits the observed 

data well. Small discrepancies can be noted in the fit, as is seen for instance, in the 

monthly values for February, September, and November.  
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Table 5.3 Goodness-of-fit test results using Cramer-von-Mises statistic ( )nS , 
Kolmogorov-Smirnov statistic ( )nT , and root mean square error (RMSE) for the 

multivariate copula distributions used in the study. The best-fit cases are chosen based on 
low values of these statistics (shown in bold) 

Copula*  C(u1,u2) C(u2,u3) C(u3,u1) 

 Sn Tn RMSE Sn Tn RMSE Sn Tn RMSE 
CC 0.636 1.977 0.031 0.207 1.351 0.018 0.660 1.875 0.032 
CF 0.109 1.126 0.013 0.078 0.925 0.011 0.070 0.710 0.010 
CG 0.071 0.839 0.010 0.061 0.793 0.010 0.074 0.838 0.011 
CT 0.105 0.982 0.013 0.066 0.870 0.010 0.080 0.821 0.011 
CN 0.105 0.982 0.013 0.066 0.870 0.010 0.084 0.853 0.011 

              Copula*  C(u1,u2,u3)       
 Sn Tn RMSE       

M3 0.177 1.195 0.016     * Note: CC-Clayton, CF-Frank, CG-Gumbel,  
M4 1.200 2.843 0.043        CN-normal, CT-student’s t copula 
M5 0.538 1.903 0.029        M3, M4, M5, M6 – nested 3-copula 
M6 0.204 1.470 0.018        families. 
CT 0.144 1.074 0.015   CN 0.145 1.070 0.015   

 

 

Figure 5.3 Comparison of available data points of variable anomalies (black dots) with 
simulated data points (gray circles) that were obtained using bivariate copulas: (i) and (ii) 

Gumbel copula for the pair streamflow anomaly and precipitation anomaly, and 
precipitation anomaly and soil moisture anomaly, respectively, and (iii) Frank copula for 

the pair soil moisture anomaly and streamflow anomaly 
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Figure 5.4 Cumulative distribution function (CDF) plots of the trivariate empirical copula 
(black line) and the selected student’s t copula (different symbols are assigned for data of 

12 months of the year). The selection was based on the goodness-of-fit statistics when 
multivariate student’s t copula is compared with empirical CDF 

 

5.5.2 CDF-based Probabilistic Drought Index 

In the present study, the CDF probabilities from the seven drought models 

constitute the observations in 7 different HMMs, and five hidden drought/non-drought 

states were considered in each of these models. The state transitions were assumed to be 

smooth, allowing transitions to current state and neighboring states only. With the help of 

these assumptions and a sufficiently long time series, robust HMMs were constructed. 

The resulting hidden states from an HMM were characterized by the beta emission 

parameters α  and β , and the initial state and transition state probabilities that were 

obtained after conducting several iterations (~100). The probabilities ( | , )tP q i O B=  

indicate the evolving drought/non-drought state at each time step, and aid in assessing the 

uncertainty involved in the drought state classification. 
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The beta emission parameters and transition probabilities of the seven models 

were examined to understand the evolution of hidden states. The emission distribution 

parameters of the seven HMMs are listed in Table 5.4. The mean and variance 

corresponding to each beta emission distribution are also provided. The comparison 

allows us to comment on the performance of models, point out similarities in the 

evolution of states, and if a particular model could be selected as an overall drought 

indicator. Drought state 1 in the models is designated as a severe drought state as the 

corresponding CDF probabilities are the smallest (mean ≤ 0.1; see Table 5.4), indicating 

acute water deficits. State 2, in a similar fashion, is termed as a mild drought state 

because the probabilities represented by this beta distribution are small (0.2≤mean≤

0.5), but indicate less severe deficit. These findings are substantiated by the CDF plots in 

Figure 5.1 for models 1 to 3. The variable anomaly values corresponding to these 

probabilities (defined by states 1 and 2) are negative. Using these plots, slightly larger 

probabilities (0.5≤mean≤ 0.7) falling in state 3 are attributed to normal conditions. The 

hidden states 4 and 5 corresponding to the larger CDF values (0.7≤mean≤ 0.9 and 0.9≤

mean≤ 1) are respectively, the mildly and severely wet states.  

Comparison of model parameters of seven HMMs in Table 5.4 yields insights into 

nature of droughts represented by each category and each model. The emission model 

parameters suggest the shape and spread of a drought category that reflect the level of 

uncertainty in the class. There is greater agreement amongst models 4, 5, 6 and 7 that 

used multiple variables, in drought state classification (states 1 and 2). However, in the 

non-drought conditions (states 3, 4 and 5), the mean and variance values for models are 

different. In all the models, variance is maximum in the case of drought states 2 and 3 
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compared to the other states, as they cover a wider range of CDF probabilities that likely 

correspond to intermediate states suggested by standardized indices—such as moderate, 

mild and abnormal droughts, and normal to abnormally wet states, respectively. High 

variance models for drought state classification suggest large uncertainty. Out of the 7 

models, model 3 representing univariate marginal of anomaly of soil moisture, model 6 

corresponding to bivariate copula of streamflow and soil moisture anomalies, and model 

7, the trivariate copula model of all the three variable anomalies show minimum 

uncertainty in drought state classification at 1-month time scale. The beta probability 

density functions (PDFs) of these 3 models are shown in Figure 5.5. The peaks associated 

with states 1 and 2 indicate that there is high probability of events in this category in the 

models. Similarly, a flat PDF, for instance, in the case of drought state 3, suggests large 

variance and increased uncertainty in the drought state classification. The shape and 

spread of emission distributions, reflect the propensity of droughts in each drought 

category. 

The plots in Figure 2 explain how the CDF probabilities (C ) falling under each of 

the 5 drought states ( q ) in models 1 to 3 can be translated into knowledge of the 

respective variable anomalies ( X ), and hence, the hydrologic conditions in the 

watershed. For instance, observations of model 3 are shown in Figure 5.2(iii). The five 

drought states can be better understood by juxtaposing CDF plots with the PDFs of beta 

emission distributions. For convenience, Figure 5.6 has CDF probabilities plotted against 

the input variable anomalies, representing models 3, 6 and 7, respectively. Using the plot 

in Figure 5.6(i), the means of emission distributions corresponding to five drought states 

of model 3 and corresponding streamflow anomaly thresholds can be examined. This is a 
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graphical representation of a CDF-based hydrologic drought index whose classification 

scheme was identified in the HMM formulation. Similarly, in Figure 5.6(ii), contours of 

bivariate copula CDF of streamflow anomaly and soil moisture anomaly input to model 

6, aid in extracting variable anomaly values corresponding to each drought state. Mild 

drought state in this case can be seen to translate to streamflow and soil moisture 

anomaly values in the range -25 to -50 cumecs, and -75 to -100 mms respectively. 

Different drought states in model 7 can be inferred using Figure 5.6(iii), where differently 

colored points are shown in a three-dimensional plot of input variables. The mild and 

severe drought conditions suggested by model emission parameters correspond to the 

negative range of the three axes in this plot. 

Table 5.5 lists the state transition probabilities for all the models in the drought 

classification scheme. The short term and long term drought monitoring capabilities of 

different models as well as the drought characteristics are reflected in the transition 

probabilities (Steinemann 2003).  For instance, consider model 7, the first row has 

probabilities {0.72, 0.28, 0.00, 0.00, 0.00}, implying given that the current state is a 

severe drought, the most probable state (72%) at the next time step is severe drought 

itself, while 28% of the times there are likely transitions from this state to a less severe 

drought state. If we consider the mild drought state, the most probable category (61%) for 

transition at the next time step is remaining in the same state, and then, 13% and 27% of 

the times, respectively, transitioning to a severe drought and normal state. Persistence of 

the states (Steinemann, 2003) indicated by diagonal entries in the transition probability 

matrix is an important factor in drought planning. Persistence is quite low for the wet 

states in majority of the models (except in model 3), and for severe drought state in 
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models 2 and 4. Mildly wet state oscillates the least among the states in the models, with 

greater chances of transitioning to normal conditions. Mild drought, on the other hand, 

oscillates most among drought states, and in most cases, moves to normal condition in the 

next month (Table 5.5). 

 

Table 5.4 HMM beta emission distribution parameters α and β for different dry/wet states 
in the one-month time scale drought classification models used in the study. Models 

1,2,3, represent classification based on univariate marginals of anomalies of streamflows 
1( )X , precipitation 2( )X , and soil moisture 3( )X , respectively, and models 4, 5 and 6, 

correspond to bivariate copulas of pairs 1 2( , )X X , 2 3( , )X X  and 3 1( , )X X , respectively. 
Model 7 used trivariate copula of 1 2 3( , , )X X X  

 

 

 

 

Model 
State 1 State 2 State 3 

Α β Mean  Variance α Β Mean  Variance α β Mean  Variance 
1 1 7 0.125 0.012 2 2 0.5 0.05 13 5 0.722 0.011 
2 2 37 0.051 0.001 4 6 0.4 0.022 2 2 0.5 0.05 
3 0.9 15 0.057 0.003 5 16 0.238 0.008 7 6 0.538 0.018 
4 0.8 23 0.034 0.001 3 12 0.2 0.01 3 2 0.6 0.04 
5 0.6 14 0.041 0.003 3 13 0.188 0.009 3 3 0.5 0.036 
6 0.6 23 0.025 0.001 4 23 0.148 0.005 4 5 0.444 0.025 
7 0.8 25 0.031 0.001 3 15 0.167 0.007 6 6 0.5 0.019 

Model State 4 State 5         
 α β Mean  Variance α Β Mean  Variance 

   1 44 3 0.936 0.001 485 2 0.996 0 
   2 56 6 0.903 0.001 5000 47 0.991 0 
   3 25 6 0.806 0.005 56 3 0.949 0.001 
   4 27 12 0.692 0.005 43 2 0.956 0.001 
   5 43 7 0.86 0.002 110 4 0.965 0 
   6 15 5 0.75 0.009 48 4 0.923 0.001 
   7 13 3 0.813 0.009 86 7 0.925 0.001 
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Figure 5.5 Sample PDF plots for the beta emission distributions corresponding to the five 
drought/non-drought states in (i) model 3, (ii) model 6 and (iii) model 7  

 

 

 

Figure 5.6 Sample CDF plots linking different probabilities in (i) model 3 (univariate), 
(ii) model 6 (bivariate) and (iii) model 7 (trivariate) to hydroclimatic anomalies 
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Table 5.5 HMM transition probabilities for different dry/wet states in the one-month time scale drought classification models used 
in the study. Models 1,2,3, represent classification based on univariate marginals of anomalies of streamflows 1( )X , precipitation 

2( )X , and soil moisture 3( )X , respectively, and models 4, 5 and 6, correspond to bivariate copulas of pairs 1 2( , )X X , 2 3( , )X X  
and 3 1( , )X X , respectively. Model 7 used trivariate copula of 1 2 3( , , )X X X . 

 

State Model 1  Model 2  Model 3 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.60 0.40 0.00 0.00 0.00  0.33 0.67 0.00 0.00 0.00  0.74 0.26 0.00 0.00 0.00 
2 0.11 0.80 0.09 0.00 0.00  0.29 0.12 0.59 0.00 0.00  0.11 0.68 0.21 0.00 0.00 
3 0.00 0.32 0.44 0.24 0.00  0.00 0.13 0.74 0.13 0.00  0.00 0.15 0.70 0.15 0.00 
4 0.00 0.00 0.72 0.20 0.08  0.00 0.00 0.85 0.14 0.01  0.00 0.00 0.26 0.61 0.13 
5 0.00 0.00 0.00 1.00 0.00  0.00 0.00 0.00 1.00 0.00  0.00 0.00 0.00 0.35 0.65 

State Model 4  Model 5  Model 6 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.48 0.52 0.00 0.00 0.00  0.75 0.25 0.00 0.00 0.00  0.67 0.33 0.00 0.00 0.00 
2 0.14 0.49 0.37 0.00 0.00  0.12 0.58 0.30 0.00 0.00  0.13 0.56 0.31 0.00 0.00 
3 0.00 0.38 0.62 0.00 0.00  0.00 0.30 0.61 0.09 0.00  0.00 0.22 0.63 0.15 0.00 
4 0.00 0.00 0.51 0.49 0.00  0.00 0.00 0.73 0.27 0.00  0.00 0.00 0.38 0.48 0.14 
5 0.00 0.00 0.00 1.00 0.00  0.00 0.00 0.00 1.00 0.00  0.00 0.00 0.00 0.76 0.24 

State Model 7 
 

     

 

     1 2 3 4 5  
     

 
     1 0.72 0.28 0.00 0.00 0.00  

     
 

     2 0.13 0.60 0.27 0.00 0.00  
     

 
     3 0.00 0.41 0.46 0.13 0.00  

     
 

     4 0.00 0.00 0.75 0.25 0.00  
     

 
     5 0.00 0.00 0.00 1.00 0.00  
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5.5.3 Drought Classification  

An HMM-based index not only extracts watershed-specific drought classes in this 

study, it has the added advantage of accounting for uncertainty in classification. The 

posterior probabilities of being in a particular state at any instant of time obtained from 

HMM reflect classification uncertainty. The results of drought classification at 1-month 

time scale for an example period 2001-2012 are provided in Figure 5.7. There are seven 

plots corresponding to each of the seven models. In each plot, the corresponding 

probabilities of falling in each drought state are shown using bars of different shades. The 

darkest shade corresponds to severe drought, whereas a white-colored bar represents a 

very wet state. The probabilities of being in each of the five states in a certain month 

indicate classification uncertainty, and the state that has the largest value is the most 

probable. At one-month time scale (Figure 5.7), only a few severe drought events have 

occurred in this region during 2001-2012 as indicated by all seven models−notable are 

those in the years 2001, 2007 and 2011-2012, that have been disastrous for the entire 

Midwest USA. Several mild droughts are reported by the models during this period. The 

smooth transitions imposed on the models are clearly visible in the drought evolution. 

Results suggest that models 2 and 3 yield the least number of drought instances. Model 1 

recorded a large number of mild drought events during this period. Models 4, 5, 6, and 7 

provide more realistic drought monitoring results−capable of both short term and long 

term drought management. Several drought events including those in 2001, 2007 and 

2011-2012, were captured. Model 7−the trivariate case−is superfluous because model 5 

gives similar results with just two inputs. In a similar fashion, models 1, 2, 6 and 7 are 

better suited for wet conditions. 
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Figure 5.7 Probabilistic drought state classification by the proposed CDF-based index at one-month time scale in univariate and 
multivariate models 1 to 7 for the example period 2000-2012. Classification uncertainty is obtained since the probabilities of being 

in each of the four drought states are known rather than a single point estimate value of the drought index 
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5.5.3.1 Comparison of Models at Multiple Time Scales 

For long term drought monitoring, drought indices are constructed at various time 

scales that are of interest to water managers. At 3- and 6-months scale, the responses to 

short term changes are less, unlike the 1-month time scale model. The emission 

parameters and transition state probabilities of the seven models at 3-month and 6-month 

time scales are provided in Tables B1-B4, included in Appendix B for brevity. The 

emission parameters in Tables B1 and B2 were compared with the one-month model 

(Table 5.4). There is reduction in variance of different drought classes as the time scale 

increases, implying less uncertainty in drought classification in these models. Low 

variance is a characteristic of the extreme states (severe drought and severely wet) in all 

models at all time scales, and these states are identified with high probabilities. Similarly, 

transition probabilities at 3- and 6-month time scales were examined. Persistence of states 

is high for all the states in the 3-month models 1, 3, 5 and 6 (Table B3), whereas, it is 

high in all seven 6-month drought models (Table B4), implying they are better indicators 

of long term drought conditions.  

Transition probabilities for 3- and 6-month models in Tables B3 and B4 indicate 

the following trends in general: (i) persistence of states increase as the time scale 

increases, (ii) transitions from mild drought to normal conditions are observed with high 

probabilities, (iii) there are likely fewer transitions from mildly wet to severely wet 

conditions. Therefore, possible advantages of using 3- or 6-month time scale index for 

drought management are: (i) earlier identification of onset of drought, (ii) lower chances 

of false alarms, for instance if an abnormal drought indicator value is seen in a particular 
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month, (iii) drought responses may be triggered only when drought, that is, state 1 

(severe) or 2 (mild) is encountered.  

Probabilistic drought classification using 3-month and 6-month time scale models 

are shown in Figures 5.8 and 5.9. Overall, the posterior probabilities from the seven 

models for different drought classes are similar at 6-month time scale. In 3-month scale 

models, except for models 2 and 4, results from models are consistent. Upon closer 

examination, model 3, based on soil moisture anomaly is found to yield consistent 

drought monitoring results at 1-, 3-, and 6-month time scales. For all other models, there 

are differences between 1-month and the other two time scales. At 1- and 3-month time 

scales, the overall number of droughts captured is large. In Figure 5.9, results from 6-

month scale models are shown, and few prominent long term mild and severe droughts 

captured by the models are in the years 2000, 2001, 2007, 2009, 2010-2011, 2012. 

Besides these, there are recorded droughts in 2002-2003, 2004, 2005-2006, 2008-2009, 

that are indicated by 1- and 3-month scale models alone. These observations are a key to 

understanding the utility of indices across time scales in the level of drought monitoring 

desired by users.  

5.5.3.2 2012 Year Drought Outlook  

The year 2012 was reported as a devastating drought year across whole of the 

Midwest USA, with severe consequences on the economy. A comparison across models 

and temporal scales for this particular drought is performed for understanding the 2012 

drought evolution. If 1-month time scale models are considered, drought onset is 

observed as early as February 2012 across the 7 models (Figure 5.7). Model 3 indicates 

June as the first month of drought. In model 1, particularly, drought conditions persisted 
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in last 3-4 months of 2011, and drought in 2012 seems to have aggravated the deficit that 

was already in the system. The drought termination is observed very early on in models 2 

and 4, before November. 

Across 3-month scale models (Figure 5.8), the 2012 year droughts began mostly 

during March-May months, and early onsets are suggested by models 1, 2, 4 and 7.  Only 

Model 5 suggests that conditions returned back to normal early, before November 2012. 

In 6-month scale drought models, earliest reported drought is in June 2012, and models 

except 2, 4 and 7 captured it one-two months later (Figure 5.9). The drought did not end 

before November 2012, according to these models. 
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Figure 5.8 Probabilistic drought state classification by the proposed CDF-based index at 3-month time scale in univariate and 
multivariate models 1 to 7 for the example period 2000-2012. Classification uncertainty is obtained since the probabilities of being 

in each of the four drought states are known rather than a single point estimate value of the drought index
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Figure 5.9. Probabilistic drought state classification by the proposed CDF-based index at 6-month time scale in univariate and 
multivariate models 1 to 7 for the example period 2000-2012. Classification uncertainty is obtained since the probabilities of being 

in each of the four drought states are known rather than a single point estimate value of the drought index
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5.6 Summary and Conclusions 

In this chapter, probabilistic drought indices that use univariate or multivariate 

CDF directly in an HMM framework were developed. The use of CDF estimate was 

suggested unlike the popular index formulations currently in use to allow for 

interpretation in terms of measured/modeled hydrological variables. Additionally, use of 

graphical models such as HMMs offers information on uncertainty in drought 

classification, that is, the probability of being in a given state at any time step is available. 

The analysis used lumped hydrological data over an Indiana watershed to develop 

univariate and multivariate drought models (total 7 in number) at three different 

timescales (1, 3, 6 months) for drought monitoring. The drought monitoring capabilities 

of the various models at different time scales were compared over an example 12 year 

time period.  

The conclusions that can be drawn based on the case study are: 

i. The indicators suggest probabilities that are easily translated to deficits in 

variables of interest. By means of contour plots and probability density function 

(PDF) plots, one can directly link drought categories to actual values of deficit in 

the meteorological, hydrological and agricultural systems. The CDF-based 

method allowed for inclusion of multiple hydrological variables without 

increasing the curse of dimensionality. 
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ii. The inclusion of multiple variables provided a multi-dimensional approach to 

drought characterization as indicated by the retrospective analysis using long term 

hydroclimatology that captured early drought onset, and persistent drought events 

in the region.  

iii. Persistence in drought states increased as the time scale increased, implying 3- 

and 6-month models are better suited for long term drought monitoring. 

iv. Models 4, 5 and 6, were parsimonious, with same drought detection capabilities 

as model 7, at all the three time scales. Bivariate joint models served as 

reasonably good overall drought indicators for this watershed. Among these, 

precipitation and streamflow are direct measurements. 

v. Conforming to previous studies of drought indices at different time scales, short 

term droughts in the watershed are best captured by 1-month models, and fairly 

well by the 3-month models. Models at 6-months, however, picked only the 

prominent droughts that likely have serious widespread impacts on the watershed.  

vi. Early onset of drought, as well as early withdrawal was suggested by one-month 

scale models, while the 6-month scale models reported the same drought months 

later. These differences are attributed to the cumulative nature of longer time 

scale models, and are useful to track deficits that are potential threats to long term 

water storage in the watershed. 

vii. The evolving states in models are dependent on the long term hydro-climatology 

of the watershed, and are therefore watershed-specific. 

 
  

 

 



157 
 

Results of this case study have several implications on the understanding of 

various components of the hydrological cycle. The evolution of a watershed-scale 

drought from precipitation deficit, that leads to soil moisture deficit, and is ultimately 

reflected in streamflow deficit, explains the early onset of drought observed in the models 

based on precipitation, and persistence of droughts in streamflow drought models. 

Drought characterization evolved differently in the models considered in the case study. 

An integrated multivariate approach is beneficial for early drought monitoring, efficient 

mitigation and management, and this is achieved by determining the best subset of 

variables for index formulation through watershed-specific case studies.  
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CHAPTER 6.   CONCLUSIONS 
 
 
 

The focus of this research was to develop probabilistic models that have different 

applications in drought studies, namely, identifying drought triggers for hydrological 

droughts, predictor selection for drought models, developing a crop water stress-based 

agricultural drought index, and exploring roles of hydrologic variables for overall drought 

assessment at a watershed-scale. The applications used hydroclimatic variables such as 

streamflows, precipitation, soil moisture, temperature, runoff, evaporation, wind speed 

and sea level pressure at different locations in Indiana, USA.  

 

6.1 Summary 

Previous studies had suggested that there is scope for improving drought trigger-

based information at a watershed scale [Palmer et al., 2002; Steinemann et al., 2005]. 

Though there are several retrospective drought characterization studies based on 

hydrologic data, there have been none on investigation of drought triggers. The first 

objective of this thesis used principal component analysis for dimensionality reduction, 

and copulas for joint probabilistic modeling, to extract triggers of hydrological droughts 

in two Indiana watersheds. The results of the study showed that drought triggers are 

watershed specific. Specific ranges of relevant hydro-climatic variables that are potential 

triggers to different categories of hydrologic droughts were extracted. Precipitation, soil 
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moisture, and runoff showed the greatest potential in resolving amongst different drought 

classes. These triggers are useful for forecasting expected value of streamflow deficit in 

watersheds at one-month lead time. 

Predictor selection is another important aspect of hydrological modeling that has 

significant impacts on model performance and robustness. The second goal focused on 

determining the relevant predictors for parsimonious prediction of streamflows at any 

lead time. By using Gaussian graphical models based on conditional independence, a 

smaller subset of predictor variables was identified for prediction of streamflows at 1-, 2-, 

3- and 4-month lead times. The resulting models performed as well as the models that 

used all the variables in the original set. The parsimonious streamflow prediction model 

at one-month lead time was then used for drought prediction at one-month time scale in 

the study watershed. 

Agricultural drought studies in the past have utilized soil moisture as the primary 

drought indicator. However, the drought indices were not designed to account for crop 

responses to soil water deficits in the field. As the third goal, a new agricultural drought 

index was developed to account for crop water needs that are highly variable spatially 

and across the crop growing season duration, using crop water stress functions available 

from literature. Probabilistic classification of agricultural droughts was performed using 

graphical models (HMMs), where different hidden states represented different drought 

categories. The developed index suggested drought events that were in good agreement 

with results from popular indices such as SPI, PDSI and SPEI. Further, the propensity of 

severe and extreme category droughts across locations in Indiana was studied using the 

proposed index.  
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 The thesis concludes with a case study to investigate the roles of hydrologic 

variables in overall drought assessment of a watershed. Bivariate and trivariate copulas 

were used to construct a joint CDF-based drought index as opposed to a multivariate 

analysis. Using different combinations of monthly precipitation, soil moisture and 

streamflows as drought indicators, and probabilistic classification using HMMs, indices 

were developed for different time scales (1, 3, and 6 months). The case study was useful 

in understanding how different hydrologic variables affect drought characterization and 

evolution. Inclusion of multiple variables captured the early onset of droughts as well as 

their persistence. Further, the models were watershed specific. Using a graphical model-

based drought classification, the uncertainty involved in drought characterization was 

obtained.   

Overall, probabilistic models were developed for applications in the field of 

drought trigger identification, drought prediction, monitoring, and classification. These 

drought models addressed some of the long standing questions in hydrologic studies such 

as dimensionality reduction, model parsimony, uncertainty estimation, and role of 

hydroclimatic variables in drought evolution. The confounding issues of availability of 

long record of data and model parameter space were tackled using PCA, copulas, and 

conditional independence. Graphical models proved to be a useful technique for model 

dimensionality reduction as well as drought classification with uncertainty estimation. In 

agricultural drought studies, use of crop water stress-based index was a new approach to 

capture drought events across space and time that vary because of cropping pattern and 

growth stage of crops, respectively. The results of the studies, in general, are watershed 

specific, and regional assessments are therefore not recommended.  
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6.2 Limitations of the Study 

Few limitations of the drought research conducted in the thesis are as follows: 

i. The hidden states in the HMM-based drought classification model that correspond 

to different drought categories are data driven, and therefore require 

interpretation. The mapping of drought classes using different models is by 

definition rather than from any underlying physics. 

ii. Despite the efforts to reduce dimensionality of hydroclimatic predictors and use 

of simplifying assumptions in drought models, data limitations continue to affect 

model robustness in different applications. Parameter estimation is often 

dependent on initial estimates and requires multiple simulations with random 

starts, incurring large computational burden. 

iii. Applications in the thesis primarily modeled the temporal evolution of droughts 

using probabilistic indices. However, spatio-temporal evolution of droughts still 

remains a challenging research problem. 

iv. Most of the results were found to be watershed- or location-specific. Proper 

regionalization is not achieved in the modeling studies. 

 

6.3 Future Work 

Future research would call for techniques to improve probabilistic drought models 

to reduce classification uncertainty, and extending the range of applications for drought 

mitigation in watersheds. Examples of future research directions are listed as follows: 
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i. It is important to develop more robust drought models that can deal with sparse 

hydroclimatic data.  

ii. While the proposed models are suitable for locations in Midwest USA, that is not 

the case for different locations around the world. When highly seasonal 

hydroclimatic variables are present, for instance in monsoon dominated regions, 

the proposed drought models for probabilistic drought classification need to be 

redesigned.  

iii. To enhance the adoption and utility of the research by decision makers, web-

based tools need to be developed for faster translation to application.   

iv. Probabilistic analyses to address impacts of climate and land use change in 

watersheds remains an enduring challenge. 
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Appendix A  
 

Parameter Estimation using EM Algorithm  

 

Given that observations in the time series and underlying sequence of states are 

represented as 1 2( , , , )TO o o o=  and 1 2( , , )Tq q q q=  , respectively, the log likelihood 

function to be maximized becomes: 

( , ') ( , | ') log ( , | )
q

Q P O q P O qΜ Μ = Μ Μ∑                                                                    (A.1) 

 where Μ  represents the new set of model parameters and 'Μ  the 

previous/initial set of values. If we define the probability ( , | )P O q Μ  as follows: 

1 1
2

( , | ) ( )
t t t

T

q q q q t
t

P O q a b oπ
−

=

Μ = ∏                                                                                      (A.2) 

where ,π a  and b  denote initial state, transition and emission probabilities respectively. 

Then, Q  may be written as: 
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∑∑                           (A.3) 

Estimation of initial state probabilities iπ  

The three parts of Equation (A.3) can be used to maximize the Q  function; each 

term is optimized independently to obtain the new set of parameters. 
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For the first term ( )Q I  in Equation (A.3), its maximization subject to constraint 

1i
i
π =∑  to obtain estimation formula for iπ  follows:  
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where 1λ  is the Lagrange multiplier, and functions * *,α β  are as defined in the forward-

backward algorithm of Rabiner [1989]. Note that these functions are different from the 

beta emission parameters. 

Estimation of transition state probabilities ija  

Similar to the previous exercise, maximization of ( )Q II subject to constraint 

1
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Estimation of beta emission distribution parameters 

Maximizing ( )Q III  does not involve Lagrange multipliers as there are no 

constraints for the beta emission distribution parameters ,j jα β . 
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Emission density for beta distribution is 
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Derivatives in Equation (A.6) can be expanded as: 
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Note that ( )ψ   denotes digamma function formed during differentiation of beta 

function ( , ) ( ) ( ) / ( )j j j j j jα β α β α βΒ = Γ Γ Γ + . The derivatives of beta function are 

determined as follows: 
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Therefore, the emission density parameter estimation problem reduces to solution 

of following two equations: 
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The parameter estimation procedure outlined above was repeated, the log-

likelihood increased with every iteration, until the solutions for different unknowns 

converged. The forward-backward algorithm computations for large datasets involved 

summation of a large number of terms that exceeded the precision range of computing 

machines. However, these steps are inevitable for estimation of parameters in HMM. In 

order to cope with this issue, scaling was performed [Rabiner, 1989].  

The posterior probability of being in a particular drought state at time t  , that 

forms the basis for estimating the uncertainty in drought state classification, is given by: 
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Appendix B   
 

Tabulated Results at 3- and 6-month Time Scale 

 

Table B1 HMM beta emission distribution parameters for different dry/wet states in the 
3-month time scale drought classification models used in the study 

  

 
  

Model 
State 1 State 2 State 3 

α β Mean  Variance α β Mean  Variance α β Mean  Variance 
1 1 30 0.032 0.001 2 9 0.182 0.012 5 6 0.455 0.021 
2 2 24 0.077 0.003 3 6 0.333 0.022 6 3 0.667 0.022 
3 2 20 0.091 0.004 12 31 0.279 0.005 28 27 0.509 0.004 
4 1 20 0.048 0.002 3 8 0.273 0.017 10 5 0.667 0.014 
5 1 30 0.032 0.001 3 16 0.158 0.007 4 7 0.364 0.019 
6 1 22 0.043 0.002 3 14 0.176 0.008 7 9 0.438 0.014 
7 1 24 0.04 0.001 3 11 0.214 0.011 10 9 0.526 0.012 

Model State 4 State 5         
 α β Mean  Variance α β Mean  Variance 

   1 18 5 0.783 0.007 42 2 0.955 0.001 
   2 21 2 0.913 0.003 122 2 0.984 0.000 
   3 34 12 0.739 0.004 20 2 0.909 0.004 
   4 19 2 0.905 0.004 156 2 0.987 0.000 
   5 20 9 0.69 0.007 28 3 0.903 0.003 
   6 20 8 0.714 0.007 38 4 0.905 0.002 
   7 17 6 0.739 0.008 41 5 0.891 0.002 
    

 
  

 

 



192 
 

Table B2 HMM beta emission distribution parameters for different dry/wet states in the 
6-month time scale drought classification models used in the study  

 

 
                                          

Model 
State 1 State 2 State 3 

α β Mean  Variance α β Mean  Variance α β Mean  Variance 
1 3 47 0.06 0.001 13 49 0.21 0.003 19 29 0.396 0.005 
2 2 48 0.04 0.001 3 14 0.176 0.008 5 7 0.417 0.019 
3 2 20 0.091 0.004 15 36 0.294 0.004 29 28 0.509 0.004 
4 1 24 0.04 0.001 3 12 0.2 0.01 9 10 0.474 0.012 
5 1 25 0.038 0.001 8 44 0.154 0.002 18 38 0.321 0.004 
6 1 21 0.045 0.002 12 56 0.176 0.002 19 36 0.345 0.004 
7 0.9 34 0.026 0.001 10 62 0.139 0.002 16 37 0.302 0.004 

Model State 4 State 5         
 α β Mean  Variance α β Mean  Variance 

   1 21 12 0.636 0.007 14 2 0.875 0.006 
   2 15 6 0.714 0.009 23 2 0.92 0.003 
   3 34 14 0.708 0.004 18 2 0.9 0.004 
   4 19 6 0.76 0.007 28 2 0.933 0.002 
   5 26 20 0.565 0.005 13 3 0.813 0.009 
   6 28 20 0.583 0.005 17 4 0.81 0.007 
   7 30 27 0.526 0.004 16 5 0.762 0.008 
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Table B3 HMM transition probabilities for different dry/wet states in the 3-month time scale drought classification models used in 
the study 

 

State Model 1  Model 2  Model 3 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.59 0.41 0.00 0.00 0.00  0.60 0.40 0.00 0.00 0.00  0.84 0.16 0.00 0.00 0.00 
2 0.06 0.63 0.31 0.00 0.00  0.11 0.61 0.28 0.00 0.00  0.11 0.69 0.20 0.00 0.00 
3 0.00 0.18 0.65 0.17 0.00  0.00 0.31 0.54 0.15 0.00  0.00 0.18 0.64 0.18 0.00 
4 0.00 0.00 0.29 0.58 0.13  0.00 0.00 0.50 0.40 0.10  0.00 0.00 0.23 0.60 0.17 
5 0.00 0.00 0.00 0.41 0.59  0.00 0.00 0.00 0.79 0.21  0.00 0.00 0.00 0.24 0.76 

State Model 4 
 

Model 5 
 

Model 6 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.71 0.29 0.00 0.00 0.00  0.78 0.22 0.00 0.00 0.00  0.79 0.21 0.00 0.00 0.00 
2 0.10 0.74 0.16 0.00 0.00  0.12 0.64 0.25 0.00 0.00  0.11 0.69 0.20 0.00 0.00 
3 0.00 0.29 0.60 0.11 0.00  0.00 0.21 0.61 0.18 0.00  0.00 0.19 0.63 0.18 0.00 
4 0.00 0.00 0.49 0.44 0.07  0.00 0.00 0.36 0.51 0.12  0.00 0.00 0.31 0.53 0.16 
5 0.00 0.00 0.00 0.92 0.08  0.00 0.00 0.00 0.44 0.56  0.00 0.00 0.00 0.37 0.63 

State Model 7 
 

     

 

     1 2 3 4 5  
     

 
     1 0.82 0.18 0.00 0.00 0.00  

     
 

     2 0.09 0.77 0.14 0.00 0.00  
     

 
     3 0.00 0.28 0.48 0.23 0.00  

     
 

     4 0.00 0.00 0.69 0.04 0.27  
     

 
     5 0.00 0.00 0.00 0.69 0.31  
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Table B4 HMM transition probabilities for different dry/wet states in the 6-month time scale drought classification models used in 
the study 

 

State Model 1  Model 2  Model 3 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.70 0.30 0.00 0.00 0.00  0.63 0.37 0.00 0.00 0.00  0.89 0.11 0.00 0.00 0.00 
2 0.13 0.65 0.21 0.00 0.00  0.10 0.60 0.30 0.00 0.00  0.08 0.82 0.10 0.00 0.00 
3 0.00 0.21 0.56 0.23 0.00  0.00 0.16 0.70 0.14 0.00  0.00 0.13 0.69 0.18 0.00 
4 0.00 0.00 0.19 0.67 0.13  0.00 0.00 0.19 0.70 0.11  0.00 0.00 0.17 0.72 0.11 
5 0.00 0.00 0.00 0.16 0.84  0.00 0.00 0.00 0.23 0.77  0.00 0.00 0.00 0.14 0.86 

State Model 4 
 

Model 5 
 

Model 6 
1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 0.78 0.22 0.00 0.00 0.00  0.86 0.14 0.00 0.00 0.00  0.84 0.16 0.00 0.00 0.00 
2 0.09 0.76 0.15 0.00 0.00  0.11 0.72 0.17 0.00 0.00  0.15 0.68 0.17 0.00 0.00 
3 0.00 0.19 0.67 0.14 0.00  0.00 0.18 0.62 0.20 0.00  0.00 0.14 0.68 0.18 0.00 
4 0.00 0.00 0.21 0.71 0.08  0.00 0.00 0.22 0.66 0.13  0.00 0.00 0.17 0.72 0.11 
5 0.00 0.00 0.00 0.30 0.70  0.00 0.00 0.00 0.16 0.84  0.00 0.00 0.00 0.14 0.86 

State Model 7 
 

     

 

     1 2 3 4 5  
     

 
     1 0.84 0.16 0.00 0.00 0.00  

     
 

     2 0.15 0.63 0.21 0.00 0.00  
     

 
     3 0.00 0.19 0.61 0.20 0.00  

     
 

     4 0.00 0.00 0.23 0.64 0.13  
     

 
     5 0.00 0.00 0.00 0.17 0.83  
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