2,006 research outputs found

    TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese Medicine (TCM), a complementary and alternative medical system in Western countries, has been used to treat various diseases over thousands of years in East Asian countries. In recent years, many herbal medicines were found to exhibit a variety of effects through regulating a wide range of gene expressions or protein activities. As available TCM data continue to accumulate rapidly, an urgent need for exploring these resources systematically is imperative, so as to effectively utilize the large volume of literature.</p> <p>Methods</p> <p>TCM, gene, disease, biological pathway and protein-protein interaction information were collected from public databases. For association discovery, the TCM names, gene names, disease names, TCM ingredients and effects were used to annotate the literature corpus obtained from PubMed. The concept to mine entity associations was based on hypothesis testing and collocation analysis. The annotated corpus was processed with natural language processing tools and rule-based approaches were applied to the sentences for extracting the relations between TCM effecters and effects.</p> <p>Results</p> <p>We developed a database, TCMGeneDIT, to provide association information about TCMs, genes, diseases, TCM effects and TCM ingredients mined from vast amount of biomedical literature. Integrated protein-protein interaction and biological pathways information are also available for exploring the regulations of genes associated with TCM curative effects. In addition, the transitive relationships among genes, TCMs and diseases could be inferred through the shared intermediates. Furthermore, TCMGeneDIT is useful in understanding the possible therapeutic mechanisms of TCMs via gene regulations and deducing synergistic or antagonistic contributions of the prescription components to the overall therapeutic effects. The database is now available at <url>http://tcm.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>TCMGeneDIT is a unique database that offers diverse association information on TCMs. This database integrates TCMs with biomedical studies that would facilitate clinical research and elucidate the possible therapeutic mechanisms of TCMs and gene regulations.</p

    Application of atomic force microscopy in cancer research

    Get PDF
    Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research

    The international effort: building the bridge for Translational Medicine: Report of the 1st International Conference of Translational Medicine (ICTM)

    Get PDF
    Background: Supported by the International Society for Translational Medicine (ISTM), Wenzhou Medical College and the First Affiliated Hospital of Wenzhou Medical College, the International Conference on Translational Medicine (ICTM) was held on October 22–23, 2011 in Wenzhou, China. Nearly 800 registrants attended the meeting, primarily representing institutes and hospitals in Europe, The United States of America, And Asia, and China. The meeting was chaired and organized by Dr. Xiangdong Wang, Xiaoming Chen, Richard Coico, Jeffrey M. Drazen, Richard Horton, Francesco M. Marincola, Laurentiu M. Popescu, Jia Qu and Aamir Shahzad. Findings: The meeting focused on the communication of the need to foster translational medicine (TM) by building and broadening bridges between basic research and clinical studies at the international level. The meeting included distinguished TM experts from academia, the pharmaceutical and diagnostics industries, government agencies, regulators, and clinicians and provided the opportunity to identify shared interests and efforts for collaborative approaches utilizing cutting edge technologies, innovative approaches and novel therapeutic interventions. The meeting defined the concept of TM in its two-way operational scheme and emphasized the need for bed to bench efforts based directly on clinical observation. Conclusions: It was the meeting participants’ realization that the shared main goals of TM include breaking the separation between clinic practice and basic research, establishing positive feedback by understanding the basis of expected and unexpected clinical outcomes and accelerating basic research relevant to human suffering. The primary objectives of the meeting were two-fold: to accelerate the two-way translation by informing the participants representing the different disciplines about the state of art activities around TM approaches; and to identify areas that need to be supported by redirecting limited resources as well as identifying new sources of funding. This report summarizes key concepts presented during the meeting representing the state-of-art translational research and salient aspects of the ensuing discussions

    Estimating cancer incidence based on claims data from medical insurance systems in two areas lacking cancer registries in China.

    Get PDF
    BACKGROUND: We aimed to establish a Medical-Insurance-System-based Cancer Surveillance System (MIS-CASS) in China and evaluate the completeness and timeliness of this system through reporting cancer incidence rates using claims data in two regions in northern and southern China. METHODS: We extracted claims data from medical insurance systems in Hua County of Henan Province, and Shantou City in Guangdong Province in China from Jan 1, 2012 to Jun 30, 2019. These two regions have been considered to be high risk regions for oesophageal cancer. We developed a rigorous procedure to establish the MIS-CASS, which includes data extraction, cleaning, processing, case ascertainment, privacy protection, etc. Text-based diagnosis in conjunction with ICD-10 codes were used to determine cancer diagnosis. FINDINGS: In 2018, the overall age-standardised (Segi population) incidence rates (ASR World) of cancer in Hua County and Shantou City were 167·39/100,000 and 159·78/100,000 respectively. In both of these areas, lung cancer and breast cancer were the most common cancers in males and females respectively. Hua County is a high-risk region for oesophageal cancer (ASR World: 25·95/100,000), whereas Shantou City is not a high-risk region for oesophageal cancer (ASR World: 11·43/100,000). However, Nanao island had the highest incidence of oesophageal cancer among all districts and counties in Shantou (ASR World: 36·39/100,000). The age-standardised male-to-female ratio for oesophageal cancer was lower in Hua County than in Shantou (1·69 vs. 4·02). A six-month lag time was needed to report these cancer incidences for the MIS-CASS. INTERPRETATION: MIS-CASS efficiently reflects cancer burden in real-time, and has the potential to provide insight for improvement of cancer surveillance in China. FUNDING: The National Key R&D Program of China (2016YFC0901404), the Digestive Medical Coordinated Development Center of Beijing Municipal Administration of Hospitals (XXZ0204), the Sanming Project of Shenzhen (SZSM201612061), and the Shantou Science and Technology Bureau (190829105556145, 180918114960704)

    Mining of nutritional ingredients in food for disease analysis

    Get PDF
    Suitable nutritional diets have been widely recognized as important measures to prevent and control non-communicable diseases (NCDs). However, there is little research on nutritional ingredients in food now, which are beneficial to the rehabilitation of NCDs. In this paper, we profoundly analyzed the relationship between nutritional ingredients and diseases by using data mining methods. First, more than 7,000 diseases were obtained and we collected the recommended food and taboo food for each disease. Then, referring to the China Food Nutrition, we used noise-intensity and information entropy to find out which nutritional ingredients can exert positive effects on diseases. Finally, we proposed an improved algorithm named CVNDA_Red based on rough sets to select the corresponding core ingredients from the positive nutritional ingredients. To the best of our knowledge, this is the first study to discuss the relationship between nutritional ingredients in food and diseases through data mining based on rough set theory in China. The experiments on real-life data show that our method based on data mining improves the performance compared with the traditional statistical approach, with the precision of 1.682. Additionally, for some common diseases such as Diabetes, Hypertension and Heart disease, our work is able to identify correctly the first two or three nutritional ingredients in food that can benefit the rehabilitation of those diseases. These experimental results demonstrate the effectiveness of applying data mining in selecting of nutritional ingredients in food for disease analysis

    Treating Chronic Wounds Using Photoactive Metabolites: Data Mining the Chinese Pharmacopoeia for Potential Lead Species (#)

    Get PDF
    Efficient wound treatment that addresses associated infections and inflammation remains one of the big unmet needs, especially in low- and middle-income countries. One strategy for securing better healthcare can be using medicinal plants if sufficient evidence on their safety and therapeutic benefits can be ascertained. A unique novel opportunity could be photo-enhanced wound treatment with a combination of light-sensitive plant preparations and local exposure to daylight. Data mining strategies using existing resources offer an excellent basis for developing such an approach with many potential plant candidates. In the present analysis, we researched the 535 botanical drugs included in the Chinese pharmacopeia and identified 183 medicinal plant species, 82 for treating open wounds caused by trauma and 101 for inflammatory skin conditions. After further screening for reports on the presence of known photoactive compounds, we determined a core group of 10 scientifically lesser-known botanical species that may potentially be developed into more widely used topical preparations for photodynamic treatment of infected wounds. Our predictive approach may contribute to developing a more evidence-based use of herbal medicines

    Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization

    Get PDF
    Cerebral ischemia/reperfusion injury (CI/RI) is a common feature of ischemic stroke, involving a period of impaired blood supply to the brain, followed by the restoration of cerebral perfusion through medical intervention. Although ischemia and reperfusion brain damage is a complex pathological process with an unclear physiological mechanism, more attention is currently focused on the neuroinflammatory response of an ischemia/reperfusion origin, and anti-inflammatory appears to be a potential therapeutic strategy following ischemic stroke. QiShenYiQi (QSYQ), a component-based Chinese medicine with Qi-tonifying and blood-activating property, has pharmacological actions of anti-inflammatory, antioxidant, mitochondrial protectant, anti-apoptosis, and antiplatelet aggregation. We have previously reported that the cardioprotective effect of QSYQ against ischemia/reperfusion injury is via improvement of mitochondrial functional integrity. In this research work, we aimed to investigate the possible mechanism involved in the neuroprotection of QSYQ in mice model of cerebral ischemia/reperfusion injury based on the inflammatory pathway. The cerebral protection was evaluated in the stroke mice after 24 h reperfusion by assessing the neurological deficit, cerebral infarction, brain edema, BBB functionality, and via histopathological assessment. TCM-based network pharmacology method was performed to establish and analyze compound-target-disease & function-pathway network so as to find the possible mechanism linking to the role of QSYQ in CI/RI. In addition, RT-qPCR was used to verify the accuracy of predicted signaling gene expression. As a result, improvement of neurological outcome, reduction of infarct volume and brain edema, a decrease in BBB disruption, and amelioration of histopathological alteration were observed in mice pretreated with QSYQ after experimental stroke surgery. Network pharmacology analysis revealed neuroinflammatory response was associated with the action of QSYQ in CI/RI. RT-qPCR data showed that the mice pretreated with QSYQ could significantly decrease IFNG-γ, IL-6, TNF-α, NF-κB p65, and TLR-4 mRNA levels and increase TGF-β1 mRNA level in the brain compared to the untreated mice after CI/RI (p \u3c 0.05). In conclusion, our study indicated the cerebral protective effect of pretreatment with QSYQ against CI/RI, which may be partly related to its potential to the reduction of neuroinflammatory response in a stroke subject

    A new prognostic scale for the early prediction of ischemic stroke recovery mainly based on traditional Chinese medicine symptoms and NIHSS score: a retrospective cohort study

    Get PDF
    TCM symptoms & signs with appearance rate no less than 5 %. In practical analysis we selected 57 TCM symptoms with the appearance rate ≥5 % from 157 TCM symptoms& signs except tongue and pulse. (CSV 1 kb

    Bibliometric analysis of the global scientific production on machine learning applied to different cancer types

    Get PDF
    This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement no. 860627 (CLARIFY Project), from the Spanish Ministry of Science and Innovation under project PID2019-105142RB-C22, and by FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under the project P20_00286. Funding for open access charge: Universidad de Granada/CBUA.Cancer disease is one of the main causes of death in the world, with million annual cases in the last decades. The need to find a cure has stimulated the search for efficient treatments and diagnostic procedures. One of the most promising tools that has emerged against cancer in recent years is machine learning (ML), which has raised a huge number of scientific papers published in a relatively short period of time. The present study analyzes global scientific production on ML applied to the most relevant cancer types through various bibliometric indicators. We find that over 30,000 studies have been published so far and observe that cancers with the highest number of published studies using ML (breast, lung, and colon cancer) are those with the highest incidence, being the USA and China the main scientific producers on the subject. Interestingly, the role of China and Japan in stomach cancer is correlated with the number of cases of this cancer type in Asia (78% of the worldwide cases). Knowing the countries and institutions that most study each area can be of great help for improving international collaborations between research groups and countries. Our analysis shows that medical and computer science journals lead the number of publications on the subject and could be useful for researchers in the field. Finally, keyword co-occurrence analysis suggests that ML-cancer research trends are focused not only on the use of ML as an effective diagnostic method, but also for the improvement of radiotherapy- and chemotherapy-based treatments.Horizon 2020 European Union under the Marie Sklodowska Curie 860627Spanish Government PID2019-105142RB-C22FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades P20_00286Universidad de Granada/CBU
    corecore