428 research outputs found

    An enhanced teaching interface for a robot using DMP and GMR

    Get PDF
    This paper develops an enhanced teaching interface tested on both a Baxter robot and a KUKA iiwa robot. Movements are collected from a human demonstrator by using a Kinect v2 sensor, and then the data is sent to a remote PC for the teleoperation with Baxter. Meanwhile, data is saved locally for the playback process of the Baxter. The dynamic movement primitive (DMP) is used to model and generalize the movements. In order to learn from multiple demonstrations accurately, dynamic time warping (DTW), is used to pretreat the data recorded by the robot platform and Gaussian mixture model (GMM), aiming to generate multiple patterns after the teaching process, are employed for the calculation of the DMP. Then the Gaussian mixture regression (GMR) algorithm is applied to generate a synthesized trajectory with smaller position errors in 3D space. This proposed approach is tested by performing two tasks on a KUKA iiwa and a Baxter robot

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Socially Believable Robots

    Get PDF
    Long-term companionship, emotional attachment and realistic interaction with robots have always been the ultimate sign of technological advancement projected by sci-fi literature and entertainment industry. With the advent of artificial intelligence, we have indeed stepped into an era of socially believable robots or humanoids. Affective computing has enabled the deployment of emotional or social robots to a certain level in social settings like informatics, customer services and health care. Nevertheless, social believability of a robot is communicated through its physical embodiment and natural expressiveness. With each passing year, innovations in chemical and mechanical engineering have facilitated life-like embodiments of robotics; however, still much work is required for developing a “social intelligence” in a robot in order to maintain the illusion of dealing with a real human being. This chapter is a collection of research studies on the modeling of complex autonomous systems. It will further shed light on how different social settings require different levels of social intelligence and what are the implications of integrating a socially and emotionally believable machine in a society driven by behaviors and actions

    Computer-controlled autonomous model car: A mechatronics project

    Get PDF
    Mechatronics is a synthesis of mechanical engineering and electronic engineering, and computer engineering, distinct areas that overlap in the design of systems. It represents the interdisciplinary nature of design and development of today\u27s products.;The current research focuses on the design, construction and testing of a computer controlled autonomous model car which can exhibit intelligent behavior such as timed course execution, obstacle detection, and response to sensor inputs. The car is intended as a mechatronics design project that will be integrated into an existing one-semester mechanical engineering undergraduate instrumentation course.;The car was designed around a microprocessor board (Tern Analog Drive) controlled by a 16-bit microcontroller (Tern V104) and equipped with several sensor channels. Two stepper motors were used to propel and guide the car. Photocells were used to detect the path. The control program was written in Turbo C.;The car was tested on a path of reflective white tape about 2 inches wide. The path consists of a 36-inch straight portion followed by a 17-inch radius of curvature curved portion, and completed by a 6-inch straight section with an obstacle at the end. The autonomous car successfully traversed the path and stopped when it detected the obstacle.;It was concluded that a successful mechatronic design project could be developed around the construction and testing of an autonomous car

    Studies on user control in ambient intelligent systems

    Get PDF
    People have a deeply rooted need to experience control and be effective in interactions with their environments. At present times, we are surrounded by intelligent systems that take decisions and perform actions for us. This should make life easier, but there is a risk that users experience less control and reject the system. The central question in this thesis is whether we can design intelligent systems that have a degree of autonomy, while users maintain a sense of control. We try to achieve this by giving the intelligent system an 'expressive interface’: the part that provides information to the user about the internal state, intentions and actions of the system. We examine this question both in the home and the work environment.We find the notion of a ‘system personality’ useful as a guiding principle for designing interactions with intelligent systems, for domestic robots as well as in building automation. Although the desired system personality varies per application, in both domains a recognizable system personality can be designed through expressive interfaces using motion, light, sound, and social cues. The various studies show that the level of automation and the expressive interface can influence the perceived system personality, the perceived level of control, and user’s satisfaction with the system. This thesis shows the potential of the expressive interface as an instrument to help users understand what is going on inside the system and to experience control, which might be essential for the successful adoption of the intelligent systems of the future.<br/
    corecore