152,680 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Fast object detection in compressed JPEG Images

    Full text link
    Object detection in still images has drawn a lot of attention over past few years, and with the advent of Deep Learning impressive performances have been achieved with numerous industrial applications. Most of these deep learning models rely on RGB images to localize and identify objects in the image. However in some application scenarii, images are compressed either for storage savings or fast transmission. Therefore a time consuming image decompression step is compulsory in order to apply the aforementioned deep models. To alleviate this drawback, we propose a fast deep architecture for object detection in JPEG images, one of the most widespread compression format. We train a neural network to detect objects based on the blockwise DCT (discrete cosine transform) coefficients {issued from} the JPEG compression algorithm. We modify the well-known Single Shot multibox Detector (SSD) by replacing its first layers with one convolutional layer dedicated to process the DCT inputs. Experimental evaluations on PASCAL VOC and industrial dataset comprising images of road traffic surveillance show that the model is about 2Ă—2\times faster than regular SSD with promising detection performances. To the best of our knowledge, this paper is the first to address detection in compressed JPEG images

    Applying the Convolutional Neural Network Deep Learning Technology to Behavioural Recognition in Intelligent Video

    Get PDF
    In order to improve the accuracy and real-time performance of abnormal behaviour identification in massive video monitoring data, the authors design intelligent video technology based on convolutional neural network deep learning and apply it to the smart city on the basis of summarizing video development technology. First, the technical framework of intelligent video monitoring algorithm is divided into bottom (object detection), middle (object identification) and high (behaviour analysis) layers. The object detection based on background modelling is applied to routine real-time detection and early warning. The object detection based on object modelling is applied to after-event data query and retrieval. The related optical flow algorithms are used to achieve the identification and detection of abnormal behaviours. In order to improve the accuracy, effectiveness and intelligence of identification, the deep learning technology based on convolutional neural network is applied to enhance the learning and identification ability of learning machine and realize the real-time upgrade of intelligence video’s "brain". This research has a good popularization value in the application field of intelligent video technology

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve
    • …
    corecore