90,682 research outputs found

    Application of a Home Energy Management System for Incentive-Based Demand Response Program Implementation

    Get PDF
    This paper presents an experimental real-time implementation of an incentive-based demand response program with hardware demonstration of a home energy management system. This system controls the electricity consumption of a residential electricity customer. For this purpose, the real consumption and generation profiles of a typical Portuguese household equipped with a home-scale photovoltaic system are employed. These profiles are simulated by the real-time digital simulator using real hardware resources. In the case studies, three different scenarios are simulated for a period of 24 hours with the consideration of the demand response programs and a 2 kW photovoltaic system. Different pricing scenarios are considered and the performance of the home energy management system is evaluated under each scenario. The focus is given to demonstrate how a home-scale photovoltaic system, and demand response programs, especially load-shifting scenario, can be cost-effective in the daily electricity costs of the residential customers.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013info:eu-repo/semantics/publishedVersio

    Incentive Price-Based Demand Response in Active Distribution Grids

    Get PDF
    Integration of PV power generation systems at distribution grids, especially at low-voltage (LV) grids, brings in operational challenges for distribution system operators (DSOs). These challenges include grid over-voltages and overloading of cables during peak PV power production. Battery energy storage systems (BESS) are being installed alongside PV systems by customers for smart home energy management. This paper investigates the utilization of those BESS by DSOs for maintaining the grid voltages within limits. In this context, an incentive price based demand response (IDR) method is proposed for indirect control of charging/discharging power of the BESS according to the grid voltage conditions. It is shown that the proposed IDR method, which relies on a distributed computing application, is able to maintain the grid voltages within limits. The advantage of the proposed distributed implementation is that the DSOs can compute and communicate the incentive prices thereby encouraging customers to actively participate in the demand response program. An iterative distributed algorithm is used to compute the incentive prices of individual BESS to minimize the costs of net power consumption of the customer. The proposed IDR method is tested by conducting simulation studies on the model of a Danish LV grid for few study cases. The simulation results show that by using the proposed method for the control of BESS, node voltages are maintained within limits as well as the costs of net power consumption of BESS owners are minimized

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    • …
    corecore