163 research outputs found

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Pervasive Monitoring - An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    Get PDF
    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.Seventh Framework Programme (European Commission) (FP7 project GENESIS no. 223996)Austria. Federal Ministry of Transport, Innovation and TechnologyERA-STAR Regions Project (G2real)Austria. Federal Ministry of Science and Researc

    A prototype to integrate a wireless sensor network with civil protection grid applications

    Get PDF
    The present work was performed in the context of the CYCLOPS project, which aimed to exploit the Grid capabilities for Global Monitoring for Environment and Security (GMES) applications. The scenario exploited in the present work was the existence of remote wireless sensor networks, which could monitor and transmit real-time data from remote places, in order to prevent or react more accurately to situations of natural disasters. Considering a Wireless Sensor Network (WSN) as an instrument, we used the DORII middleware to integrate this instrument with gLite-based Grid computing and storage, allowing an effective and user friendly access to the instrument, as it is required by Civil Protection applications. The mentioned goal was achieved by (i) implementing an Instrument Element and several Instrument Managers, which virtualize the WSN; (ii) developing a Custom Java Interface to connect the Instrument Managers with sensors, performing the translation of the commands/data exchanged between them; (iii) implementing additional modules to permit a long duration (or offline) monitoring, saving the observed data in a database; (iv) implementing a Sensor Observation Service, following the OGC standards, providing the users with access to the database

    Integration of BIM and utility sensor data for facilities management

    Get PDF
    Building information modelling represents a building as a database of coordinated, consistent and computable information in construction (Sabol, 2008). There has been a recent trend to study the usage of BIM for post-construction facility management. Recently, attempts are also being made to link a BIM model with smart sensing technology or building automation systems (BAC). This thesis aims to investigate the feasibility of using sensor data from mote based light sensors tied to a BIM model, to be used for maintenance based facility management. More specifically, a prototype will be developed that integrates lighting sensor data collected using a mote tied to a wireless sensor network(WSN), with a BIM model. This integration will then be further developed for its capability of being used as a facility management tool for equipment inventory and preventive maintenance by linking COBIE sheets to it

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept
    • …
    corecore