713 research outputs found

    Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models

    Get PDF
    In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data

    Enhancement of bees algorithm for global optimisation

    Get PDF
    This research focuses on the improvement of the Bees Algorithm, a swarm-based nature-inspired optimisation algorithm that mimics the foraging behaviour of honeybees. The algorithm consists of exploitation and exploration, the two key elements of optimisation techniques that help to find the global optimum in optimisation problems. This thesis presents three new approaches to the Bees Algorithm in a pursuit to improve its convergence speed and accuracy. The first proposed algorithm focuses on intensifying the local search area by incorporating Hooke and Jeeves’ method in its exploitation mechanism. This direct search method contains a pattern move that works well in the new variant named “Bees Algorithm with Hooke and Jeeves” (BA-HJ). The second proposed algorithm replaces the randomly generated recruited bees deployment method with chaotic sequences using a well-known logistic map. This new variant called “Bees Algorithm with Chaos” (ChaosBA) was intended to use the characteristic of chaotic sequences to escape from local optima and at the same time maintain the diversity of the population. The third improvement uses the information of the current best solutions to create new candidate solutions probabilistically using the Estimation Distribution Algorithm (EDA) approach. This new version is called Bees Algorithm with Estimation Distribution (BAED). Simulation results show that these proposed algorithms perform better than the standard BA, SPSO2011 and qABC in terms of convergence for the majority of the tested benchmark functions. The BA-HJ outperformed the standard BA in thirteen out of fifteen benchmark functions and is more effective in eleven out of fifteen benchmark functions when compared to SPSO2011 and qABC. In the case of the ChaosBA, the algorithm outperformed the standard BA in twelve out of fifteen benchmark functions and significantly better in eleven out of fifteen test functions compared to qABC and SPSO2011. BAED discovered the optimal solution with the least number of evaluations in fourteen out of fifteen cases compared to the standard BA, and eleven out of fifteen functions compared to SPSO2011 and qABC. Furthermore, the results on a set of constrained mechanical design problems also show that the performance of the proposed algorithms is comparable to those of the standard BA and other swarm-based algorithms from the literature

    A Continuous-Time Nonlinear Observer for Estimating Structure from Motion from Omnidirectional Optic Flow

    Get PDF
    Various insect species utilize certain types of self-motion to perceive structure in their local environment, a process known as active vision. This dissertation presents the development of a continuous-time formulated observer for estimating structure from motion that emulates the biological phenomenon of active vision. In an attempt to emulate the wide-field of view of compound eyes and neurophysiology of insects, the observer utilizes an omni-directional optic flow field. Exponential stability of the observer is assured provided the persistency of excitation condition is met. Persistency of excitation is assured by altering the direction of motion sufficiently quickly. An equal convergence rate on the entire viewable area can be achieved by executing certain prototypical maneuvers. Practical implementation of the observer is accomplished both in simulation and via an actual flying quadrotor testbed vehicle. Furthermore, this dissertation presents the vehicular implementation of a complimentary navigation methodology known as wide-field integration of the optic flow field. The implementation of the developed insect-inspired navigation methodologies on physical testbed vehicles utilized in this research required the development of many subsystems that comprise a control and navigation suite, including avionics development and state sensing, model development via system identification, feedback controller design, and state estimation strategies. These requisite subsystems and their development are discussed

    Tuning Hyperparameters in Supervised Learning Models and Applications of Statistical Learning in Genome-Wide Association Studies with Emphasis on Heritability

    Get PDF
    Machine learning is a buzz word that has inundated popular culture in the last few years. This is a term for a computer method that can automatically learn and improve from data instead of being explicitly programmed at every step. Investigations regarding the best way to create and use these methods are prevalent in research. Machine learning models can be difficult to create because models need to be tuned. This dissertation explores the characteristics of tuning three popular machine learning models and finds a way to automatically select a set of tuning parameters. This information was used to create an R software package called EZtune that can be used to automatically tune three widely used machine learning algorithms: support vector machines, gradient boosting machines, and adaboost. The second portion of this dissertation investigates the implementation of machine learning methods in finding locations along a genome that are associated with a trait. The performance of methods that have been commonly used for these types of studies, and some that have not been commonly used, are assessed using simulated data. The affect of the strength of the relationship between the genetic code and the trait is of particular interest. It was found that the strength of this relationship was the most important characteristic in the efficacy of each method

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Duality theory in mathematical programming and optimal control

    Get PDF

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space
    • …
    corecore