
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2019

Tuning Hyperparameters in Supervised Learning Models and Tuning Hyperparameters in Supervised Learning Models and

Applications of Statistical Learning in Genome-Wide Association Applications of Statistical Learning in Genome-Wide Association

Studies with Emphasis on Heritability Studies with Emphasis on Heritability

Jill F. Lundell
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Statistics and Probability Commons

Recommended Citation Recommended Citation
Lundell, Jill F., "Tuning Hyperparameters in Supervised Learning Models and Applications of Statistical
Learning in Genome-Wide Association Studies with Emphasis on Heritability" (2019). All Graduate Theses
and Dissertations. 7594.
https://digitalcommons.usu.edu/etd/7594

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usu.edu%2Fetd%2F7594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7594?utm_source=digitalcommons.usu.edu%2Fetd%2F7594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

TUNING HYPERPARAMETERS IN SUPERVISED LEARNING MODELS AND

APPLICATIONS OF STATISTICAL LEARNING IN GENOME-WIDE ASSOCIATION

STUDIES WITH EMPHASIS ON HERITABILITY

by

Jill F. Lundell

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mathematical Sciences

(Statistics)

Approved:

D. Richard Cutler, Ph.D. Chris D. Corcoran, Sc.D.
Major Professor Committee Member

Adele Cutler, Ph.D. Zachariah Gompert, Ph.D.
Committee Member Committee Member

Jürgen Symanzik, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright c© Jill F. Lundell 2019

All Rights Reserved

iii

ABSTRACT

Tuning Hyperparameters in Supervised Learning Models and Applications of Statistical

Learning in Genome-Wide Association Studies with Emphasis on Heritability

by

Jill F. Lundell, Doctor of Philosophy

Utah State University, 2019

Major Professor: D. Richard Cutler, Ph.D.
Department: Mathematics and Statistics

Statistical learning models have been growing in popularity in recent years. Many of

these methods have parameters that must be tuned for models to perform well. Research

has been extensive in neural networks, but not for other learning methods. We look at the

behavior of tuning parameters for support vector machines, gradient boosting machines,

and adaboost in both a classification and regression setting. We found ranges of tuning

parameters where good solutions can be found across many different datasets. We then

explored different optimization algorithms to search for a good set of parameters across

that space. This information was used to create an R package, EZtune, that automatically

tunes learning models.

In the second part of this dissertation, we explore of the use of traditional and statis-

tical learning methods in genome-wide association studies. We simulated data using high

heritability and low heritability. Distance correlation and linear and logistic regression were

evaluated as first-phase filters to remove the majority of the noise from the data. Elastic

net was then investigated as a tool for secondary filtering. Random forests and classification

and regression trees were used for final single nucleotide polymorphism (SNP) selection. We

iv

assessed the affect of heritability through all of these stages as the ability of each method

to find target SNPs.

(119 pages)

v

PUBLIC ABSTRACT

Tuning Hyperparameters in Supervised Learning Models and Applications of Statistical

Learning in Genome-Wide Association Studies with Emphasis on Heritability

Jill F. Lundell

Machine learning is a buzz word that has inundated popular culture in the last few

years. This is a term for a computer method that can automatically learn and improve from

data instead of being explicitly programmed at every step. Investigations regarding the best

way to create and use these methods are prevalent in research. Machine learning models

can be difficult to create because models need to be tuned. This dissertation explores

the characteristics of tuning three popular machine learning models and finds a way to

automatically select a set of tuning parameters. This information was used to create an R

software package called EZtune that can be used to automatically tune three widely used

machine learning algorithms: support vector machines, gradient boosting machines, and

adaboost.

The second portion of this dissertation investigates the implementation of machine

learning methods in finding locations along a genome that are associated with a trait. The

performance of methods that have been commonly used for these types of studies, and some

that have not been commonly used, are assessed using simulated data. The affect of the

strength of the relationship between the genetic code and the trait is of particular interest.

It was found that the strength of this relationship was the most important characteristic in

the efficacy of each method.

vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Richard Cutler, for his expertise, advice, and patience

while I tried to decide on a topic and for continuing to provide great insights during the

process. I would also like to thank Adele Cutler for being so generous with her knowledge

of optimization and statistical learning, Jürgen Symanzik for mentoring me on graphics and

precision, Zach Gompert for sharing his expertise in genetics with me, Chris Corcoran for

providing me with invaluable opportunities in my graduate program, and Guifang Fu for

giving me the opportunity to dive into genetics in the first place.

I would also like to thank my family for their support and patience with this crazy

journey.

Jill F. Lundell

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . xi

ACRONYMS . xiii

1 INTRODUCTION . 1
1.1 Introduction . 1
1.2 Overview of Statistical Learning Methods 2
1.3 Statistical Model Parameter Tuning Literature Review and Background . . 7

1.3.1 Genome-Wide Association Study Literature Review and Background 9

2 TUNING SUPERVISED LEARNING METHODS . 12
2.1 Introduction . 12
2.2 Optimization Algorithms . 12
2.3 Methods . 13

2.3.1 Grid Search . 13
2.3.2 Optimization Algorithms . 15

2.4 Results . 18
2.4.1 Results of Grid Search . 20
2.4.2 Results of Optimization Algorithms 24

2.5 Conclusions . 25

3 EZTUNE: AN R PACKAGE FOR AUTOMATIC TUNING OF SUPPORT VEC-
TOR MACHINES, GRADIENT BOOSTING MACHINES, AND ADABOOST 31

3.1 Introduction . 31
3.2 Package Components and How to Use Them 33

3.2.1 Datasets . 33
3.2.2 Automatic Tuning with eztune . 35
3.2.3 Model Performance Verification with eztune cv 39

3.3 Performance and Benchmarking . 40
3.4 Conclusions . 42

viii

4 THREE-PHASE FILTERING METHOD FOR GENOME-WIDE ASSOCIATION
STUDIES . 54

4.1 Introduction . 54
4.2 Method . 55

4.2.1 Data Simulation . 56
4.2.2 Initial Filtering . 57
4.2.3 LASSO and Elastic Net for Further Refinement 59
4.2.4 Random Forests and Classification and Regression Trees for Final

SNP Selection . 59
4.2.5 Final Assessment of Results . 59

4.3 Results . 62
4.3.1 Heritability . 62
4.3.2 Initial Filter . 62
4.3.3 Elastic Net . 63
4.3.4 Random Forests and CART . 74
4.3.5 Datasets . 74

4.4 Conclusions . 74

5 FUTURE WORK AND CONCLUSIONS . 76

APPENDICES . 78
A EZtune Vignette . 79

A.1 Introduction to EZtune . 79
A.2 Functions: eztune and eztune cv . 79
A.3 Datasets . 84
A.4 Examples . 86
A.5 Performance and speed guidelines 89

B Guide to Dissertation Code . 91
B.1 Tuning Research . 91
B.2 EZtune . 93
B.3 GWAS Work . 94

REFERENCES . 96

CURRICULUM VITAE . 102

ix

LIST OF TABLES

Table Page

2.1 List of datasets used to explore tuning parameters. 14

2.2 List of tuning parameter ranges for grids. 15

2.3 List of optimization algorithms used to search tuning parameter spaces with
a brief description of each method. 16

2.4 List of optimization algorithms along with the packages and functions in R
that will be used to implement them. 19

2.5 List of recommended tuning parameter spaces for binary classification models
based on grid search. 22

2.6 List of recommended tuning parameter spaces for regression models based
on grid search. 23

2.7 Performance summary of optimization algorithms. 25

3.1 Average mean squared errors from cross validation model verification and
computation times in seconds for support vector regression with EZtune.
The best mean squared errors from the grid search are included in the table
for reference. Table entries are (cross validated MSE, computation time in
seconds). 43

3.2 Average mean squared errors from cross validation model verification and
computation times in seconds for gradient boosting regression with EZtune.
The best mean squared errors from the grid search are included in the table
for reference. Table entries are (cross validated MSE, computation time in
seconds). 45

3.3 Average classification errors from cross validation model verification and com-
putation times in seconds for support vector classification with EZtune. The
best classification errors from the grid search are included in the table for
reference. Table entries are (cross validated error rate, computation time in
seconds). 47

3.4 Average classification errors from cross validation model verification and com-
putation times in seconds for gradient boosting classification with EZtune.
The best classification errors from the grid search are included in the table
for reference. Table entries are (cross validated error rate, computation time
in seconds). 49

x

3.5 Average classification errors from cross validation model verification and com-
putation times in seconds for adaboost with EZtune. The best classification
errors from the grid search are included in the table for reference. Table
entries are (cross validated error rate, computation time in seconds). 51

4.1 List of datasets used for data simulation. 56

xi

LIST OF FIGURES

Figure Page

2.1 Error surface plots for support vector machines on datasets with a binary
response. The orange dots on the bottom figure represent the best 20 models
across the grid. 21

2.2 Computation time surface plots for support vector machines on datasets with
a binary response. The orange dots represent the 20 models with the shortest
computation times across the grid. Time is in seconds. 22

2.3 Standardized optimization results for support vector machines for regression. 26

2.4 Standardized optimization results for gradient boosting machines for regression. 27

2.5 Standardized optimization results for support vector machines for binary
classification. 28

2.6 Standardized optimization results for gradient boosting machines for binary
classification. 29

2.7 Standardized optimization results for adaboost models for binary classification. 30

3.1 Standardized mean squared error results and computation times for support
vector regression. The best mean squared errors and computation times for
each dataset have a value of 0 and the worst have a value of 1. 44

3.2 Standardized mean squared error results and computation times for gradient
boosting regression. The best mean squared errors and computation times
for each dataset have a value of 0 and the worst have a value of 1. 46

3.3 Standardized classification error rates and computation times for support
vector classification. The best error rates and computation times for each
dataset have a value of 0 and the worst have a value of 1. 48

3.4 Standardized classification error rates and computation times for gradient
boosting classification. The best error rates and computation times for each
dataset have a value of 0 and the worst have a value of 1. 50

3.5 Standardized classification error rates and computation times for adaboost.
The best error rates and computation times for each dataset have a value of
0 and the worst have a value of 1. 52

xii

4.1 Example plot for assessing the performance of the GWAS method with the
mouse data. The radius of the green circles represents the importance as
determined by random forests. The blue circles represent the SNPs that
trees found to be important and purple circles represent the SNPs with non-
zero coefficients in the elastic net model. The radius of the blue and purple
circles does not represent anything. The red lines show the position of the
functional SNPs. 61

4.2 NMRI mouse data with heritability of 0.1 demonstrating inability of filter to
find truly associated SNPs. 64

4.3 NMRI mouse data with heritability of 0.3 demonstrating inability of filter to
find truly associated SNPs. 65

4.4 NMRI mouse data with heritability of 0.8 demonstrating improvement in
method with stronger heritability. 66

4.5 T. cristinae data with heritability of 0.1 demonstrating inability of filter to
find truly associated SNPs. 67

4.6 T. cristinae data with heritability of 0.3 demonstrating inability of filter to
find truly associated SNPs. 68

4.7 T. cristinae data with heritability of 0.8 demonstrating improvement in
method with stronger heritability. 69

4.8 R. pomonella data with heritability of 0.3 and with the linear regression filter
using the FDR p-values transformed using − log10 P . This plot demonstrates
inability of filter to find truly associated SNPs with such low heritability and
the difference in the filter plot between FDR p-values and raw p-values. . . 70

4.9 R. pomonella data with heritability of 0.3 and with the linear regression filter
with the raw p-values transformed using − log10 P . This plot demonstrates
inability of filter to find truly associated SNPs with such low heritability
and the difference in the filter plot between distance correlation, the FDR
p-values, and raw p-values. 71

4.10 R. pomonella data with heritability of 0.3 and with the distance correlation
filter. This plot demonstrates inability of filter to find truly associated SNPs
with such low heritability and the difference in the filter plot between distance
correlation, the FDR p-values, and raw p-values. 72

4.11 R. pomonella data with heritability of 0.8 demonstrating improvement in
method with stronger heritability. 73

xiii

ACRONYMS

CART classification and regression trees

CVS Current Vegetation Survey

FDR false discovery rate

GBM gradient boosting machine

GWAS genome-wide association study

LASSO least absolute shrinkage and selection operator

LD linkage disequilibrium

MSE mean squared error

OOB out-of-bag

SNP single nucleotide polymorphism

SVM support vector machines

SVR support vector regression

WTCCC Wellcome Trust Case Control Consortium

CHAPTER 1

INTRODUCTION

1.1 Introduction

Machine learning is discipline consisting of algorithms than can learn from data without

explicit rule based programming. Statistical learning is machine learning within a statis-

tical framework. Statistical learning may or may not be probabilistic, have distributional

assumptions, be used for prediction or inference, but the primary distinction is that there

is greater concern with the balance between prediction accuracy and model interpretability

than machine learning in general.

Statistical learning models have gained in popularity in recent years because of their

ability to provide greater accuracy than statistical methods in many situations. Random

forests is a statistical learning method that performs well without parameter tuning, but

most learning methods have parameters that must be tuned for the models to perform

well [Breiman, 2001]. The No Free Lunch theorems state that there is no one type of

model that outperforms all other models in all situations [Schumacher et al., 2001]. Thus,

having several different types of models to address a problem is essential to finding a good

solution. Support vector machines (SVMs) [Cortes and Vapnik, 1995], gradient boosting

machines (GBMs) [Friedman, 2001], and adaboost [Freund and Schapire, 1997] are three

supervised learning models that perform well if tuned. Parameters can be difficult to tune

and recommendations for tuning methods are not well justified. Better understanding of

the properties of tuning parameters and how to tune them is needed. Software tools that

allow users to tune models without requiring the user to do substantial research are also

lacking. Further development of tuning software would provide many data analysts with a

wide range of more accessible tools for modeling.

When machine learning models were first developed it was hoped that they could

2

emulate the brain and provide better understanding of how the brain worked. This goal

was eventually abandoned, but in recent years learning methods have been used to try to

better understand the structure of data and of natural systems. One example of this is the

use of least absolute shrinkage and selection operator (LASSO) in finding locations across

genomes that contribute to a disease or physical trait [Wu et al., 2009]. This area of research

is still new and questions about how to tune and implement learning methods to address

such questions abound.

In Chapter 2, we explore tuning parameters for SVM, GBM, and adaboost to find the

parameter spaces that yield good predictive models. We then use different optimization

algorithms to search over the parameter spaces to find a set of tuning parameters that

produce a good model for each of the model types. This information is used to create an

R package called EZtune that is described in Chapter 3. EZtune automatically tunes SVM,

GBM, and adaboost and is as simple to use for a novice R user as random forests. In

Chapter 4, we look at the ability of other statistical learning models in obtaining better

understanding of genome architecture by creating a three phase genome-wide association

study (GWAS) using several statistical learning methods. Future work is discussed in

Chapter 5.

1.2 Overview of Statistical Learning Methods

This section provides an overview of the statistical learning methods that are used in

this paper. Methods include SVMs, GBMs, adaboost, LASSO, elastic net, random forests,

and classification and regression trees (CART). Each method has a different structure and

set of tuning parameters. This section contains a brief overview of each model and the

tuning parameters associated with each.

Support Vector Machines

SVMs uses separating hyperplanes to create decision boundaries for classification and

regression models [Cortes and Vapnik, 1995]. The separating hyperplane is called a soft

margin in that it allows some points to be on the wrong side of the hyperplane. The cost

3

parameter, C, dictates the tolerance for points being on the wrong side of the margin. A

large value of C allows many points to be on the wrong side of the margin while smaller

values of C have a much lower tolerance for misclassified points. A kernel, K, is added to

the classifier to allow for non-linear boundaries. The SVM is modeled as:

f(x) = β0 +
∑
i∈S

αiK(x, xi; γ) (1.1)

where, K is a kernel with tuning parameter γ, S is the set of support vectors (points on the

boundary of the margin), αi computed using C and the margin. The tuning parameters for

SVM classification are C and γ. Common kernels are polynomial, radial, and linear.

Support vector regression (SVR) has an additional tuning parameter, ε, and the concept

varies a little from SVM. SVR attempts to find a function, or hyperplane, such that the

deviations between the hyperplane and the responses, yi, are less than ε for each observation

[Smola and Schölkopf, 2004]. The cost represents the number of points that can be further

than ε away from the hyperplane. Essentially, SVMs try to maximize the number of points

that are on the correct side of the margin and SVR tries to maximize the number of points

that fall within ε of the margin. The only mathematical restriction for the tuning parameters

for SVM and SVR is that they are greater than 0.

LASSO and Elastic Net

LASSO [Tibshirani, 1996] and elastic net [Zou and Hastie, 2005] are closely related so

they are presented together. Although LASSO was introduced first, it can be considered a

special case of elastic net. Both models have a component designed to prevent overfitting.

Overfitting is when your model fits the random error in the data rather than the relationship

between the predictors and response. This results in a model that fits the training data so

well that it cannot be generalized to other data. This often defeats the purpose of creating

a model. LASSO uses regularization to prevent overfitting by constraining the l1 norm of

the regression coefficients to be less than a than a fixed value. Elastic net is similar, but it

constrains both the `1 and `2 norms of the regression coefficients. In the case of elastic net

4

we have

β̂ = arg min
β

||y −Xβ||2 + λ[(1− α)||β||22/2 + α||β||1 (1.2)

where, ||β||22 and ||β||1 are the l2 and l1 norms, respectively, and α and λ are tuning param-

eters for the elastic net. The l2 and l1 norms penalize the model if the values of β are too

large. This penalty shrinks the coefficients (β), with many of them shrinking down to 0.

Larger values of λ and α result in more coefficients shrinking to 0. LASSO is the case where

α = 1 and is the case where the most coefficients shrink to 0. Both LASSO and elastic net

can be used for variable selection by retaining variables with non-zero coefficients.

Classification and Regression Trees

CARTs are decision trees that apply a series of splitting rules to the predictor space,

segmenting the space into two or more regions or nodes. These rules can be expressed in the

form of a simple tree that is easy to interpret. Every observation that falls within a region of

the predictor space is assigned the same response value. Splits are determined by looking at

all possible cutpoints for each predictor and then choosing the cutpoint that results in the

smallest value of some splitting criterion [Breiman et al., 1984]. Mean-squared error (MSE)

is minimized for regression and the Gini index is minimized for classification. The Gini

index is small when each of the two nodes are made up of primarily one class and is often

referred to as node impurity. This splitting process is repeated for future tree splits until

the tree is of adequate size. Trees that are allowed to have too many splits will overfit the

data so they must be pruned. Pruning is when splits near the end of the tree are removed

and it is the primary tuning method for trees. Several methods for pruning trees exist, but

the leading method is using the 1-se rule, which is used in this dissertation [Breiman et al.,

1984].

Decision trees are not as powerful as other learning methods, but they remain popular

because of their simplicity and interpretability. The desirable traits of trees have made

them an often used foundation for other, more powerful machine learning methods, such as

5

GBMs and random forests.

Boosted Trees

Boosted trees are members of a family of statistical learning tools that are called

ensemble methods. An ensemble method creates a strong model from many weak models

[Hastie et al., 2009]. A weak model does not perform well by itself. A small tree is used as

the weak model, or weak learner, for boosted trees. The small tree is made from the training

data and then the misclassified points or residuals are examined. The model learns from the

misclassified points or residuals and fits a new tree. The model is updated by adding the new

tree to the old model. The model is iteratively updated in this manner and final predictions

are made by a weighted vote of the weak learners. The primary difference between the

types of boosted trees is the method used to learn from misclassified observations at each

iteration.

Adaboost fits a small tree to the training data while applying the same weight to all

observations [Freund and Schapire, 1997]. The misclassified points are then given greater

weight than the correctly classified points and a new tree is computed. The new tree is

added to the previous tree with weights. The process is repeated many times where the

misclassified points are given greater weight and a new tree is created using the weighted

data and added to the previous model with weights. This results in an additive model where

the final predictions are the weighted sum of the predictions made by all of the models in

the ensemble [Hastie et al., 2009].

GBMs are a boosted tree that use gradient descent to minimize a loss function during

the learning process [Friedman, 2001]. The loss function can be tailored to the problem

being solved. MSE was used as the loss function for regression problems and a logarithmic

loss was used for classification problems in this analysis. A decision tree is used as the weak

learner and trees are kept small to ensure that they are weak. GBMs recursively fit new

trees to the residuals from previous trees and then combine the predictions from all of the

trees to obtain a final prediction.

Adaboost and GBMs have a nearly identical set of tuning parameters. The number of

6

iterations, depth of the trees, and the shrinkage, which controls how fast the trees learn,

are tuning parameters for both methods. GBMs have an additional tuning parameter of

the minimum number of observations in the terminal nodes.

Random Forests

Random forests is a tree based ensemble classification and regression method that uses

the concept of bagging to produce a powerful model [Breiman, 2001]. A dataset of size n is

sampled with replacement n times to obtain a bootstrapped sample of the data. A tree is

generated and fully grown using the bootstrapped sample. However, not all of the variables

are used to create the tree. A random subset of the variables is used instead of the full

set. This process is repeated many times at each node independently. Using only a random

subset of variables at each node to create each tree prevents a few strong variables from

dominating all of the trees. This ultimately results in a better model.

About one-third of the observations are not included in a particular bootstrap sample

and they are referred to as out-of-bag (OOB) samples. Only the OOB samples are used

to assess tree performance and make predictions. The OOB observations for each tree are

run through the tree and a prediction is obtained for each of them. Then, the predictions

obtained for an observation are combined to make a final prediction for that observation.

This means that each observation has a predicted value based on about one-third of the

trees in the forest, none of which it helped create. The number of misclassifications or the

residuals can be used to determine the error rate of the forest. This method makes external

cross validation unnecessary for random forests.

Tuning parameters include the number of trees that are used in the forest, and the

number of predictors that are used to create each tree. Unlike the other methods described

in this section, random forests is robust to tuning parameter selection and typically produces

good models without tuning for classification. The only restriction on tuning parameter

values is that they are greater than 0.

Random forests can be used to assess variable importance. This is done by reordering

the value of a variable for the OOB observations in a tree. These reorderd values are

7

classified by the tree. The number of times that each observation is correctly classified when

the variable is reorderd is compared to the number of times it is correctly classified when

the variable is not reordered. The importance measure is the average of these differences

across all of the trees in the forest.

1.3 Statistical Model Parameter Tuning Literature Review and Background

A web search on tuning SVMs, GBS, or adaboost yields numerous blog posts with

suggestions on how to tune these models and what parameters are important to tune.

Advice varies at each site and little of it is backed up with research. Journal articles provide

some information on tuning these models, but information is scarce and they typically

only compare two methods with each other or propose a method without verification of

performance [Duan et al., 2003]. Articles mostly provide information that expand the

understanding of the models and how they behave without addressing tuning. However,

some important research has been done. For example, the original adaboost proposed using

stumps as the weak learners. Later research showed that deeper trees may be needed for

GBMs and adaboost to prevent overfitting [Mease and Wyner, 2008]. Hastie, et al. showed

that tuning cost and γ in SVMs is critical to obtaining a well performing model [Hastie

et al., 2004].

Articles and blog posts provide of advice on methods for searching for a good set of tun-

ing parameters. Some have focused on optimization algorithms, such as the particle swarm

algorithm [Melgani and Bazi, 2008], genetic algorithm [Nasiri et al., 2009], or Bayesian

optimizers [Gold et al., 2005]. These were applied to very specific problems or only tested

against one or two other methods. Others used simple numeric estimators to compute

tuning parameter values [Duan et al., 2003] that were shown in later papers to perform

poorly [Tsirikoglou et al., 2017]. Other suggested optimization methods recommended in

multiple sources include:

• SVM: setting a value for γ, tuning cost using cross validation, and then tuning γ with

cross validation once a good value of cost is determined.

8

• SVM (regression only): use the data to compute a good starting place for the opti-

mization algorithm [Duan et al., 2003,Tsirikoglou et al., 2017].

• GBM and adaboost: Choosing a larger value of shrinkage, such as 0.1, and determining

the optimal number of trees. Tune the interaction depth and the minimum number of

observations (GBM only) in the terminal nodes with those values of shrinkage and the

number of trees. Lower the learning rate and increase the estimators proportionally

to find a better model. [Jain, 2016]

These methods were tested along with the optimization algorithms used in this dis-

sertation and none of them performed as well or as quickly as sending an optimization

algorithm through the tuning parameter space.

We used a large grid search over multiple datasets to determine reasonable tuning

parameter spaces for SVM, GBM, and adaboost. Once a suitable parameter space was

identified, optimization algorithms searched through the space to determine which algo-

rithms could find a good solution with reasonable computation speed. This research was

used to develop an R package called EZtune that automatically tunes SVMs, GBMs, and

adaboost for binary classification and regression models. The function is designed to be

intuitive and user friendly so it is accessible to an R novice. EZtune has options to speed

up computation time so that it can be used on large datasets. Computational tests assessed

performance of the fast computation options, cross validation, and resubstitution for model

selection so that the user knows what sacrifices in performance are made in exchange for

speed.

The R package caret [Kuhn et al., 2018] is designed to tune SVMs, GBMs, and ad-

aboost along with many other models. It can perform a grid search or use a genetic algorithm

to find an optimal solution. The package is powerful, but extremely slow and difficult to

use. EZtune was not written to replace caret, but to provide an alternative with faster

performance and much simpler user interface. Users who wish for more complexity and

flexibility than EZtune are encouraged to look at caret for those options.

9

1.3.1 Genome-Wide Association Study Literature Review and Background

GWAS have been done since the early 2000s. The study done by the Wellcome Trust

Case Control Consortium (WTCCC) in 2007 [Wellcome Trust Case Control Consortium,

2007] was one of the first large scale GWAS. A GWAS looks for genetic variants that

are associated with a trait, or phenotype. The genetic variation is searched for in single

nucleotide polymorphisms (SNPs) which are single base pairs where genetic variation is

known to occur. GWAS data are ultra-high dimensional and can consist of hundreds of

thousands, or even millions, of SNPs that must be analyzed. A SNP is a single base pair

where genetic variation occurs. It is estimated that there are approximately 10 million

SNPs along the human genome. Breakthroughs in genetic technology have lead to an

increase in the number of genomes that can be sequenced for these analyses, but the large

number of SNPs results in a massive n<<p problem even with the increase in subjects.

Genetic properties such as linkage disequilibrium (LD) complicate statistical analysis. Many

methods have been used to conduct GWAS and development is ongoing as researchers

address the problems associated with data of this magnitude and complexity. This section

is not intended to list a comprehensive set of methods used to do GWAS, but rather it

introduces methods that inspired the method used in this dissertation.

Simple methods, such as logistic and linear regression, have been used to identify SNPs

associated with a trait, or phenotype. These models cannot be used on the entire dataset

because of the n<<p issue. A common method is to use single SNP regression [Wellcome

Trust Case Control Consortium, 2007]. This is where p regressions are done using the

phenotype as the response variable and a single SNP as the predictor. The p-values for the

coefficient are examined and SNPs with the smallest p-values are considered associated with

the phenotype. A similar method is implemented using distance correlation [Székely et al.,

2007] where SNPs with a larger distance correlation with the phenotype are considered

associated with the trait. The Cochran-Armitage trend test [Freidlin et al., 2002] and χ2

statistic [Zeng et al., 2015] have also been extensively used for single SNP scans. Multiple

hypothesis testing is an issue that has been addressed in statistics for many years and several

10

methods for adjusting p-values have been developed to address this issue, but GWAS often

have at least tens of thousands, if not millions, of p-values to address. Existing methods

such as the Bonferroni correction [Perneger, 1998] are not equipped to handle so many tests.

Other methods such as the false discovery rate (FDR) [Benjamini and Hochberg, 1995] are

more appropriate, but still have limitations and best practices are not established [Wellcome

Trust Case Control Consortium, 2007]. Research is ongoing on how to handle the large

number of multiple tests.

LD poses other complications with single SNP scan methods. Neighboring SNPs are

typically highly correlated with each other and if a SNP is associated with the phenotype,

nearby SNPs that are not associated will have significant results because of their correlation

to the associated SNP. Conditional logistic regression has been used to correct for the effect

of LD in these situations. Conditional logistic regression repeats the single SNP logistic

regression for the SNPs that appear to be associated, but adds in the most significant

SNP as a covariate to correct for its effect. The p-value on the coefficient for the SNP of

interest is examined and if its association with the phenotype is due to the SNP on which

it is conditioned the p-value will no longer be significant [Chen et al., 2011]. This method

addresses LD, but it is not clear where to set p-value thresholds.

LASSO and elastic net have also been used to identify associated SNPs. LASSO was

used first and has been applied to the entire genome. This is computationally difficult and

LASSO is not able to select more SNPs that the number of subjects in a study [Wu et al.,

2009]. Elastic net was used to address this issue because it appeared that LASSO may be

too restrictive in SNP selection [Waldmann et al., 2013]. Both methods select SNPs that

have non-zero coefficients to go through another phase of statistical analysis. A common

follow up method was to compute a linear or logistic regression model with the SNPs that

have non-zero coefficients, compute the FDR for the p-values on the coefficients, and select

SNPs with FDRs that are less than a specified value. This method has shown promise, but

is is difficult to tune and perform LASSO or elastic net on such large datasets and there is

no clear guidance on how to select a threshold for the FDR. Despite these difficulties, good

11

results have been seen with these methods [Wu et al., 2009].

The field is actively being pursued as researchers seek new tools and better understand-

ing of existing tools. We seek to better understand how some of these popular methods

relate to each other when heritability in simulated data is controlled to different levels seen

in nature. We explore the efficacy of regression and distance correlation to filter out noise

while retaining regions with associated SNPs under low and high levels of heritability. We

also examine LASSO and elastic net after the noise has been removed. Random forests

and CART are used to identify SNPs that are strongly associated with the phenotype while

using LASSO and elastic net to identify SNPs that are less strongly correlated with the re-

sponse. The methods were evaluated using simulated data and an R package called gwas3

was created to implement the method and simulate GWAS data for study.

CHAPTER 2

TUNING SUPERVISED LEARNING METHODS

2.1 Introduction

In this chapter, we explore tuning parameters for SVMs, GBMs, and adaboost to

determine which parameters need tuning, determine a practical parameter space for each

model type, and explore optimization algorithms for searching over the parameter space.

This was done by identifying all of the tuning parameters for each model type and then

doing a large grid search for several datasets using each tuning parameter. The parameter

surface for each grid was examined for trends in model performance and computation speed.

Model performance was measured using error rate for binary classification models and MSE

for regression models. A parameter space was identified by this method which was then

searched by several optimization algorithms to find a set of parameters that resulted in a

good model. The results of this analysis were used to create an R package called EZtune

that is available on CRAN [R Core Team, 2019] which is discussed in chapter 3.

2.2 Optimization Algorithms

Optimization is a critical tool in machine learning and many algorithms have been

developed to perform this task. A large family of optimization algorithms look at the

neighborhood of the location of a point and determine a direction where the function value

is decreasing the most according to a certain criterion. Then, another point is chosen in the

decreasing direction and the process is repeated. Gradient based methods use the gradient

to determine which direction to go, but other algorithms may use a simplex or a line search

to determine which direction to travel. These methods can be very effective, but they also

run the risk of finding local minima and failing to find the global minimum. This has been

addressed by adding stochastic methods to some of the optimization algorithms. Other

13

methods use a completely different strategy to find an optimal solution. Genetic algorithms

use the idea of natural selection. Many points on the surface are tested and the best results

are kept as ”parents” to create optimal offspring. The concepts of mutation and breeding

introduce changes into the search so that the best solutions are not overlooked. Metaheuris-

tic algorithms, or nature inspired algorithms, use the behavior of natural organisms, such

as the swarming of bees or wolf hunting strategies, to devise a search method. Each of these

algorithm types work well in some situations and not well in others. We tried algorithms

from each of these areas to find tuning parameters for SVM, GBM, and adaboost that

minimize error measures.

2.3 Methods

Tuning parameters were assessed using six datasets with a binary response and seven

with a continuous response. Table 2.1 shows the datasets and their characteristics. Exten-

sive grid searchers were done with each dataset to determine a suitable tuning parameter

space. Then, a series of optimization algorithms were used to find a good set of tuning

parameters in that space. The results of each optimization algorithm were compared to the

best results that were found in the grid search. The error measure and computation time

were both considered when assessing the performance of the optimization algorithms.

2.3.1 Grid Search

Blog posts, books, and journal articles were read to explore the tuning parameter

ranges have been used by different sources. The parameter choice varies substantially for

each source. We used the widest range of parameters used by all of the sources we reviewed

and expanded some of them beyond what was seen in other sources. Table 2.2 shows the

ranges that were used for the grids. The results of the grid search indicate that the grids

were sufficiently large and did not need to be expanded beyond the limits in 2.2.

SVM, GBM, and adaboost models were computed throughout the grid region. The

error measure was evaluated at each grid location using 10-fold cross validation for most

datasets and and 3-fold cross validation for the largest datasets. The error measure is the

14

T
a
b

le
2.

1:
L

is
t

of
d

at
as

et
s

u
se

d
to

ex
p

lo
re

tu
n

in
g

p
ar

am
et

er
s.

N
u

m
b

er
of

N
u

m
b

er
of

C
at

eg
or

ic
al

C
on

ti
n
u

ou
s

R
es

p
on

se
N

u
m

b
er

of
N

u
m

b
er

of
E

x
p

la
n

at
or

y
E

x
p

la
n

at
or

y
D

at
a
se

t
T

y
p

e
S

ou
rc

e
O

b
se

rv
at

io
n

s
V

ar
ia

b
le

s
V

ar
ia

b
le

s
V

ar
ia

b
le

s

B
re

as
t

C
a
n

ce
r

D
at

a
B

in
a
ry

m
lb

en
ch

69
9

10
0

9
[N

ew
m

an
et

al
.,

19
98

]
Io

n
os

p
h

er
e

B
in

a
ry

m
lb

en
ch

35
1

34
1

33
P

im
a

In
d

ia
n

s
B

in
a
ry

m
lb

en
ch

76
8

9
0

8
S

o
n

ar
B

in
a
ry

m
lb

en
ch

20
8

61
0

60
L

ic
h

en
B

in
a
ry

E
Z

tu
n

e
84

0
34

2
31

[L
u

n
d

el
l,

20
17

]
M

u
ll

ei
n

B
in

a
ry

E
Z

tu
n

e
12

,0
94

32
0

31

A
b

al
on

e
R

eg
re

ss
io

n
A

p
p

li
ed

P
re

d
ic

ti
ve

M
o
d

el
in

g
4,

17
7

9
1

7
[K

u
h

n
an

d
J
oh

n
so

n
,

20
18

]
B

os
to

n
H

o
u

si
n

g
2

R
eg

re
ss

io
n

m
lb

en
ch

50
6

17
1

15
C

O
2

R
eg

re
ss

io
n

d
at

as
et

s
84

5
3

1
[R

C
or

e
T

ea
m

,
20

19
]

C
ri

m
e

R
eg

re
ss

io
n

K
u

ip
er

47
14

1
12

[K
u

ip
er

an
d

S
k
la

r,
20

13
]

O
h

io
H

o
u

si
n

g
R

eg
re

ss
io

n
K

ag
gl

e
1,

46
0

61
36

24
[D

e
C

o
ck

,
20

11
,K

ag
gl

e,
20

19
]

U
n

io
n

R
eg

re
ss

io
n

K
u

ip
er

50
4

0
3

W
a
ge

R
eg

re
ss

io
n

K
u

ip
er

39
10

0
9

15

Table 2.2: List of tuning parameter ranges for grids.

Model Parameter Range

Support vector machine Cost [2−10, 225]
γ [2−25, 210]

Gradient boosting machines Number of trees [50, 20,000]
Interaction depth [1, 19]
Shrinkage [0.001, 0.1]
Minimum number of [5, 15]
observations in terminal nodes

Adaboost Number of trees [100, 1400]
Interaction depth [1, 20]
Shrinkage (ν) [0.01, 1]

error rate for the binary data and the MSE for the continuous data. Computation time was

also recorded for each of the models. The surface of the error rates and MSEs across the

grid were examined for all datasets and models along with the computation time. A region

was found for all of the models that worked for all of the tested datasets. The regions

are identified in Section 2.4. Calculations were done using the packages e1071 [Meyer

et al., 2019], gbm [Greenwell et al., 2019], and ada [Culp et al., 2016] in the R statistical

software environment for statistical computing and graphics [R Core Team, 2019]. Note

that adaboost was not used on the regression datasets because the adaboost package that

was used does not have an option for regression data.

The stability of the models was of interest in this study. Error measures for each

fold of cross validation were used to compute a 95% upper confidence limit for the error

measures. This is because some learning models may provide results that are inconsistent.

The confidence limits were graphed and assessed for each grid location in addition to the

cross validated error measure and the computation time. In all cases, the surfaces produced

by the upper confidence limits yielded nearly identical surface patterns as the error measure

surfaces so they are not discussed further.

2.3.2 Optimization Algorithms

Once a parameter space was determined, the parameter spaces for each dataset were

searched by seventeen different optimization algorithms. Table 2.3 lists the algorithms with

16

a brief description of each one. Both the error measure and computation time were evaluated

for ten searches to determine the stability of the algorithm. If an algorithm was not able

to complete 10 runs within a specified time frame for one of the datasets, it was considered

a failure for that dataset. Different sizes of parameter spaces were tested if the grid search

surfaces indicated that there were multiple plausible parameter spaces. For example, the

error surface may show that a larger space is more likely to yield a good model than a

smaller space. However, the larger space may take too long to search.

The R statistical package [R Core Team, 2019] was used for all optimization computa-

tions. Table 2.4 shows the R packages and functions that were used. Computation time and

error measures were compared and it was assumed that different optimization algorithms

may perform better for different model types.

Table 2.3: List of optimization algorithms used to search tuning parameter spaces with a
brief description of each method.

Algorithm Type Description

Ant Lion Metaheuristic Based on the hunting mechanisms

[Mirjalili, 2015a] of antlions

BOBYQA Derivative free Derivative free optimization by

[Powell, 2009] quadratic approximation

Dragonfly Metaheuristic Based on static and dynamic

[Mirjalili, 2016a] swarming behaviors of dragonflies

Firefly Metaheuristic Based on fireflies use of light to

[Yang, 2009] attract other fireflies

Genetic algorithm Metaheuristic Uses the principles of natural

[Goldberg, 1999] selection in successive generations

to find an optimal solution

Grasshopper Metaheuristic Mimics the behavior of

[Saremi et al., 2017] grasshopper swarms

Continued on next page

17

Table 2.3 – Continued from previous page

Algorithm Type Description

Grey wolf Metaheuristic Mimics leadership hierarchy

[Mirjalili et al., 2014] and hunting methods of grey wolves

Hooke-Jeeves Derivative free Pattern search that does a local

[Lai and Chan, 2007] search to find a direction where

performance improves and then

moves in that direction making

larger moves as long as

improvement continues

Improved harmony search Metaheuristic Mimics the improvisational

[Mahdavi et al., 2007] process of musicians

L-BFGS Quasi-Newton Second order method that

[Byrd et al., 1995] estimates the Hessian using

only recent gradients

Moth flame Metaheuristic Based on the navigation

[Mirjalili, 2015b] method of moths called

transverse orientation

Nelder-Mead Derivative free Direct search algorithm that

[Kelley, 1999] generates a simplex from sample

points, x, and uses

values of f(x) at the

vertices to search for an

optimal solution

Nonlinear conjugate Gradient The residual is replaced

gradient by a gradient and combined

[Dai and Yuan, 2001] with a line search method

Continued on next page

18

Table 2.3 – Continued from previous page

Algorithm Type Description

Particle swarm Metaheuristic Based on the evolutionary

[Shi and Eberhart, 1998] mechanisms that allows

organisms to adjust their flying

based on its own flying

experience and the experiences

of its companions

Sine cosine Metaheuristic Creates multiple initial random

[Mirjalili, 2016b] possible solutions and requires

them to fluctuate towards the

optimal solution using a

mathematical model based

on sine and cosine functions

Spectral projected Gradient Uses the spectrum of the

gradient underlying Hessian to

[Birgin et al., 2000] determine the step lengths

for gradient descent

Whale Metaheuristic Mimics the bubble-net

[Mirjalili and Lewis, 2016] hunting strategy of

humpback whales

2.4 Results

This section shows the results of the large grid search and the optimization tests. The

surfaces of the SVMs were smooth, but they were not smooth for either GBM or adaboost.

The tests showed that there are tuning parameter spaces that work for a wide choice of

datasets. Consistency was also found in optimization algorithm performance. Certain

optimization algorithms clearly outperformed the others.

19

Table 2.4: List of optimization algorithms along with the packages and functions in R that
will be used to implement them.

Algorithm Package Function

Antlion MetaheuristicOpt ALO
[Septem Riza et al., 2017]

BOBYQA minqa [Bates et al., 2014] bobyqa
Dragonfly MetaheuristicOpt DA
Firefly MetaheuristicOpt FFA
Genetic algorithm GA [Scrucca, 2013] ga
Grasshopper MetaheuristicOpt GOA
Grey wolf MetaheuristicOpt GWO
Hooke-Jeeves optimx [Nash, 2014a], hjk,

dfoptim [Varadhan et al., 2018] hjkb
Improved harmony search MetaheuristicOpt HS
L-BFGS lbfgsb3 [Nash et al., 2015], lbfgsb3,

stats [R Core Team, 2019] optim
Moth flame MetaheuristicOpt MFO
Nelder-Mead dfoptim nmk
Nonlinear conjugate gradient Rcgmin [Nash, 2014b] Rcgmin
Particle swarm MetaheuristicOpt PSO
Sine cosine MetaheuristicOpt SCA
Spectral projected gradient BB [Varadhan and Gilbert, 2009] spg
Whale MetaheuristicOpt WOA

20

2.4.1 Results of Grid Search

Grid searches were done using the data listed in Table 2.1 over the parameter ranges

specified in Table 2.2. Figure 2.1 shows the surface of the errors obtained by the SVM

models for the six binary datasets. Although a distinct surface emerges across all of the

datasets, it is difficult to determine a smaller parameter area where performance is good

across all datasets. The grid results were subsetted to include only best 20% of the errors

and to include the best 20 error rates across the entire grid. Figure 2.2 shows the surface

for the computation times across the grid with the fastest 20 computation times highlighted

in orange.

The wide distribution of the orange dots in Figures 2.1 and 2.2 shows that there are

many local minima across the surface. Figure 2.2 also shows that there are areas in this

region that likely have slow computation time. The best computation times seemed to be

in the same grid regions with the best error rates. The MSE and computation time surfaces

for the regression datasets were similar to those for the binary data. Smaller values of ε

produced smaller MSEs but also had slower computation times for all datasets. Good error

rates with reasonable computation times can be obtained by models with a cost between 1

and 1000 and a γ between 2−10 to 210. The best results for regression were seen for values of

ε less than 0.5. It is clear from the analysis that cost, γ, and ε should all be tuned. Although

the regression and binary datasets showed similar results, the parameter spaces selected for

data types are slightly different. This is so the subtle differences between each model type

can be best utilized. Tables 2.5 and 2.6 show the selected tuning parameter spaces for all

of the models. Starting values for each of the parameter spaces were also selected from the

error surfaces. The starting locations were selected from areas that tend to have low error

measures and faster computation times across all datasets.

GBM was searched in a similar manner. The regression and binary plots showed the

same patterns although none of the error rate or computation time surfaces were smooth,

even when examined with multidimensional graphics. Computation times were unilater-

ally faster with smaller values for all tuning parameters with the exception of shrinkage.

21

Mullein Pima Sonar

Breast Cancer Ionosphere Lichen

−10 0 10 20 −10 0 10 20 −10 0 10 20

−20

−10

0

10

−20

−10

0

10

Cost (2x)

γ
(2

y)

0.1

0.2

0.3

0.4

0.5

Error

All Errors for SVM Binary Data

●
●

● ●
●

●
● ● ●●●

●
●

●
●●●

●
●
●

●●● ●
●

●●
●

●
●

● ● ●● ● ●
●

●● ●

●
●

●

● ●●
●

●
● ●

●
●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●●

●●

●
●

●● ● ●● ● ● ●
●

● ●
● ●●

● ●
●

●

● ●

Mullein Pima Sonar

Breast Cancer Ionosphere Lichen

−10 0 10 20 −10 0 10 20 −10 0 10 20

−20

−10

0

10

−20

−10

0

10

Cost (2x)

γ
(2

y)

0.05

0.10

0.15

0.20

Error

Best 20% Errors for SVM Binary Data with 20 Best Highlighted

Fig. 2.1: Error surface plots for support vector machines on datasets with a binary response.
The orange dots on the bottom figure represent the best 20 models across the grid.

22

●● ●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

Breast Cancer

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

2

4

6

Time

Breast Cancer Time Surface

●

●
●
●

●
●●● ● ●●

● ●
●●●● ● ● ●

Ionosphere

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

10

20

30

40

50

Time

Ionosphere Time Surface

●●●

●
●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

Lichen

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

1000

2000

3000

Time

Lichen Time Surface

●●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

Mullein

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

1000

2000

3000

4000

Time

Mullein Time Surface

●●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

Pima

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

250

500

750

Time

Pima Time Surface

●
●

●

●

●

●
●

●

●

●

●

● ●

●●

●
●

●
●

●

Sonar

−10 0 10 20

−20

−10

0

10

Cost (2x)

γ
(2

y)

0.5

1.0

Time

Sonar Time Surface

Fig. 2.2: Computation time surface plots for support vector machines on datasets with a
binary response. The orange dots represent the 20 models with the shortest computation
times across the grid. Time is in seconds.

Table 2.5: List of recommended tuning parameter spaces for binary classification models
based on grid search.

Model Parameter Ranges Start

SVM Cost [1, 1024] 10
γ [2−10, 210] 2−5

GBM Num trees [50, 3000] 500
Tree depth [1, 15] 5
Shrinkage [0.001, 0.1] 0.1
Min obs [5, 12] 8

Adaboost Num trees [50, 500] 300
Tree depth [1, 10] 10
Shrinkage [0.01, 0.5] 0.05

Surprisingly, shrinkage did not have much impact on computation time. The best error

measures were found across the range of shrinkage values, so a smaller shrinkage does not

always result in a better model. Better error rates were also found when fewer than 1000

23

Table 2.6: List of recommended tuning parameter spaces for regression models based on
grid search.

Model Parameter Ranges Start

SVM Cost [1, 1024] 2
γ [2−10, 20] 2−5

ε [0, 0.5] 0.4

GBM Num trees [50, 5000] 2000
Tree depth [1, 15] 8
Shrinkage [0.001, 0.1] 0.1
Min obs [5, 10] 5

iterations were done and often for only about 500 iterations. Good results were seen across

the spectrum of tested interaction depths and the different values of the minimum number

of observations in the terminal nodes that were tested. The areas of best performance var-

ied for each dataset so it was determined that the range of values should not be trimmed

much for those two tuning parameters. As with the SVM analysis, it was clear that it is

important to tune all four tuning parameters. Tables 2.5 and 2.6 show the selected tuning

parameter spaces.

Adaboost was assessed only for the binary datasets. The best computation times were

seen for the smallest number of trees and the smallest tree depths. Shrinkage did not have

much impact on computation times. Good error rates were seen across all values of shrinkage

that were tested and good models were found for all values of tree depth and the number

of iterations. The tuning parameter space was chosen to try to minimize computation time

while catching some of the best models for each dataset. Table 2.5 shows the selected tuning

parameter spaces.

Smaller regions than those listed in Tables 2.5 and 2.6 were tested during the opti-

mization phase to determine if reducing this region to a smaller area improves computation

time with little sacrifice in accuracy. It was found that smaller regions did not decrease

computation times for most optimization algorithms and often resulted in an increase in

error measure so the larger parameter space was retained.

24

2.4.2 Results of Optimization Algorithms

The optimization algorithms listed in Table 2.4 differed markedly in computation time

and in their ability to find a set of parameters that produced a good model. It was initially

thought that a gradient method would perform well for the SVM models because the error

surfaces were smooth and that non-gradient based algorithms would be better for GBM

and adaboost. The gradient based methods performed poorly for all models. The Hooke-

Jeeves algorithm consistently produced the best error measures and computation times

for all datasets across all model types. The genetic algorithm found the best error rates

overall, but computation times were slow. With larger datasets the computation time of

the genetic algorithm was prohibitive. Table 2.7 concisely summarizes the results of all of

the optimization algorithms. Figures 2.3 - 2.7 show parallel coordinate plots of the results

of the optimization tests. The times in the plots have been standardized by subtracting

the best error measure obtained from the grid search and then dividing by the maximum

resulting value. This means that the largest error measure for each dataset is expressed

by 1 and the best error measure seen in the grid search for a dataset is at 0. The time

plots were standardized by subtracting the fastest computation time from the optimization

tests from all of the times for each dataset and then dividing all of the resulting values by

the maximum. This means the slowest time for each dataset is represented by 1 and the

fastest time is represented by 0. The x-axis lists the R function name to avoid confusion

for algorithms tested with more than one function.

Optimization algorithms had some interesting behaviors. The non-linear conjugate

gradient algorithm had a very fast computation time, but it failed to move from the starting

values it was given. This may be an artifact of the Rcgmin function that was used [Nash,

2014b], but it is a gradient based function and it is unlikely it will perform well regardless

of how it is coded. The Nelder-Meade algorithm had fast computation times and low

error rates that rivaled the Hooke-Jeeves algorithm, but it often failed to converge. It is

worth exploring this algorithm in another programming language, such as Python, to see

if more stable performance can be achieved. The metaheuristic algorithms seem like they

25

Table 2.7: Performance summary of optimization algorithms.

Method Error Time Consistency

Genetic algorithm Good Slow Consistent
Hooke and Jeeves Varies Varies Inconsistent
Hooke and Jeeves B Good Good Consistent
L-BFGS Good Good Crashes often
Nocedal-Morales Poor Slow Consistent
Nonlinear conjugate gradient Poor Fast Stays at start
BOBYQA Poor Fast Consistent
L-BFGS B Poor Fast Consistent
Spectral projected gradient Moderate to Poor Good to moderate Inconsistent
Ant lion Poor Moderate Consistent
Dragonfly Poor Good Consistent
Firefly Poor Slow Consistent
Grasshopper Moderate Moderate Inconsistent
Grey wolf Poor Moderate Inconsistent
Harmony search Poor Moderate Inconsistent
Moth flame Poor Moderate Inconsistent
Particle swarm Poor Slow Consistent
Sine cosine Poor Moderate Inconsistent
Whale optimization Poor Slow Consistent

would perform well based on the appearance of the error rate surfaces and based on the

performance of the genetic algorithm so further investigation in Python or another language

may yield better results.

2.5 Conclusions

A large grid search was done for both binary classification and regression models us-

ing SVM and GBM. A grid search was done for adaboost for binary classification. It was

found that there were tuning parameter spaces for across all of the tested datasets that

contained models with small error measures and fast computation times. Areas that have

fast computation times for the SVM models also had good error rates for binary classifica-

tion. Regression models with SVM showed that this was true for cost and γ, but not for

ε. Tuning parameter spaces for binary and regression models were similar, but a smaller

region for γ can be used when the response is continuous.

26

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o
sc

a
sp

g
woa

S
ta

nd
ar

di
ze

d
M

S
E

Standardized MSEs

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o
sc

a
sp

g
woa

S
ta

nd
ar

di
ze

d
T

im
e

Standardized Computation Time

Abalone

Boston Housing

CO2

Crime

Ohio Housing

Union

Wage

Fig. 2.3: Standardized optimization results for support vector machines for regression.

GBM and adaboost have nearly identical tuning parameters, but they behave differ-

ently. GBM requires a larger range of trees and interaction depths than adaboost. They

also have different shrinkage ranges. A smaller shrinkage was not always better and did not

seem to increase computation time.

Optimization searches through the parameter spaces consistently shows that the genetic

algorithm was able to find the best error measures, but computation times were very slow.

It also shows that the Hooke-Jeeves algorithm outperforms all other algorithms in terms

of computation time, stability, and error measure. The Nelder-Meade algorithm had good

performance in regard to error measures and computation time, but it was unstable and

often failed to converge. Gradient based methods did not work well for any of the tested

models.

27

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

op
tim ps

o

Rcg
m

in sc
a

woa

S
ta

nd
ar

di
ze

d
M

S
E

Standardized MSEs

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

op
tim ps

o

Rcg
m

in sc
a

woa

S
ta

nd
ar

di
ze

d
T

im
e

Standardized Computation Time

Abalone

Boston Housing

CO2

Crime

Ohio Housing

Union

Wage

Fig. 2.4: Standardized optimization results for gradient boosting machines for regression.

28

0.00

0.25

0.50

0.75

1.00

ALO

bo
by

qa DA
FFA ga

GOA
GW

O
hjk

b hjn HS

lbf
gs

b3
M

FO
nm

kb
op

tim PSO

Rcg
m

in
SCA

sp
g

tw
o

W
OA

S
ta

nd
ar

di
ze

d
E

rr
or

Standardized Errors

0.00

0.25

0.50

0.75

1.00

ALO

bo
by

qa DA
FFA ga

GOA
GW

O
hjk

b hjn HS

lbf
gs

b3
M

FO
nm

kb
op

tim PSO

Rcg
m

in
SCA

sp
g

tw
o

W
OA

S
ta

nd
ar

di
ze

d
T

im
e

Standardized Computation Time

Breast Cancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Fig. 2.5: Standardized optimization results for support vector machines for binary classifi-
cation.

29

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o

Rcg
m

in sc
a

sp
g

woa

S
ta

nd
ar

di
ze

d
E

rr
or

Standardized Errors

0.00

0.25

0.50

0.75

1.00

alo

bo
by

qa da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o

Rcg
m

in sc
a

sp
g

tw
o

woa

S
ta

nd
ar

di
ze

d
T

im
e

Standardized Computation Time

Breast Cancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Fig. 2.6: Standardized optimization results for gradient boosting machines for binary clas-
sification.

30

0.25

0.50

0.75

1.00

alo da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o

Rcg
m

in sc
a

sp
g

woa

S
ta

nd
ar

di
ze

d
E

rr
or

Standardized Errors

0.00

0.25

0.50

0.75

1.00

alo da ffa ga go
a

gw
o

hjk
b hjn hs

lbf
gs

b3 m
fo

nm
kb

op
tim ps

o

Rcg
m

in sc
a

sp
g

woa

S
ta

nd
ar

di
ze

d
T

im
e

Standardized Computation Time

Breast Cancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Fig. 2.7: Standardized optimization results for adaboost models for binary classification.

31

CHAPTER 3

EZTUNE: AN R PACKAGE FOR AUTOMATIC TUNING OF SUPPORT VECTOR

MACHINES, GRADIENT BOOSTING MACHINES, AND ADABOOST

3.1 Introduction

EZtune is an R package that incorporates the information on tuning and optimiza-

tion from Chapter 2 into a few functions that can automatically tune SVMs, GBMs, and

adaboost. The idea for the package came from frustration in trying to tune supervised

learning models and finding that available tools are slow and difficult to use [Kuhn et al.,

2018], have limited capability [Meyer et al., 2019], or are not reliably maintained. EZtune

was developed to be as easy to use off the shelf as random forests while providing the user

with well tuned models within a reasonable computation time. The primary function in

EZtune searches the parameter spaces outlined in Chapter 2 using either a Hooke-Jeeves or

genetic algorithm. Data with a binary or continuous response can be tuned.

EZtune is not the only R package that can tune statistical learning models. The

package e1071 has a function called tune.svm that can tune SVMs quickly [Meyer et al.,

2019]. In comparing EZtune with tune.svm it appears that tune.svm tunes by optimizing

resubstitution error rates or MSE with a BFGS-L optimization algorithm. Tests from the

previous chapter show that other algorithms can consistently find a better model than

BFGS-L. Tests in this chapter show that using resubstitution to optimize does not produce

good results relative to other methods. However, SVMs tuned using tune.svm perform well

and it is a helpful tool to R users working with SVMs. If one wishes to tune a GBM or

adaboost to compare performance to the SVM, the e1071 package does not provide any

tools. The leading package for GBMs is gbm [Greenwell et al., 2019] and for adaboost it is

ada [Culp et al., 2016]. Neither of these packages provide tools for automatic tuning.

The most common tool for model tuning in R is caret [Kuhn et al., 2018]. The

32

caret package is a powerful tool that can tune dozens of different model types using several

different methods. Options for grid search and optimized search with a genetic algorithm

are available. It can also examine variable importance to aid in feature selection and has

graphical tools available for the different capabilities of the package. It is a tool that is

invaluable to someone who does a great deal of model tuning and needs a vast selection of

options from their tuning tools. Because caret is so all-inclusive, it is extremely difficult to

use. The documentation is extensive, but because so many options exist the documentation

is often inadequate for a user trying to perform a specific task. It also requires the user

to know what parameter spaces should be tuned over. Unless a user is proficient and

knowledgeable with tuning, using caret effectively is a daunting and time consuming task

that is nearly impossible for newcomers to tuning. Tuning with caret is also a long process

due to slow computation times. EZtune is not designed to replace caret. The functionality

of EZtune is nowhere near as extensive as that of caret, but it is designed to provide

a powerful alternative that is more accessible to non-experts and provide options for fast

computation.

EZtune consists of two functions and four datasets. One function finds a tuned model

that performs well and the other function verifies the performance of that model using

cross validation. The function returns the model and information about the model that

the user may find helpful. The default settings are designed to find a well tuned model

with short computation time, but several arguments can be changed by the user if different

options are desired. The philosophy behind the package is to allow even novice users to

easily tune SVMs, GBMs, and adaboost for both binary classification and regression models

without having to do significant research prior to tuning. Because the package is written

using the research presented in Chapter 2, the package produces well tuned models within

reasonable computation time. The EZtune package presented in this dissertation is version

2.0.0. EZtune 1.0.0 has many of the same capabilities as version 2.0.0 except that it does

not fit regression models and it was not based on the research in Chapter 2 so it does not

perform as well as version 2.0.0 [Lundell, 2017].

33

3.2 Package Components and How to Use Them

EZtune consists of the functions eztune and eztune cv. One function finds a well

tuned model and the other provides a cross validated error or MSE for that model. Four

datasets are also included in the package.

3.2.1 Datasets

The datasets included in EZtune are the mullein, mullein test, lichen, and lichen test

datasets from the article Random Forests for Classification in Ecology [Cutler et al., 2007].

Both datasets are large for automatic tuning and were used as part of package development

to test performance and computation speed for large datasets.

Lichen Data

The lichen data consist of 840 observations and 40 variables. One variable is a location

identifier, 7 (coded as 0 and 1) identify the presence or absence of a type of lichen species,

and 32 are characteristics of the survey site where the data were collected. Data were

collected between 1993 and 1999 as part of the Lichen Air Quality surveys on public lands

in Oregon and southern Washington. Observations were obtained from 1-acre (0.4 ha)

plots at Current Vegetation Survey (CVS) sites. Indicator variables denote the presences

and absences of seven lichen species. Data for each sampled plot include the topographic

variables elevation, aspect, and slope; bioclimatic predictors including maximum, minimum,

daily, and average temperatures, relative humidity precipitation, evapotranspiration, and

vapor pressure; and vegetation variables including the average age of the dominant conifer

and percent conifer cover.

Twelve monthly values were recorded for each of the bioclimatic predictors in the

original dataset. Principal components analyses suggested that for each of these predictors

two principal components explained the vast majority (95.0%-99.5%) of the total variability.

Based on these analyses, indices were created for each set of bioclimatic predictors. These

variables were averaged into yearly measurements. Variables within the same season were

also combined and the difference between summer and winter averages were recorded to

34

provide summer to winter contrasts. The averages and differences are included in the data

in EZtune.

Lichen Test Data

The lichen test data consist of 300 observations and 40 variables. Data were collected

from half-acre plots at CVS sites in the same geographical region and contain many of

the same variables, including presences and absences for the seven lichen species. The 40

variables are the same as those for the lichen data and it is a good test dataset for predictive

methods applied to the Lichen Air Quality data.

Mullein Data

The mullein dataset consists of 12,094 observations and 32 variables. It contains infor-

mation about the presence and absence of common mullein (Verbascum thapsus) at Lava

Beds National Monument. The park was digitally divided into 30m × 30m pixels. Park

personnel provided data on 6,047 sites at which mullein was detected and treated between

2000 and 2005, and these data were augmented by 6,047 randomly selected pseudo-absences.

Measurements on elevation, aspect, slope, proximity to roads and trails, and interpolated

bioclimatic variables such as minimum, maximum, and average temperature, precipitation,

relative humidity, and evapotranspiration were recorded for each 30m × 30m site.

Twelve monthly values were recorded for each of the bioclimatic predictors in the

original dataset. Principal components analyses suggested that for each of these predictors

two principal components explained the vast majority (95.0%-99.5%) of the total variability.

Based on these analyses, indices were created for each set of bioclimatic predictors). These

variables were averaged into yearly measurements. Variables within the same season were

also combined and the difference between summer and winter averages were recorded to

provide summer to winter contrasts. The averages and differences are included in the data

in EZtune.

35

Mullein Test Data

The mullein test data consists of 1512 observations and 32 variables. One variable

identifies the presence or absence of mullein in a 30m × 30m site and 31 variables are

characteristics of the site where the data were collected. The data were collected in Lava

Beds National Monument in 2006 that can be used to verify evaluate predictive statistical

procedures applied to the mullein dataset.

3.2.2 Automatic Tuning with eztune

The eztune function is the primary function in the EZtune package. The only required

arguments are the predictors and the response variable. The function is built on existing R

packages that are well maintained and well programmed to ensure that eztune performance

is reliable. SVM models are computed using the e1071 [Meyer et al., 2019], GBMs with

the gbm package [Greenwell et al., 2019], and adaboost with the ada package [Culp et al.,

2016]. The models produced by eztune are objects from each of these packages so all of

the peripheral functions for these packages can be used on models returned by eztune. A

summary of each of these packages and why they were chosen follows.

e1071 Package for Support Vector Machines

The e1071 package was written and is maintained by David Meyer [Meyer et al., 2019].

The package was built using the LIBSVM platform [Chang and Lin, 2011], which is written

in C++ and is considered one of the best open source libraries for SVMs. e1071 has been

around for many years and has continuously been updated during that time frame. It has

all of the features needed to perform the tasks needed by eztune and includes other features

that allow expansion of eztune in future versions, such as selection of kernels other than

the radial kernel and multi-class modeling.

gbm Package for Gradient Boosting Machines

The gbm package was written by Greg Ridgeway [Greenwell et al., 2019] and has been

maintained and updated for many years. It performs GBM by using the framework of an

36

adaboost model with an exponential loss function, but uses Friedman’s gradient descent

algorithm [Friedman, 2001] to optimize the trees rather than the algorithm originally pro-

posed in adaboost [Freund and Schapire, 1997]. This package was selected because it had all

of the features needed for eztune and included the ability to compute a multi-class model

for future EZtune versions.

ada Package for Adaboost Implementation

In contrast to SVMs and GBMs, there are several standard packages in R that can be

used to fit adaboost models. The most established and well known package is ada [Culp

et al., 2016]. Other packages that are often used are fastAdaboost [Chatterjee, 2016] and

adabag [Alfaro et al., 2013]. fastAdaboost is a new package with a fast implementation of

adaboost that is quickly gaining popularity. However, it is still being developed and does

not have all of the functionality needed for eztune. It may be considered as a platform

for later versions of eztune as fastAdaboost gains more functionality because adaboost

is currently the slowest model to tune. The package adabag provides an implementation

of adaboost that allows for bagging to be incorporated. This feature is useful, but it does

not allow for independent tuning of shrinkage or tree depth. Because these parameters

are important tuning parameters, adabag was not considered. The ada package has been

maintained and updated consistently for many years and had the capability to tune the

number of trees, tree depth, and shrinkage independently. Thus, ada was chosen as the

primary adaboost package for eztune.

Implementation of eztune

The eztune function was designed to be easy to use. It can be used when only data

are provided, but arguments can be changed for user flexibility. The default settings were

chosen to provide fast implementation of the function with good error rates. The syntax is:

eztune(x, y, method = "svm", optimizer = "hjn", fast = TRUE, cross = NULL)

Arguments:

37

• x: matrix or data frame of dependent variables.

• y: numeric vector of responses.

• method: ”svm” for SVMs, ”ada” for adaboost, and ”gbm” for GBMs.

• optimizer: ”hjn” for Hooke-Jeeves algorithm or ”ga” for genetic algorithm.

• fast: Indicates if the function should use a subset of the observations when optimizing

to speed up calculation time. Options include TRUE, a number between 0 and 1, and

a positive integer. A value of TRUE will use the smaller of 50% of the data or 200

observations for model fitting. A number between 0 and 1 specifies the proportion

of data that will be used to fit the model. A positive integer specifies the number of

observations that will be used to fit the model. A model is computed using a random

selection of data and the remaining data are used to validate model performance.

Validation error rate or MSE is used as the optimization measure.

• cross: If an integer k>1 is specified, k-fold cross validation is used to fit the model.

This parameter is ignored unless fast = FALSE.

The function determines if a response is binary or continuous and then performs the

appropriate grid search based on the function arguments. Testing showed that the SVM

model is faster to tune than GBMs and adaboost, with adaboost being substantially slower

than either of the other models. Tuning is also very slow as datasets get large. The mullein

and lichen datasets in this package tune very slowly because of their size. This is why the

fast options are set as the default. If a user wants a more accurate model and is willing

to wait for it, they can select cross validation or fit with a larger subset of the data. The

performance of the optimization algorithm features is presented in Section 3.3.

The Hooke-Jeeves optimization algorithm was chosen as the default optimization tool

because it outperformed all of the other algorithms tested in Table 2.4 in terms of speed

and finding an optimal model for all data and model types. It did not always produce the

best model out of the algorithms, but it was the only algorithm that was always among the

38

best performers. The only other algorithm that consistently produced models with error

measures as low or lower than those found by the Hooke-Jeeves algorithm were those found

by the genetic algorithm. The genetic algorithm was able to find a much better model than

Hooke-Jeeves in some situations, so it is included in the package. However, computation

time for the genetic algorithm is very slow, particularly for large datasets. If a user is in

need of a more accurate model and can wait for a longer computation time, the genetic

algorithm is worth trying. However, eztune will typically produce a very good model using

the Hooke-Jeeves option with a much faster computation time. The function hjn from

the optimx package [Nash, 2014a] is used to implement the Hooke-Jeeves algorithm. The

package dfoptim has a function called hjkb that also performs the Hooke-Jeeves algorithm,

but tests show that the hjn function performs better and more consistently than hjkb.

Several packages in R will implement a genetic algorithm, but the package GA is the most

comprehensive and best maintained genetic algorithm package on CRAN so it is used for

genetic algorithm optimization in eztune.

The fast options were chosen to allow the user to adjust computation time for different

dataset sizes. The default setting will use 50% of the data for datasets with less than 400

observations. If the data have more than 400 observations, 200 observations are chosen

at random as training data and the remaining data are used for model verification. This

options allows for very large datasets to be tuned quickly while ensuring there is a sufficient

amount of verification data for smaller datasets. The user can change these setting to meet

the needs of their project and accommodate their dataset. For example, 200 observations

may not be enough to tune a model for a dataset as large as the mullein dataset. The user

can increase that number of observations used to train the model using the fast argument.

The function returns a model and numerical measures that are associated with the

model. The model that is returned is an object from the package used to create the model.

The SVM model is of class svm, the GBM model is of class gbm.object, and the adaboost

model is of class ada. These models can be used with any of the features and functions

available for those objects. The accuracy and MSE is returned as well as the final tuning

39

parameters. The names of the parameters match the names from the function used to

generate them. For example, the number of trees used in gbm is called n.trees while the

same parameter is called iter for adaboost. This may seem confusing, but it was anticipated

that users may want to use the functionality of the e1071, gbm, and ada packages and naming

the parameters to match those packages will make moving from EZtune to the other packages

easier. If the fast option is used, eztune will return the number of observations used to

train the dataset. If cross validation is used, the function will return the number of folds

used for cross validation.

3.2.3 Model Performance Verification with eztune cv

Because eztune has many options for model optimization, a second function is in-

cluded to assess model performance using cross validation. It is known that model accuracy

measures based on resubstitution are overly optimistic. That is, when the data that were

used to create the model are used to verify the model, model performance will typically

look much better than it actually is. Fast options in eztune use data splitting so that

the models are optimized using verification data rather than training data. However, the

training dataset may be a small fraction of the original dataset to decrease computational

speed which may result in a model that is not as accurate as desired.

The function eztune cv was developed to easily verify a model computed by eztune

using cross validation so that a better estimate of model accuracy can be quickly obtained.

The predictors and response are inputs into the function along with the object obtained

from eztune. The eztune cv function returns a number that represents the cross validated

accuracy or MSE. Function syntax is:

eztune cv(x, y, model, cross = 10)

Arguments:

• x: Matrix or data frame of dependent variables.

• y: Numeric vector of responses.

40

• model: Object generated with the function eztune.

• cross: The number of folds for n-fold cross validation.

The function returns a numeric value that represents the cross validated accuracy of the

model.

3.3 Performance and Benchmarking

Tests were performed on the thirteen datasets listed in Table 2.1. Because a large

grid search was done for each of the datasets using all of the model types, results of the

package tests were compared to the best error rates and MSEs obtained from the grid

search. Computation times are also reported for all runs so that computation time and

model performance can be balanced by the user. Each of the tests were run 10 times so

that the stability of model results and test times could be assessed. Figures 3.1 - 3.5 show

the performance of the function for different argument inputs. The lines represent the

standardized cross validated MSEs or error rates for each of the model types and datasets.

For each dataset, the data were rescaled so that the largest MSE or error rate achieved by

a model type is represented by a 1 and the smallest MSE or error rate is represented by

a 0. The same standardization was done for computation time. Thus, results are directly

comparable for all results obtained for a dataset with a specific model type. Tables 3.1 -

3.5 show the mean cross validated MSEs and error rates for each run along with the mean

computation time in seconds. If a table entry is NA it means the computations could not

be completed because the dataset is too small for the argument setting. Note that ten

runs were not completed for some of the mullein genetic algorithm runs using 10-fold cross

validation because computation time was near 72 hours for that setting. However, at least

one run was obtained for each setting with mullein.

Both SVM and GBM regression results show that using resubstitution for optimization

is a poor choice. The MSEs obtained from resubstitution models are particularly bad for

SVMs, but are also consistently bad for GBMs. Computation time for this method is

also much slower than the fast options. Resubstitution also does not perform well for the

41

binary classifiers. It performs particularly poorly for the genetic algorithm with GBMs and

Hooke-Jeeves for adaboost. It is consistently the worst option for SVM for both optimization

algorithms. It is also not faster than the fast options. Hence, it is not recommended to use

resubstitution for optimization.

Cross validation and the fast options give the best MSEs and error rates. Cross val-

idation with 10-folds seems to perform the best most often for SVM regression and clas-

sification. It is also the best performer for the genetic algorithm for GBM classification

and does well for regression. However, it is not particularly good for adaboost. Ten-fold

cross validation is the slowest way to optimize by a substantial amount. Three-fold cross

validation produces good results for most datasets with much faster computation time, but

it is still much slower than the fast options.

The fast options improve computation time unilaterally, as they are intended. The

default fast option, which is to use the lesser of 50% of the data or 200 observations,

performs as well as many of the other fast options except for the mullein dataset and for

Hooke-Jeeves with the Boston Housing dataset. For datasets that are larger, such as lichen,

mullein, and abalone, using a larger set of observations as the training data for the fast

option often improves model performance, but it is not always needed. The fast option

is a good place to start for a model and for moderately sized datasets the default setting

produces a good model. However, for larger datasets, it may be worth sacrificing some

computation time to get better model accuracy.

Tables 3.1 - 3.5 show the performance of the package in comparison to the best model

obtained from the grid search. Tables 3.1 and 3.2 show that smaller datasets have unstable

results, with MSEs varying more from the grid search results than for larger datasets. In

particular, the MSE for the wage data is far larger than the best MSE obtained from the

grid. The wide range of results indicates that the models are volatile. Larger datasets are

able to obtain MSEs that are close to the best results seen in the grids for many of the

options. Cross validation options and fast options produce the MSEs that are closest to the

best grid values. The largest dataset that was tested is the mullein dataset and it appears

42

that it is better to use a larger proportion of the data rather than a low fixed value, but the

computation time increases substantially. It is also clear from Table 3.5 that adaboost seems

to produce models with larger error measures than SVM and GBM and the computation

times are much longer than for SVM and GBM. This likely due to the different platforms

used to construct the package, but it may warrant further investigation on better ways to

implement adaboost. It is also clear from the tables that the cross validation options are

very slow for large datasets and 10-fold cross validation can take several days for datasets

as large as mullein.

Comparison of the Hooke-Jeeves algorithm to the genetic algorithms shows that one

does not consistently outperform the other. In most cases, the Hooke-Jeeves algorithm

produces slightly better results than the genetic algorithm, but there are cases where the

reverse is true. The computation time for the genetic algorithm is typically much longer

than for Hooke-Jeeves, particularly for regression and for larger datasets.

EZtune tests indicate that different arguments in the eztune function have a big impact

on the performance of the function. If a model with low error measures is desired, it is best

to use 10-fold cross validation or a fast option that uses over 50% of the data. Computation

times vary for each of the function options, but the best options in terms of computation

speed and performance seem to be the Hooke-Jeeves algorithm in conjunction with the fast

feature. For most datasets the fast=TRUE option provides a good model, but if the dataset

is large and greater computation time is feasible, using 50% or more of the data to train

yields very good results. The trials also show that for very small datasets, the results of

eztune are unstable. However, SVM, GBM, and adaboost are machine learning methods

and tend to perform better with larger datasets so this finding is not surprising.

3.4 Conclusions

EZtune is a package that was designed to tune supervised learning methods with a

simple user interface. It is built with existing R packages that are well maintained and have

been in used for several years. EZtune takes advantage of the strengths of these packages to

provide a function that can quickly find a good set of tuning parameters for SVM, GBM,

43

T
ab

le
3.

1:
A

ve
ra

g
e

m
ea

n
sq

u
a
re

d
er

ro
rs

fr
om

cr
os

s
va

li
d

at
io

n
m

o
d
el

ve
ri

fi
ca

ti
on

an
d

co
m

p
u

ta
ti

on
ti

m
es

in
se

co
n

d
s

fo
r

su
p

p
or

t
ve

ct
o
r

re
gr

es
si

on
w

it
h

E
Z

tu
n

e.
T

h
e

b
es

t
m

ea
n

sq
u

ar
ed

er
ro

rs
fr

om
th

e
gr

id
se

ar
ch

ar
e

in
cl

u
d

ed
in

th
e

ta
b

le
fo

r
re

fe
re

n
ce

.
T

ab
le

en
tr

ie
s

ar
e

(c
ro

ss
va

li
d

a
te

d
M

S
E

,
co

m
p

u
ta

ti
on

ti
m

e
in

se
co

n
d

s)
.

O
p
ti

m
iz

er
T

y
p

e
A

b
a
lo

n
e

B
o
st

on
H

ou
si

n
g

C
O

2
C

ri
m

e
O

h
io

H
ou

si
n
g

U
n
io

n
W

a
ge

H
o
ok

e-
J
ee

ve
s

R
es

u
b

(7
.3

86
,

9
18

s)
(8

1.
7,

19
s)

(7
2.

42
,

1s
)

(1
11

4,
1
s)

(5
.4

2
e+

09
,

3
46

s)
(2

64
.8

,
2s

)
(2

51
0,

0s
)

H
o
ok

e-
J
ee

ve
s

C
V

=
1
0

(4
.4

09
,

9
76

s)
(7

.9
41

,
1
56

s)
(1

6.
92

,
8s

)
(6

59
.5

,
1s

)
(8

.6
1
e+

08
,

1
55

4s
)

(7
6.

46
,

1s
)

(3
43

.8
,

1s
)

H
o
ok

e-
J
ee

ve
s

C
V

=
3

(4
.4

24
,

3
53

s)
(8

.9
91

,
3
4s

)
(1

6.
87

,
2s

)
(7

54
.1

,
1s

)
(8

.6
4
e+

08
,

6
47

s)
(7

5.
41

,
1s

)
(4

22
.1

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
T

R
U

E
(4

.4
6,

7s
)

(9
.8

86
,

3
s)

(2
3.

5,
1s

)
(8

48
.6

,
1s

)
(9

.2
6
e+

08
,

2
5s

)
(7

7.
69

,
1s

)
(6

17
.4

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

25
(4

.4
5,

31
s)

(9
.7

97
,

2
s)

(2
2.

66
,

1s
)

(1
05

3,
1
s)

(9
.4

1
e+

08
,

4
0s

)
(7

4.
05

,
1s

)
(6

75
.2

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

5
(4

.4
46

,
8
5s

)
(9

.4
82

,
5
s)

(2
2.

79
,

1s
)

(8
27

.7
,

1s
)

(9
.5

1
e+

08
,

7
9s

)
(7

5.
61

,
1s

)
(5

26
.9

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

75
(4

.4
59

,
1
32

s)
(9

.7
54

,
9
s)

(2
1.

94
,

1s
)

(7
93

.8
,

1s
)

(9
.4

0
e+

08
,

1
61

s)
(7

6.
87

,
1s

)
(7

05
.9

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

9
(4

.4
51

,
1
74

s)
(9

.7
62

,
1
3s

)
(1

8.
79

,
1s

)
(8

53
.6

,
1s

)
(9

.2
6
e+

08
,

2
21

s)
(7

9.
69

,
1s

)
(6

89
.1

,
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
10

0
(4

.4
62

,
6
s)

(1
0.

1,
2s

)
N

A
N

A
(9

.6
0
e+

08
,

1
8s

)
N

A
N

A
H

o
ok

e-
J
ee

ve
s

F
a
st

=
20

0
(4

.4
64

,
8
s)

(9
.5

88
,

4
s)

N
A

N
A

(9
.6

4
e+

08
,

2
5s

)
N

A
N

A
H

o
ok

e-
J
ee

ve
s

F
a
st

=
30

0
(4

.4
78

,
1
1s

)
(9

.1
94

,
9
s)

N
A

N
A

(9
.9

4
e+

08
,

3
6s

)
N

A
N

A
H

o
ok

e-
J
ee

ve
s

F
a
st

=
40

0
(4

.4
54

,
1
4s

)
(9

.8
05

,
8
s)

N
A

N
A

(9
.3

5
e+

08
,

4
8s

)
N

A
N

A

G
en

et
ic

A
lg

o
ri

th
m

R
es

u
b

(7
.6

67
,

1
04

94
s)

(3
9.

06
,

2
7s

)
(7

7.
76

,
4s

)
(1

31
9,

3
s)

(4
.5

8
e+

09
,

3
52

s)
(4

41
.4

,
3s

)
(2

39
6,

2s
)

G
en

et
ic

A
lg

o
ri

th
m

C
V

=
1
0

(4
.4

59
,

3
47

60
s)

(7
.9

99
,

2
83

s)
(1

3.
32

,
26

s)
(6

11
,

7s
)

(8
.5

7
e+

08
,

1
62

0s
)

(7
3.

09
,

8s
)

(3
23

.9
,

3s
)

G
en

et
ic

A
lg

o
ri

th
m

C
V

=
3

(4
.5

14
,

8
30

7s
)

(8
.3

93
,

8
3s

)
(1

2.
82

,
8s

)
(6

34
.7

,
5s

)
(9

.1
1
e+

08
,

5
48

s)
(7

6.
99

,
4s

)
(3

30
.5

,
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
T

R
U

E
(4

.6
2,

40
s)

(1
0.

1,
13

s)
(1

4.
1,

4s
)

(7
27

.5
,

4s
)

(8
.9

5
e+

08
,

4
4s

)
(8

3.
97

,
3s

)
(7

17
.1

,
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

25
(4

.5
74

,
2
52

s)
(1

0.
42

,
9
s)

(1
3.

58
,

4s
)

(7
24

.9
,

4s
)

(8
.8

6
e+

08
,

7
2s

)
(1

16
.3

,
3s

)
(6

96
.8

,
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

5
(4

.5
86

,
9
73

s)
(9

.8
17

,
1
6s

)
(1

2.
9,

5s
)

(8
17

.4
,

4s
)

(8
.8

0
e+

08
,

1
44

s)
(7

7.
97

,
3s

)
(6

76
.3

,
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

75
(4

.5
81

,
2
25

1s
)

(9
.9

63
,

2
6s

)
(1

6.
38

,
5s

)
(8

47
,

5s
)

(9
.5

4
e+

08
,

1
94

s)
(7

8.
87

,
3s

)
(7

84
.9

,
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

9
(4

.6
7,

26
59

s)
(1

0.
16

,
3
6s

)
(1

8.
77

,
5s

)
(9

00
,

4s
)

(9
.1

1
e+

08
,

2
71

s)
(9

0.
47

,
3s

)
(6

26
.1

,
4s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
10

0
(4

.5
48

,
3
2s

)
(9

.3
78

,
8
s)

N
A

N
A

(9
.5

9
e+

08
,

3
5s

)
N

A
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
20

0
(4

.6
59

,
4
1s

)
(1

0.
11

,
1
1s

)
N

A
N

A
(8

.5
7
e+

08
,

4
3s

)
N

A
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
30

0
(4

.5
81

,
5
3s

)
(9

.6
99

,
2
1s

)
N

A
N

A
(9

.1
5
e+

08
,

5
3s

)
N

A
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
40

0
(4

.5
66

,
7
1s

)
(8

.8
4,

29
s)

N
A

N
A

(8
.8

0
e+

08
,

7
7s

)
N

A
N

A

B
es

t
G

ri
d

4
.3

89
7.

18
3

10
.5

7
48

7.
2

7.
37

e+
08

6
2.

7
4
.7

1e
-0

3

44

Hooke−Jeeves

Genetic Algorithm

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
M

S
E

Support Vector Regression

Abalone

BostonHousing

CO2

Crime

OhioHousing

Union

Wage

Hooke−Jeeves

Genetic Algorithm

Res
ub

CV =
 1

0

CV =
 3

Fa
st

=
TRUE

Fa
st

=
0.

25

Fa
st

=
0.

5

Fa
st

=
0.

75

Fa
st

=
0.

9

Fa
st

=
10

0

Fa
st

=
20

0

Fa
st

=
30

0

Fa
st

=
40

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
T

im
e

Fig. 3.1: Standardized mean squared error results and computation times for support vector
regression. The best mean squared errors and computation times for each dataset have a
value of 0 and the worst have a value of 1.

45

T
ab

le
3
.2

:
A

ve
ra

g
e

m
ea

n
sq

u
ar

ed
er

ro
rs

fr
om

cr
os

s
va

li
d

at
io

n
m

o
d

el
ve

ri
fi

ca
ti

on
an

d
co

m
p

u
ta

ti
on

ti
m

es
in

se
co

n
d

s
fo

r
gr

ad
ie

n
t

b
o
os

ti
n
g

re
g
re

ss
io

n
w

it
h

E
Z

tu
n

e.
T

h
e

b
es

t
m

ea
n

sq
u

ar
ed

er
ro

rs
fr

om
th

e
gr

id
se

ar
ch

ar
e

in
cl

u
d
ed

in
th

e
ta

b
le

fo
r

re
fe

re
n

ce
.

T
ab

le
en

tr
ie

s
ar

e
(c

ro
ss

va
li

d
a
te

d
M

S
E

,
co

m
p

u
ta

ti
on

ti
m

e
in

se
co

n
d

s)
.

O
p
ti

m
iz

er
T

y
p

e
A

b
al

on
e

B
os

to
n
H

ou
si

n
g

C
O

2
C

ri
m

e
O

h
io

H
ou

si
n
g

U
n
io

n
W

a
ge

H
o
ok

e-
J
ee

ve
s

R
es

u
b

(5
.6

59
,

18
32

s)
(8

.0
36

,
46

8s
)

(8
.4

09
,

13
s)

(5
70

.7
,

13
s)

(7
.6

3e
+

08
,

41
5
4s

)
(1

31
.4

,
5
s)

(2
2
01

,
4
s)

H
o
ok

e-
J
ee

ve
s

C
V

=
10

(4
.5

88
,

11
36

6s
)

(7
.8

21
,

26
57

s)
(5

.2
81

,
10

3s
)

(5
80

.2
,

10
2s

)
(7

.1
5e

+
08

,
22

6
85

s)
(9

4.
7
3,

3
7s

)
(1

4
55

,
3
9
s)

H
o
ok

e-
J
ee

ve
s

C
V

=
3

(4
.5

79
,

25
15

s)
(7

.6
64

,
66

8s
)

(6
.5

67
,

25
s)

(5
50

.4
,

20
s)

(6
.9

2e
+

08
,

55
3
9s

)
(9

6.
3
8,

8
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
T

R
U

E
(4

.9
61

,
16

3s
)

(8
.4

7,
14

4s
)

(7
.1

74
,

6s
)

(5
72

.8
,

5s
)

(7
.1

8e
+

08
,

52
7
s)

(9
4.

6
1,

2
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
0.

25
(4

.7
21

,
42

3s
)

(7
.8

89
,

90
s)

(5
.5

05
,

1s
)

(5
69

.8
,

1s
)

(6
.6

7e
+

08
,

79
4
s)

(1
07

.1
,

0
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
0.

5
(4

.5
73

,
70

6s
)

(7
.8

78
,

16
7s

)
(7

.0
17

,
6s

)
(6

45
.6

,
5s

)
(6

.7
4e

+
08

,
15

7
7s

)
(9

8.
2
6,

2
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
0.

75
(4

.5
83

,
88

1s
)

(8
.2

06
,

25
3s

)
(5

.3
55

,
10

s)
(6

28
.4

,
8s

)
(7

.0
9e

+
08

,
19

0
7s

)
(1

05
.4

,
3
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
0.

9
(4

.6
57

,
11

93
s)

(8
.0

51
,

32
2s

)
(6

.2
48

,
12

s)
(6

07
.4

,
11

s)
(7

.0
6e

+
08

,
25

3
4s

)
(9

9.
7
6,

4
s)

(1
7
44

,
3
s)

H
o
ok

e-
J
ee

ve
s

F
a
st

=
10

0
(4

.9
28

,
10

4s
)

(7
.9

23
,

63
s)

N
A

N
A

(7
.0

3e
+

08
,

26
1
s)

N
A

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
20

0
(4

.9
47

,
16

1s
)

(8
.1

31
,

14
4s

)
N

A
N

A
(7

.0
0e

+
08

,
51

9
s)

N
A

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
30

0
(5

.0
15

,
18

2s
)

(7
.7

28
,

20
9s

)
N

A
N

A
(7

.2
6e

+
08

,
73

6
s)

N
A

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
40

0
(4

.9
7,

1
99

s)
(8

.1
76

,
25

3s
)

N
A

N
A

(7
.0

6e
+

08
,

98
1
s)

N
A

N
A

G
en

et
ic

A
lg

or
it

h
m

R
es

u
b

(5
.7

78
,

40
67

s)
(8

.0
82

,
61

1s
)

(9
.2

86
,

34
s)

(5
94

.7
,

20
s)

(8
.0

3e
+

08
,

59
4
1s

)
(1

33
.2

,
1
5s

)
N

A
G

en
et

ic
A

lg
or

it
h
m

C
V

=
10

(4
.5

71
,

12
46

0s
)

(7
.9

87
,

58
43

s)
(6

.3
43

,
17

9s
)

(5
70

.2
,

19
4s

)
(7

.0
0e

+
08

,
58

6
28

s)
(9

9.
7
3,

4
8s

)
(1

7
51

,
3
6
s)

G
en

et
ic

A
lg

or
it

h
m

C
V

=
3

(4
.5

81
,

35
49

s)
(7

.7
78

,
13

98
s)

(6
.5

17
,

53
s)

(5
56

,
42

s)
(6

.5
8e

+
08

,
12

9
07

s)
(1

11
.3

,
1
4s

)
N

A
G

en
et

ic
A

lg
or

it
h
m

F
a
st

=
T

R
U

E
(4

.7
26

,
20

9s
)

(7
.9

65
,

25
9s

)
(6

.8
82

,
13

s)
(5

80
.7

,
10

s)
(7

.1
9e

+
08

,
92

7
s)

(1
17

.5
,

6
s)

N
A

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
0.

25
(4

.5
88

,
56

7s
)

(8
.0

97
,

14
4s

)
(7

.9
75

,
2s

)
N

A
(6

.7
2e

+
08

,
16

4
9s

)
(1

24
.9

,
2
s)

N
A

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
0.

5
(4

.5
98

,
10

98
s)

(7
.8

08
,

41
9s

)
(7

.0
59

,
15

s)
(5

44
.5

,
12

s)
(7

.2
6e

+
08

,
27

8
0s

)
(1

21
.6

,
4
s)

N
A

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
0.

75
(4

.6
41

,
14

89
s)

(7
.8

53
,

44
7s

)
(6

.7
58

,
20

s)
(5

73
.4

,
18

s)
(7

.3
6e

+
08

,
52

2
9s

)
(1

26
.1

,
9
s)

N
A

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
0.

9
(4

.6
88

,
18

14
s)

(8
.3

79
,

53
8s

)
(7

.0
84

,
25

s)
(5

80
.7

,
22

s)
(7

.4
0e

+
08

,
44

3
3s

)
(1

19
.2

,
1
0s

)
(2

1
18

,
7
s)

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
10

0
(4

.6
56

,
16

9s
)

(8
.2

07
,

11
3s

)
N

A
N

A
(7

.1
0e

+
08

,
46

9
s)

N
A

N
A

G
en

et
ic

A
lg

or
it

h
m

F
a
st

=
20

0
(4

.6
9,

2
21

s)
(7

.9
68

,
32

6s
)

N
A

N
A

(6
.9

8e
+

08
,

10
5
2s

)
N

A
N

A
G

en
et

ic
A

lg
or

it
h
m

F
a
st

=
30

0
(4

.7
38

,
27

3s
)

(8
.0

39
,

48
4s

)
N

A
N

A
(7

.2
4e

+
08

,
15

2
4s

)
N

A
N

A
G

en
et

ic
A

lg
or

it
h
m

F
a
st

=
40

0
(4

.6
81

,
30

3s
)

(7
.8

34
,

60
3s

)
N

A
N

A
(6

.8
6e

+
08

,
15

8
0s

)
N

A
N

A

B
es

t
G

ri
d

4.
44

2
6.

8
4.

56
8

39
1.

7
6.

04
e+

08
82

.8
6

0
.0

2
62

46

Hooke−Jeeves

Genetic Algorithm

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
M

S
E

Gradient Boosting Regression

Abalone

BostonHousing

CO2

Crime

OhioHousing

Union

Wage

Hooke−Jeeves

Genetic Algorithm

Res
ub

CV =
 1

0

CV =
 3

Fa
st

=
TRUE

Fa
st

=
0.

25

Fa
st

=
0.

5

Fa
st

=
0.

75

Fa
st

=
0.

9

Fa
st

=
10

0

Fa
st

=
20

0

Fa
st

=
30

0

Fa
st

=
40

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
T

im
e

Fig. 3.2: Standardized mean squared error results and computation times for gradient
boosting regression. The best mean squared errors and computation times for each dataset
have a value of 0 and the worst have a value of 1.

47

T
ab

le
3
.3

:
A

ve
ra

ge
cl

as
si

fi
ca

ti
on

er
ro

rs
fr

om
cr

os
s

va
li

d
at

io
n

m
o
d

el
ve

ri
fi

ca
ti

on
an

d
co

m
p

u
ta

ti
on

ti
m

es
in

se
co

n
d

s
fo

r
su

p
p

or
t

ve
ct

or
cl

a
ss

ifi
ca

ti
o
n

w
it

h
E

Z
tu

n
e.

T
h

e
b

es
t

cl
as

si
fi

ca
ti

on
er

ro
rs

fr
om

th
e

gr
id

se
ar

ch
ar

e
in

cl
u

d
ed

in
th

e
ta

b
le

fo
r

re
fe

re
n

ce
.

T
ab

le
en

tr
ie

s
a
re

(c
ro

ss
va

li
d

at
ed

er
ro

r
ra

te
,

co
m

p
u

ta
ti

on
ti

m
e

in
se

co
n

d
s)

.

O
p

ti
m

iz
er

T
y
p

e
B

re
as

tC
an

ce
r

Io
n

os
p

h
er

e
L

ic
h

en
M

u
ll

ei
n

P
im

a
S

on
ar

H
o
ok

e-
J
ee

ve
s

R
es

u
b

(0
.0

45
5,

2s
)

(0
.0

52
1,

2s
)

(0
.1

82
1,

11
s)

(0
.0

58
1,

69
98

s)
(0

.3
03

1,
7s

)
(0

.1
32

7,
12

s)
H

o
ok

e-
J
ee

ve
s

C
V

=
1
0

(0
.0

31
2,

5s
)

(0
.0

54
4,

7s
)

(0
.1

44
6,

44
s)

(0
.0

57
4,

70
13

0s
)

(0
.2

36
3,

26
s)

(0
.1

19
7,

48
s)

H
o
ok

e-
J
ee

ve
s

C
V

=
3

(0
.0

33
8,

2s
)

(0
.0

58
7,

3s
)

(0
.1

53
8,

20
s)

(0
.0

57
5,

18
82

7s
)

(0
.2

38
4,

10
s)

(0
.1

27
4,

26
s)

H
o
ok

e-
J
ee

ve
s

F
as

t
=

T
R

U
E

(0
.0

37
2,

1s
)

(0
.0

58
7,

2s
)

(0
.1

59
9,

4s
)

(0
.1

74
8,

70
s)

(0
.2

38
4,

1s
)

(0
.1

26
4,

15
s)

H
o
ok

e-
J
ee

ve
s

F
as

t
=

0.
25

(0
.0

37
9,

1s
)

(0
.0

58
1,

2s
)

(0
.1

69
3,

3s
)

(0
.0

78
3,

53
9s

)
(0

.2
39

3,
1s

)
(0

.1
27

4,
13

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
5

(0
.0

40
1,

1s
)

(0
.0

57
,

2s
)

(0
.1

64
,

5s
)

(0
.0

58
1,

27
45

s)
(0

.2
33

6,
3s

)
(0

.1
26

4,
15

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
75

(0
.0

37
9,

1s
)

(0
.0

55
,

3s
)

(0
.1

70
5,

8s
)

(0
.0

57
6,

51
28

s)
(0

.2
53

4,
4s

)
(0

.1
29

8,
17

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
9

(0
.0

39
7,

1s
)

(0
.0

54
4,

2s
)

(0
.1

68
1,

11
s)

(0
.0

68
1,

71
79

s)
(0

.2
43

6,
5s

)
(0

.1
30

8,
19

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

10
0

(0
.0

39
1,

1s
)

(0
.0

52
4,

2s
)

(0
.1

62
3,

3s
)

(0
.1

64
5,

57
s)

(0
.2

37
4,

1s
)

(0
.1

25
,

15
s)

H
o
ok

e-
J
ee

ve
s

F
as

t
=

20
0

(0
.0

35
1,

1s
)

(0
.0

55
3,

2s
)

(0
.1

74
,

4s
)

(0
.1

69
,

64
s)

(0
.2

43
,

1s
)

(0
.1

29
8,

16
s)

H
o
ok

e-
J
ee

ve
s

F
as

t
=

30
0

(0
.0

36
5,

1s
)

(0
.0

52
4,

2s
)

(0
.1

6,
5s

)
(0

.1
62

7,
70

s)
(0

.2
41

7,
2s

)
N

A
H

o
ok

e-
J
ee

ve
s

F
as

t
=

40
0

(0
.0

34
4,

1s
)

N
A

(0
.1

58
2,

6s
)

(0
.1

56
3,

80
s)

(0
.2

43
5,

2s
)

N
A

G
en

et
ic

A
lg

o
ri

th
m

R
es

u
b

(0
.0

53
,

8s
)

(0
.1

59
8,

10
s)

(0
.2

09
8,

45
s)

(0
.0

57
8,

13
06

4s
)

(0
.3

23
4,

25
s)

(0
.3

11
1,

58
s)

G
en

et
ic

A
lg

o
ri

th
m

C
V

=
1
0

(0
.0

32
1,

26
s)

(0
.0

48
1,

28
s)

(0
.1

49
6,

22
7s

)
(0

.0
58

3,
17

59
04

s)
(0

.2
30

2,
24

8s
)

(0
.1

21
2,

17
6s

)
G

en
et

ic
A

lg
o
ri

th
m

C
V

=
3

(0
.0

32
7,

11
s)

(0
.0

55
,

15
s)

(0
.1

49
4,

84
s)

(0
.0

58
7,

58
53

1s
)

(0
.2

35
5,

72
s)

(0
.1

21
2,

10
5s

)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

T
R

U
E

(0
.0

34
7,

5s
)

(0
.0

57
5,

9s
)

(0
.1

60
1,

14
s)

(0
.1

82
5,

13
7s

)
(0

.2
32

2,
8s

)
(0

.1
26

9,
80

s)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

0.
25

(0
.0

36
2,

4s
)

(0
.0

58
4,

8s
)

(0
.1

52
6,

15
s)

(0
.0

75
,

13
38

s)
(0

.2
35

9,
6s

)
(0

.1
29

8,
67

s)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

0.
5

(0
.0

32
9,

5s
)

(0
.0

58
1,

9s
)

(0
.1

48
7,

24
s)

(0
.0

60
8,

51
63

s)
(0

.2
37

1,
15

s)
(0

.1
26

,
76

s)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

0.
75

(0
.0

37
8,

6s
)

(0
.0

60
1,

9s
)

(0
.1

60
6,

38
s)

(0
.0

58
7,

13
60

4s
)

(0
.2

38
4,

25
s)

(0
.1

17
3,

76
s)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

0.
9

(0
.0

39
4,

6s
)

(0
.0

65
5,

8s
)

(0
.1

56
8,

41
s)

(0
.0

59
,

13
40

8s
)

(0
.2

44
,

38
s)

(0
.1

21
2,

75
s)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

10
0

(0
.0

39
7,

4s
)

(0
.0

60
4,

8s
)

(0
.1

66
2,

11
s)

(0
.1

89
8,

11
7s

)
(0

.2
34

8,
5s

)
(0

.1
26

9,
74

s)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

20
0

(0
.0

35
4,

5s
)

(0
.0

62
1,

10
s)

(0
.1

53
9,

15
s)

(0
.1

81
3,

12
6s

)
(0

.2
35

7,
8s

)
(0

.1
23

1,
64

s)
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

30
0

(0
.0

35
9,

4s
)

(0
.0

64
4,

9s
)

(0
.1

55
1,

17
s)

(0
.1

78
6,

14
2s

)
(0

.2
35

3,
12

s)
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

40
0

(0
.0

32
9,

6s
)

N
A

(0
.1

51
5,

22
s)

(0
.1

70
9,

20
2s

)
(0

.2
32

,
15

s)
N

A

B
es

t
G

ri
d

0.
02

34
0.

04
27

0.
13

1
0.

06
82

0.
21

74
0.

10
1

48

Hooke−Jeeves

Genetic Algorithm

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
E

rr
or

 R
at

e
Support Vector Machine

BreastCancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Hooke−Jeeves

Genetic Algorithm

Res
ub

CV =
 1

0

CV =
 3

Fa
st

=
TRUE

Fa
st

=
0.

25

Fa
st

=
0.

5

Fa
st

=
0.

75

Fa
st

=
0.

9

Fa
st

=
10

0

Fa
st

=
20

0

Fa
st

=
30

0

Fa
st

=
40

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
T

im
e

Fig. 3.3: Standardized classification error rates and computation times for support vector
classification. The best error rates and computation times for each dataset have a value of
0 and the worst have a value of 1.

49

T
ab

le
3.

4:
A

ve
ra

ge
cl

as
si

fi
ca

ti
o
n

er
ro

rs
fr

om
cr

os
s

va
li

d
at

io
n

m
o
d

el
ve

ri
fi

ca
ti

on
an

d
co

m
p

u
ta

ti
on

ti
m

es
in

se
co

n
d

s
fo

r
gr

ad
ie

n
t

b
o
os

ti
n
g

cl
a
ss

ifi
ca

ti
on

w
it

h
E

Z
tu

n
e.

T
h

e
b

es
t

cl
as

si
fi

ca
ti

on
er

ro
rs

fr
om

th
e

gr
id

se
ar

ch
ar

e
in

cl
u
d

ed
in

th
e

ta
b

le
fo

r
re

fe
re

n
ce

.
T

ab
le

en
tr

ie
s

ar
e

(c
ro

ss
va

li
d

a
te

d
er

ro
r

ra
te

,
co

m
p

u
ta

ti
on

ti
m

e
in

se
co

n
d

s)
.

O
p
ti

m
iz

er
T

y
p

e
B

re
as

tC
an

ce
r

Io
n
os

p
h
er

e
L

ic
h
en

M
u
ll
ei

n
P

im
a

S
on

ar

H
o
ok

e-
J
ee

ve
s

R
es

u
b

(0
.0

30
3,

30
s)

(0
.0

68
1,

58
s)

(0
.1

60
6,

12
4s

)
(0

.0
77

9,
63

88
s)

(0
.2

69
,

47
s)

(0
.1

34
1
,

34
7s

)
H

o
ok

e-
J
ee

ve
s

C
V

=
1
0

(0
.0

31
3,

33
1s

)
(0

.0
69

8,
66

7s
)

(0
.1

63
,

15
29

s)
(0

.0
78

7,
54

69
9s

)
(0

.2
58

7,
37

2s
)

(0
.1

27
9
,

41
71

s)
H

o
ok

e-
J
ee

ve
s

C
V

=
3

(0
.0

31
8,

79
s)

(0
.0

67
,

15
7
s)

(0
.1

62
9,

46
0s

)
(0

.0
78

6,
11

78
6s

)
(0

.2
57

7,
10

7s
)

(0
.1

30
8
,

10
81

s)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
T

R
U

E
(0

.0
31

9,
15

s)
(0

.0
71

2,
47

s)
(0

.1
59

2,
48

s)
(0

.1
39

9,
11

5s
)

(0
.2

66
5,

17
s)

(0
.1

45
7
,

26
3s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

2
5

(0
.0

29
7,

14
s)

(0
.0

68
7,

23
s)

(0
.1

61
7,

54
s)

(0
.0

93
9,

10
70

s)
(0

.2
64

2,
15

s)
(0

.1
42

8
,

10
7s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

5
(0

.0
29

3,
21

s)
(0

.0
67

5,
42

s)
(0

.1
58

1,
11

4s
)

(0
.0

89
,

25
89

s)
(0

.2
58

5,
23

s)
(0

.1
28

8
,

27
5s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

7
5

(0
.0

33
1,

27
s)

(0
.0

71
8,

68
s)

(0
.1

63
,

14
5s

)
(0

.0
83

6,
43

95
s)

(0
.2

64
3,

34
s)

(0
.1

42
8
,

38
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
0.

9
(0

.0
31

9,
27

s)
(0

.0
67

2,
77

s)
(0

.1
61

1,
15

2s
)

(0
.1

01
,

37
20

s)
(0

.2
64

6,
47

s)
(0

.1
26

,
42

0s
)

H
o
ok

e-
J
ee

ve
s

F
a
st

=
10

0
(0

.0
30

9,
9s

)
(0

.0
67

5,
27

s)
(0

.1
59

4,
30

s)
(0

.1
20

7,
99

s)
(0

.2
65

1,
11

s)
(0

.1
32

7
,

24
7s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
20

0
(0

.0
31

2,
15

s)
(0

.0
70

4,
46

s)
(0

.1
62

3,
50

s)
(0

.1
21

7,
13

7s
)

(0
.2

60
4,

16
s)

(0
.1

42
8
,

40
1s

)
H

o
ok

e-
J
ee

ve
s

F
a
st

=
30

0
(0

.0
31

8,
18

s)
(0

.0
65

5,
65

s)
(0

.1
61

8,
82

s)
(0

.1
13

1,
16

6s
)

(0
.2

61
3,

22
s)

N
A

H
o
ok

e-
J
ee

ve
s

F
a
st

=
40

0
(0

.0
30

6,
27

s)
N

A
(0

.1
64

,
10

6s
)

(0
.1

06
2,

18
7s

)
(0

.2
64

2,
28

s)
N

A

G
en

et
ic

A
lg

o
ri

th
m

R
es

u
b

(0
.0

32
8,

22
4s

)
(0

.0
72

4,
43

8s
)

(0
.1

58
5,

11
00

s)
(0

.0
70

3,
17

91
0s

)
(0

.2
74

7,
26

6s
)

(0
.1

52
4
,

46
6s

)
G

en
et

ic
A

lg
o
ri

th
m

C
V

=
1
0

(0
.0

29
4,

21
92

s)
(0

.0
64

4,
40

26
s)

(0
.1

54
,

11
21

1s
)

(0
.0

70
5,

15
91

83
s)

(0
.2

42
3,

16
09

s)
(0

.1
33

7
,

43
98

s)
G

en
et

ic
A

lg
o
ri

th
m

C
V

=
3

(0
.0

32
4,

60
9s

)
(0

.0
69

2,
82

0s
)

(0
.1

57
4,

26
54

s)
(0

.0
71

2,
62

06
4s

)
(0

.2
40

1,
45

8s
)

(0
.1

36
1
,

80
9s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
T

R
U

E
(0

.0
31

2,
10

4s
)

(0
.0

69
5,

24
1s

)
(0

.1
54

9,
23

1s
)

(0
.1

11
3,

78
4s

)
(0

.2
49

5,
80

s)
(0

.1
39

4
,

11
52

s)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

2
5

(0
.0

32
2,

84
s)

(0
.0

67
5,

11
5s

)
(0

.1
56

,
27

9s
)

(0
.0

74
6,

69
52

s)
(0

.2
43

,
71

s)
(0

.1
57

7
,

37
3s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

5
(0

.0
31

2,
14

9s
)

(0
.0

69
2,

22
1s

)
(0

.1
57

5,
71

2s
)

(0
.0

71
,

14
10

4s
)

(0
.2

44
8,

12
9s

)
(0

.1
45

7
,

94
1s

)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

7
5

(0
.0

32
2,

19
6s

)
(0

.0
73

8,
37

9s
)

(0
.1

62
5,

98
5s

)
(0

.0
72

9,
36

85
4s

)
(0

.2
45

8,
19

0s
)

(0
.1

48
1
,

19
00

s)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
0.

9
(0

.0
31

6,
21

5s
)

(0
.0

68
1,

36
4s

)
(0

.1
58

5,
10

50
s)

(0
.0

70
9,

34
87

5s
)

(0
.2

54
4,

22
2s

)
(0

.1
49

5
,

18
75

s)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
10

0
(0

.0
29

9,
58

s)
(0

.0
65

2,
12

8s
)

(0
.1

56
5,

14
2s

)
(0

.0
95

7,
46

2s
)

(0
.2

45
4,

41
s)

(0
.1

37
5
,

11
55

s)
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
20

0
(0

.0
30

9,
10

3s
)

(0
.0

70
9,

29
1s

)
(0

.1
59

,
34

4s
)

(0
.1

12
6,

73
5s

)
(0

.2
40

2,
72

s)
(0

.1
37

,
20

34
s)

G
en

et
ic

A
lg

o
ri

th
m

F
a
st

=
30

0
(0

.0
31

,
15

9s
)

(0
.0

68
7,

38
7s

)
(0

.1
55

8,
52

9s
)

(0
.0

89
,

10
10

s)
(0

.2
40

6,
95

s)
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
a
st

=
40

0
(0

.0
31

3,
21

0s
)

N
A

(0
.1

55
8,

67
4s

)
(0

.1
02

6,
11

58
s)

(0
.2

44
3,

11
2s

)
N

A

B
es

t
G

ri
d

0.
02

2
0.

04
84

0.
13

33
0.

07
33

0.
22

14
0.

0
96

2

50

Hooke−Jeeves

Genetic Algorithm

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
E

rr
or

 R
at

e
Gradient Boosting Machine

BreastCancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Hooke−Jeeves

Genetic Algorithm

Res
ub

CV =
 1

0

CV =
 3

Fa
st

=
TRUE

Fa
st

=
0.

25

Fa
st

=
0.

5

Fa
st

=
0.

75

Fa
st

=
0.

9

Fa
st

=
10

0

Fa
st

=
20

0

Fa
st

=
30

0

Fa
st

=
40

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
T

im
e

Fig. 3.4: Standardized classification error rates and computation times for gradient boosting
classification. The best error rates and computation times for each dataset have a value of
0 and the worst have a value of 1.

51

T
ab

le
3
.5

:
A

ve
ra

g
e

cl
as

si
fi

ca
ti

on
er

ro
rs

fr
om

cr
os

s
va

li
d

at
io

n
m

o
d

el
ve

ri
fi

ca
ti

on
an

d
co

m
p

u
ta

ti
on

ti
m

es
in

se
co

n
d

s
fo

r
ad

ab
o
os

t
w

it
h

E
Z

tu
n

e.
T

h
e

b
es

t
cl

as
si

fi
ca

ti
on

er
ro

rs
fr

om
th

e
gr

id
se

ar
ch

ar
e

in
cl

u
d

ed
in

th
e

ta
b

le
fo

r
re

fe
re

n
ce

.
T

ab
le

en
tr

ie
s

ar
e

(c
ro

ss
va

li
d

at
ed

er
ro

r
ra

te
,

co
m

p
u

ta
ti

on
ti

m
e

in
se

co
n

d
s)

.

O
p
ti

m
iz

er
T

y
p

e
B

re
as

tC
an

ce
r

Io
n
os

p
h
er

e
L

ic
h
en

M
u
ll
ei

n
P

im
a

S
on

a
r

H
o
ok

e-
J
ee

ve
s

R
es

u
b

(0
.0

34
7,

13
1s

)
(0

.0
73

8,
20

7s
)

(0
.1

68
9,

38
1s

)
(0

.1
25

4,
12

60
1s

)
(0

.2
78

6,
12

16
s)

(0
.1

6
68

,
2
34

s)
H

o
ok

e-
J
ee

ve
s

C
V

=
10

(0
.0

35
1,

15
68

s)
(0

.0
81

2,
21

45
s)

(0
.1

61
5,

34
72

s)
(0

.1
26

5,
12

39
10

s)
(0

.2
45

2,
87

02
s)

(0
.1

6
59

,
3
09

9s
)

H
o
ok

e-
J
ee

ve
s

C
V

=
3

(0
.0

34
4,

45
5s

)
(0

.0
78

1,
66

2s
)

(0
.1

61
5,

10
86

s)
(0

.1
25

5,
27

97
0s

)
(0

.2
40

9,
25

96
s)

(0
.1

5
53

,
8
51

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

T
R

U
E

(0
.0

35
7,

11
4s

)
(0

.0
75

5,
22

1s
)

(0
.1

65
,

29
9s

)
(0

.1
79

5,
52

8s
)

(0
.2

51
8,

70
9s

)
(0

.1
6
63

,
3
22

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
25

(0
.0

34
,

11
4s

)
(0

.0
78

9,
21

0s
)

(0
.1

70
8,

29
8s

)
(0

.1
29

8,
29

64
s)

(0
.2

49
,

67
2
s)

(0
.1

5
82

,
2
65

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
5

(0
.0

36
,

14
8s

)
(0

.0
76

4,
19

8s
)

(0
.1

63
8,

32
2s

)
(0

.1
27

2,
62

86
s)

(0
.2

57
4,

77
8s

)
(0

.1
5
24

,
3
15

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
75

(0
.0

33
4,

16
3s

)
(0

.0
78

9,
21

8s
)

(0
.1

59
9,

38
6s

)
(0

.1
29

2,
78

31
s)

(0
.2

47
9,

90
9s

)
(0

.1
5
62

,
3
02

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

0.
9

(0
.0

35
4,

14
5s

)
(0

.0
77

2,
24

5s
)

(0
.1

65
8,

37
0s

)
(0

.1
32

7,
90

46
s)

(0
.2

49
6,

94
0s

)
(0

.1
4
71

,
3
12

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

10
0

(0
.0

36
6,

10
8s

)
(0

.0
77

8,
17

4s
)

(0
.1

66
7,

22
7s

)
(0

.1
87

4,
41

2s
)

(0
.2

54
3,

59
5s

)
(0

.1
5
91

,
3
16

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

20
0

(0
.0

34
,

12
4s

)
(0

.0
76

6,
23

9s
)

(0
.1

68
2,

22
0s

)
(0

.1
86

4,
44

5s
)

(0
.2

49
1,

76
7s

)
(0

.1
6
39

,
2
28

s)
H

o
ok

e-
J
ee

ve
s

F
as

t
=

30
0

(0
.0

35
1,

12
8s

)
(0

.0
79

5,
23

2s
)

(0
.1

66
7,

31
0s

)
(0

.1
94

2,
42

7s
)

(0
.2

41
8,

70
5s

)
N

A
H

o
ok

e-
J
ee

ve
s

F
as

t
=

40
0

(0
.0

34
8,

15
0s

)
N

A
(0

.1
68

7,
29

7s
)

(0
.1

80
2,

52
3s

)
(0

.2
47

,
70

3
s)

N
A

G
en

et
ic

A
lg

o
ri

th
m

R
es

u
b

(0
.0

30
6,

52
3s

)
(0

.0
71

8,
84

7s
)

(0
.1

58
2,

19
99

s)
(0

.1
13

7,
51

75
6s

)
(0

.2
76

,
41

9
1s

)
(0

.1
4
04

,
1
07

0s
)

G
en

et
ic

A
lg

o
ri

th
m

C
V

=
10

(0
.0

32
7,

51
65

s)
(0

.0
70

4,
12

08
3s

)
(0

.1
63

5,
22

47
4s

)
(0

.1
28

2,
22

40
20

s)
N

A
(0

.1
3
41

,
1
46

81
s)

G
en

et
ic

A
lg

o
ri

th
m

C
V

=
3

(0
.0

31
8,

17
72

s)
(0

.0
68

7,
29

17
s)

(0
.1

57
3,

59
70

s)
(0

.1
20

2,
77

89
9s

)
(0

.2
60

7,
12

74
2s

)
(0

.1
3
65

,
4
12

8s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

T
R

U
E

(0
.0

31
,

56
8s

)
(0

.0
72

4,
79

3s
)

(0
.1

61
9,

12
28

s)
(0

.1
41

2,
18

37
s)

(0
.2

69
8,

30
64

s)
(0

.1
3
51

,
1
35

8s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

0.
25

(0
.0

32
8,

52
8s

)
(0

.0
69

8,
73

8s
)

(0
.1

58
7,

13
05

s)
(0

.1
26

5,
11

42
9s

)
(0

.2
64

2,
35

88
s)

(0
.1

4
13

,
1
12

0s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

0.
5

(0
.0

32
1,

64
1s

)
(0

.0
72

4,
84

8s
)

(0
.1

54
3,

13
95

s)
(0

.1
28

1,
21

99
2s

)
(0

.2
61

8,
35

08
s)

(0
.1

4
57

,
1
21

0s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

0.
75

(0
.0

3,
67

6s
)

(0
.0

70
9,

10
70

s)
(0

.1
61

1,
17

70
s)

(0
.1

25
,

35
71

9s
)

(0
.2

67
4,

46
99

s)
(0

.1
3
17

,
1
33

2s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

0.
9

(0
.0

31
6,

47
3s

)
(0

.0
70

9,
79

4s
)

(0
.1

57
1,

22
47

s)
(0

.1
27

7,
47

47
9s

)
(0

.2
66

1,
51

61
s)

(0
.1

3
08

,
1
28

3s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

10
0

(0
.0

33
5,

42
8s

)
(0

.0
72

9,
94

4s
)

(0
.1

60
8,

93
3s

)
(0

.1
38

3,
13

37
s)

(0
.2

74
5,

25
80

s)
(0

.1
4
18

,
1
09

9s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

20
0

(0
.0

30
9,

46
6s

)
(0

.0
72

1,
82

5s
)

(0
.1

57
,

11
65

s)
(0

.1
35

9,
17

29
s)

(0
.2

68
2,

31
34

s)
(0

.1
4
13

,
1
13

7s
)

G
en

et
ic

A
lg

o
ri

th
m

F
as

t
=

30
0

(0
.0

31
3,

82
1s

)
(0

.0
74

6,
85

9s
)

(0
.1

56
8,

15
02

s)
(0

.1
27

1,
24

33
s)

(0
.2

75
5,

38
95

s)
N

A
G

en
et

ic
A

lg
o
ri

th
m

F
as

t
=

40
0

(0
.0

32
4,

80
7s

)
N

A
(0

.1
59

9,
15

76
s)

(0
.1

29
4,

26
19

s)
(0

.2
66

9,
43

92
s)

N
A

B
es

t
G

ri
d

0.
01

9
0.

04
84

0.
12

5
0.

08
14

0.
21

09
0.

08
65

52

Hooke−Jeeves

Genetic Algorithm

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
E

rr
or

 R
at

e
Adaboost

BreastCancer

Ionosphere

Lichen

Mullein

Pima

Sonar

Hooke−Jeeves

Genetic Algorithm

Res
ub

CV =
 1

0

CV =
 3

Fa
st

=
TRUE

Fa
st

=
0.

25

Fa
st

=
0.

5

Fa
st

=
0.

75

Fa
st

=
0.

9

Fa
st

=
10

0

Fa
st

=
20

0

Fa
st

=
30

0

Fa
st

=
40

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ta

nd
ar

di
ze

d
T

im
e

Fig. 3.5: Standardized classification error rates and computation times for adaboost. The
best error rates and computation times for each dataset have a value of 0 and the worst
have a value of 1.

53

and adaboost. The package includes a function that can quickly compute cross validated

error measure so that the user can use faster methods to find a model and then obtain a

more accurate error measure.

Package performance tests show that optimizing on resubstitution error does not prod-

uct good results, particularly for regression models. It is also not particularly fast, so this

method is not recommended. The best error measures are obtained when 10-fold cross

validation is done, but it also has the slowest computation times. The fast options in the

function typically produce models with lower error measures with fast computation times.

The larger datasets get much better error measures when at least 50% of the data are used

for the training dataset. Models computed for small datasets are not stable and that should

be considered when using EZtune. Adaboost does not perform as well as SVM and GBM

and it had the longest computation times. The overall best performing options seem to be

SVM and GBM with 10-fold cross validation if the time can be spared, or a fast option that

uses at least 50% of the data to train the model. The fast default option is very fast and

performs well for moderately sized datasets.

CHAPTER 4

THREE-PHASE FILTERING METHOD FOR GENOME-WIDE ASSOCIATION

STUDIES

4.1 Introduction

GWAS has been done since the early 2000s and continues to be an active field of

research. Many methods for GWAS continue to be developed to address the many diffi-

culties that arise with analyses of ultra-high dimensional datasets with complex structure.

It is difficult to identify SNPs that are weakly associated with a phenotype, but identi-

fication of these SNPs is important for understanding how genetics affect physical traits.

Another complication is LD, which can cause SNPs to be erroneously identified as asso-

ciated with a phenotype when they are, in fact, only associated with a nearby SNP that

is associated [Chen et al., 2011]. Many of the GWAS methods rely on statistical methods

that produce a p-value for each SNP. This escalates the multiple statistical testing issue

to a level that correction measures were never intended to address [Wellcome Trust Case

Control Consortium, 2007].

This chapter explores some of these issues using several common GWAS methods and

using a few that have not been previously used in a GWAS setting, but have been used

extensively for feature selection. The method is comprised of three phases. The first

phase consists of a simple filter that uses distance correlation [Székely et al., 2007], linear

regression, or logistic regression to remove noise from the dataset [Zeng et al., 2015]. The

SNPs that are retained are further trimmed using either a LASSO or elastic net model

[Waldmann et al., 2013]. This further removes noise while allowing all of the SNPs that

pass through the first filter to assess as a group rather than in isolation. The last phase of

the method uses either random forests [Breiman, 2001] or CART [Breiman et al., 1984] to

identify SNPs that are most strongly associated with the phenotype.

55

This method was developed by reading GWAS papers that use distance correlation

[Carlsen et al., 2016], linear regression, and logistic regression to identify SNPs associated

with the phenotype. These methods are rarely used in isolation because they contain many

false-positive values due to LD. However, they are a useful tool in eliminating noise [Zeng

et al., 2015]. LASSO and other penalized regression methods have gained popularity as a

method for finding a subset of SNPs that should be further evaluated for association with the

phenotype [Wu et al., 2009]. LASSO has a low false positive rate, but it also has a high false

negative rate. Elastic net has been examined as an alternative to avoid the large number

of false negatives, but it has a much higher false positive rate than LASSO [Waldmann

et al., 2013]. As the value of α decreases for elastic net, the number of false positives

increases, but the number of false negatives decreases. Both LASSO and elastic net require

additional evaluation for SNPs with non-zero coefficients. Methods involving linear and

logistic regression and the FDR have been proposed [Wu et al., 2009], but there is much

exploration that is still needed with this phase. Tuning λ and α is also an area that needs

further exploration [Waldmann et al., 2013]. We replicated the logistic regression method

for final SNP selection on several datasets and found that it appeared to work well in some

situations, but not in others. It is also unclear what a good FDR cutoff value is for final

SNP selection. Because random forests and CART can be used for more refined feature

selection and do not rely on p-values, we explore the use of these tools in lieu of logistic

and linear regression for the final phase of our method.

The exploration done for this chapter uses simulated data with low heritability. Most

of the papers we read on GWAS that used simulated data did not disclose the level of

heritability in the simulated data. We decided to conduct our exploration of these methods

using only data with heritability of 0.1, 0.3, and 0.8 because these levels are indicative of

what is see in nature and what is expected for a GWAS in a medical setting. This analysis

shows that heritability has a strong impact on the efficacy of all of these methods.

4.2 Method

Data were simulated using the genomes of a fruit fly (Rhagoletis pomonella) [Egan

56

et al., 2015], a stick insect (Timema cristinae) [Comeault et al., 2015], and an NMRI

mouse population [Zhang et al., 2012]. Different options within the GWAS method were

tested to determine performance using the following methodology.

4.2.1 Data Simulation

Data were simulated using genomes obtained from three different animals. A descrip-

tion of the data is in Table 4.1. SNPs were randomly selected to be functional SNPs, that

is, SNPs that have a direct outcome on the phenotype, and then phenotypes were gener-

ated such that they only rely on the functional SNPs. Because natural systems are noisy,

random noise was added to the computed phenotype to make the data more realistic. The

amount of noise that is introduced is determined by the desired amount of heritability.

The heritability is a measure of how much the genotype influences the phenotype [National

Institutes of Health United States Library of Medicine, 2019]. It is equivalent to R2 in

statistics. This method produces simulated data that retains all of the complexity of the

genotype while allowing for control of data characteristics that impact the relationship be-

tween the genotype and phenotype. The algorithm for generating the simulated data is

shown in Algorithm 1.

Table 4.1: List of datasets used for data simulation.

Dataset Type of Animal Number of Observations Number of SNPs

Rhagoletis Pomonella Fruit Fly 149 33,723
Timema Cristinae Stick Insect 592 246,258
NMRI Mice Mouse 288 44,428

Phenotypes were created using 5, 10, and 50 SNPs and using heritabilities of 0.1, 0.3,

and 0.8 for each of the datasets. These levels of heritability were selected because they mimic

different natural scenarios. Heritabilities of 0.1 and 0.3 are often seen in ecological settings,

but in medical genetics heritabilities of 0.8 or larger are often seen. Six phenotypes were

simulated for each dataset using each combination of these settings. Three of the phenotypes

were left as continuous and three were changed to binary responses. This resulted in a total

57

Algorithm 1: Generating simulated data for genome-wide association studies.

1 Determine how many SNPs will be functional SNPs (N). That is, how many SNPs
will have a direct impact on the phenotype. Randomly select N SNPs from all of
the SNPs in the genotype.

2 Generate N normal random variables with a mean of 0 and standard deviation of
1. These values form the vector of effects.

3 Use the random normal variables as coefficients in a linear model and compute a
phenotype for each observation using the equation:
phenotype = effect× (functional SNPs).

4 Compute the variation for the noise that will be added to the phenotype using the
desired heritability with:
V ar(phenotype noise) = V ar(phenotype)× 1−heritability

heritability

5 Create random noise for the phenotype by computing random normal variables
with µ = 0 and σ2 = V ar(phenotype noise).

6 Add the noise to the phenotype.
7 If a binary phenotype is desired, change all of the phenotype values less than the

median to 0 and the values greater than or equal to the median to 1.

of thirty-six simulated phenotypes for each of the three genotypes.

4.2.2 Initial Filtering

The first step in the method is to remove the majority of the SNPs from the remainder

of the analysis using a simple filter. Filters are based on distance correlation and linear or

logistic regression, depending on the type of response variable. Filtering using single SNP

analysis and using neighborhoods of SNPs were tested.

Distance correlation is a measure of dependence introduced in 2007 that has gained

popularity in GWAS. It is similar to the product-moment correlation, but it is only 0

if the random vectors are independent. The distance correlation is based on Euclidean

distances between sample elements rather than sample moments. It can be used both on

continuous and binary variables. Distance correlation measures were obtained for each SNP

by comparing a single SNP with the phenotype and also by comparing neighborhoods of 10

SNPs at a time with the phenotype. Distance correlations were computed using the energy

package [Rizzo and Székely, 2018].

Linear and logistic regression filters were treated in the same manner and will be

58

referred to as the regression models to avoid redundancy. Regression models were computed

both by using a single SNP as a predictor and by using a neighborhood of 10 SNPs around

a SNP as the predictors. If the predictor was a single SNP, the p-value on the coefficient

was recorded as the filter value for that SNP. If the predictors included the SNP and the

neighborhood around the SNP, the p-value for the likelihood ratio test was used as the filter

value for that SNP. Both the raw p-values and the FDR were examined to determine which

method produced better final results after all stages of the GWAS method.

Once the filter values are computed, several methods can be used to determine which

SNPs to keep for the next phase of analysis. The distance correlations or p-values can

be plotted using a Manhattan plot and an appropriate threshold can be visually selected.

Another method is to select the number of SNPs that will pass through the filter and retain

that number of SNPs. The latter method was used to ensure that the method could be

tested in the second phase with a dataset that had more SNPs than observations and with

a dataset that had fewer SNPs than observations. This was done to see how the n<p

issue affected the LASSO and elastic net phase of the GWAS method. Seventy-five and 175

SNPs retained from the R. pomonella data, 300 and 700 were retained from the T. chrisinae

data, and 150 and 350 from the mouse data. Slightly more than this were retained from

the data that used a window of ten SNPs around the target SNP because if a a SNP has a

distance correlation or p-value that passes through the filter, the entire set of eleven SNPs

was retained.

An advantage of using distance correlation and regression in this manner is that the

data can be partitioned and calculations can be done in sections. This can speed up com-

putation time by allowing for parallelization with a cluster computing system or allowing

the user to perform computations over several different R sessions. Large genotypes are

computationally accessible using a personal computer. Once the initial filtering is done, the

LASSO, elastic net, random forest, and CART calculations are fast because the data are

manageable in size.

59

4.2.3 LASSO and Elastic Net for Further Refinement

LASSO and elastic net models were computed using the data that passed through the

first phase of filtering. Computations were done using the glmnet package in R. Cross

validation was used to select a value for λ on the LASSO model. This value of λ was used

for the LASSO and all of the elastic net models computed for a dataset. Multiple values

of α were used to determine how parameter selection affected final SNP selection and the

ability of this second phase to detect SNPs with even a small effect. Values were α = 0,

0.005, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0, where α = 0 will allow all of the SNPs to pass onto

the third phase of the method and allow for assessment of the necessity of this phase. SNPs

that have non-zero coefficients are passed onto the third phase of the GWAS method.

4.2.4 Random Forests and Classification and Regression Trees for Final SNP

Selection

The final stage of this GWAS method uses the SNPs that have non-zero coefficients

to compute a CART and a random forest. The trees created by CART were pruned using

the 1-se rule. All SNPs where the pruned tree splits are considered SNPs with a strong

association with the phenotype. This selection criteria is automatic and does not require

user subjectivity.

Random forests compute an importance measure for each of the predictors. This mea-

sure was examined graphically to determine which SNPs are important. This method

involves subjectivity in that the variable importance plot is visually inspected and natural

changes in the importance measures are used to determine a threshold for the SNPs that

are most associated with each phenotype.

4.2.5 Final Assessment of Results

It was anticipated that the final SNP selection part of this method is too restrictive to

identify SNPs that are associated with the phenotype that have a small effect. The LASSO

and elastic net piece was designed to identify SNPs that are associated, but have a small

effect. The random forests and CART portion of the method are used to identify the SNPs

60

that have the strongest association with the phenotype. Both pieces were examined to see

how much noise is picked up in the elastic net phase of testing and how sensitive the final

phase is.

It is known that when data are genotyped a SNP that is primarily associated with the

phenotype may not be sequenced, but its neighbors may be. The purpose of a GWAS is

not to identify the causal SNP, but to identify a region where there is a likely causal SNP.

This means that if the SNP that is most strongly associated with the trait is not sequenced

the area may still be identified as important because of the LD in the region. Because of

this, it is not essential that a specific SNP is identified, but rather it is important that a

SNP nearby is identified. Because of this, results not only consider identification of a SNP

that was chosen to be a functional SNP during simulation to be a true-positive, but if a

SNP nearby is chosen it is also considered a successful find.

The results were assessed graphically to see how closely the SNPs selected at various

stages of the method lined up with the associated SNPs. The graphs display the associated

SNPs along with their effect, the results of the initial filter, the SNPs that pass through the

different elastic net model, the SNPs selected by trees, and the importance of each of the

SNPs that pass through elastic net as determined by random forest. Figure 4.1 shows an

example plot. The x-axis represents the position of each SNP along the genome. The red

lines on the plot show the associated SNPS with the height of the line scaled to represent

the effect size of each SNP. Taller lines represent SNPs with a larger effect. The gray dots

on the plot show the results of the initial filter with the y-axis. If the filter was a distance

correlation the raw values are displayed. If the filter was a regression model, the y-axis is

− log10(p). The dots underneath the filter graph represent the results of the rest of the SNP

selection method. The purple points show the SNPs that had non-zero coefficients in the

elastic net model. The blue points are the SNPs that were selected by CART. The green

points show all of the SNPs that had non-zero coefficients with the elastic net model, but the

size represents the importance of each SNPs with larger importance measures represented

by circles with larger radii.

61

Fig. 4.1: Example plot for assessing the performance of the GWAS method with the mouse
data. The radius of the green circles represents the importance as determined by random
forests. The blue circles represent the SNPs that trees found to be important and purple
circles represent the SNPs with non-zero coefficients in the elastic net model. The radius
of the blue and purple circles does not represent anything. The red lines show the position
of the functional SNPs.

62

4.3 Results

The graphs proved insightful in assessing what was happening across all phases of the

method. It was clear that the ability of the initial filter to find the associated SNPs was

critical to finding the SNPs through the other stages of the method. If the initial filter could

not see that there was an associated SNP, elastic net, CART, and random forests could not

identify the SNP either. The following provides a summary of what was observed in the

graphs.

4.3.1 Heritability

Heritability proved to be the most important factor in how well the method performed.

When the heritability was very low, none of the filters were able to find the associated SNPs.

When heritability was high, filters were able to find many of the associated SNPs. When the

heritability was low (0.1 or 0.3) the filter plots often looked as if they were finding signals,

but when compared to the associated SNPs it was noise. Occasionally, the filters were able

to find SNPs with a strong signal, but they often missed even the most strongly associated

SNPs when the heritability was low. A heritability of 0.3 produced better results and the

filters were able to find some of strongly associated SNPs. However, the success rate with

this was unsatisfactorily low. When the heritability was increased to 0.8, the filters had

much more success at detecting the target SNPs. Variables selected by elastic net typically

covered the regions with associated SNPs and tree and random forest variable selection

found many of the SNPs. Figures 4.2 - 4.11 show a clear pattern on how heritability affects

the ability to identify functional SNPs.

4.3.2 Initial Filter

The plots for the initial filters differed in appearance based on the type of filter used.

The filters using the raw p-values for a linear or logistic regression model appear to have

stronger signals, as seen in Figure 4.8, while the regression models using FDR have few

strong signals as in Figure 4.9. Figure 4.10 shows the distance correlation has weaker ap-

pearing signals than the raw p-values as well. However, comparison with the truly associated

63

SNPs shows that the supposed strong signals with the raw p-values are often false-positives

and that many of even the most strongly associated SNPs are not observed with the filter

when heritability was low. When heritability was high, the filters were able to capture the

SNPs that were associated along with many that were not associated. The FDR p-values

frequently do not show a signal, but they find associated SNPs as often as the raw p-values.

Distance correlation performs similarly well to the regression filters. Although all of the

filters choose different subsets of potentially significant SNPs, none of the filters seem to

outperform the others.

The number of points that were allowed through did not seem to have an affect on

the performance of the method in future phases for low heritability. When heritability was

0.8 more SNPs were selected by elastic net for the larger filter size, but it rarely made an

impact on the SNPs selected by trees or random forests.

Testing a neighborhood around each SNP did seem to matter slightly for low heritabil-

ity. When we tested SNPs in groups of 10, the performance of the method was worse. For

a higher heritability it did not matter if a single SNP or neighborhood of SNPs was used.

4.3.3 Elastic Net

It was hoped that the elastic net would be able to detect the underlying architecture

of the associated SNPs, even with low heritability. Most of the time associated SNPs were

in regions that had non-zero coefficients. However, the SNPs identified by elastic net were

frequent in regions that were not near associated SNPs and sometimes elastic net did not

represent regions with strongly associated SNPs as seen in Figure 4.2. The selection of α

is difficult to assess as well. When α is close to 0, so many SNPs are often selected it is

not particularly helpful in assessing architecture. When α is close to 1, far fewer SNPs are

selected and the regions of associated SNPs are often identified, but areas with associated

SNPs are also more likely to get missed. Figure 4.2 shows that sometimes elastic net fails

to find many associated SNPs even with low levels of α when the heritability is small.

When heritability was 0.8, elastic net typically selected SNPs from regions that included

the associated SNPs. This was not always the case, but for most of the tests run, elastic

64

Fig. 4.2: NMRI mouse data with heritability of 0.1 demonstrating inability of filter to find
truly associated SNPs.

65

Fig. 4.3: NMRI mouse data with heritability of 0.3 demonstrating inability of filter to find
truly associated SNPs.

66

Fig. 4.4: NMRI mouse data with heritability of 0.8 demonstrating improvement in method
with stronger heritability.

67

Fig. 4.5: T. cristinae data with heritability of 0.1 demonstrating inability of filter to find
truly associated SNPs.

68

Fig. 4.6: T. cristinae data with heritability of 0.3 demonstrating inability of filter to find
truly associated SNPs.

69

Fig. 4.7: T. cristinae data with heritability of 0.8 demonstrating improvement in method
with stronger heritability.

70

Fig. 4.8: R. pomonella data with heritability of 0.3 and with the linear regression filter
using the FDR p-values transformed using − log10 P . This plot demonstrates inability of
filter to find truly associated SNPs with such low heritability and the difference in the filter
plot between FDR p-values and raw p-values.

71

Fig. 4.9: R. pomonella data with heritability of 0.3 and with the linear regression filter with
the raw p-values transformed using − log10 P . This plot demonstrates inability of filter to
find truly associated SNPs with such low heritability and the difference in the filter plot
between distance correlation, the FDR p-values, and raw p-values.

72

Fig. 4.10: R. pomonella data with heritability of 0.3 and with the distance correlation
filter. This plot demonstrates inability of filter to find truly associated SNPs with such
low heritability and the difference in the filter plot between distance correlation, the FDR
p-values, and raw p-values.

73

Fig. 4.11: R. pomonella data with heritability of 0.8 demonstrating improvement in method
with stronger heritability.

74

net covered the desired regions as in Figure 4.7. When α was small, the number of SNPs

with non-zero coefficients was often too large to be particularly helpful. When α was large,

the number of SNPs was small enough to help narrow down the genome. Elastic net results

often missed some of the exact associated SNPs, but it would show the region as being

associated.

4.3.4 Random Forests and CART

Random forests and CART had mixed results. CART often identified different SNP

regions as significant than random forests. There were many false positives and false nega-

tives with both methods. If the initial filter did not clearly identify a region as associated

with the phenotype, CART and random forests were not able to find those locations either.

Figures 4.2 - 4.11 demonstrate these qualities of CART and random forests.

Some patterns were detected in the tests where heritability was 0.8. Random forests

did not find as many SNPs as CART, but it rarely had a false positive. Essentially, it

was not able to find associated SNPs as well, but when it found one, it was most likely

associated. CART found more of the associated SNPs that random forests, but had quite a

few false-positives. A combination of CART and random forests was often able to find the

SNPs most strongly associated with the phenotype, but not always. This was particularly

true for the mouse data.

4.3.5 Datasets

The methods performed differently for the different datasets. Although none of them

performed particularly well, all of the methods performed better on the mouse data than on

the R. pomonella data. The filters were better able to find signals in the associated SNPs

even for the lowest level of heritability. However, there are still many false positives and

false negatives with the mouse data and the T cristenae data.

4.4 Conclusions

Evaluation of linear models, distance correlation, elastic net, CART, and random forests

75

show that when heritability is low, these methods are not able to identify associated SNPs

well. When heritability is high, they can find many of the most strongly associated SNPs,

but there are still many false negatives. Linear models and distance correlation were used

as initial filters to remove the majority of the noise from the data, but all of the filters

had difficulty finding the regions where the associated SNPs were located unless heritability

is strong. The inability of the initial filter to identify the locations of associated SNPs

percolated down through the rest of the methods that were tested. Elastic net and LASSO

are often used in GWAS to find associated SNPs, but when heritability is low, elastic net

struggles to identify important regions and misses many of the areas of highest association.

Random forests and CART are also unable to identify areas of association when the filters

fail to find them in that situation. When heritability is strong, CART and random forest

often find the most strongly associated SNPs, but they sometimes miss a few and typically

miss SNPs that have a weaker association. Random forests usually selects fewer SNPs than

CART, but the are more likely to be true positives.

This exploration shows that heritability must be carefully considered when evaluating

methods for GWAS using simulated data. It is not sufficient to simulate data with a

known architecture to evaluate a method. Heritability should be assessed from real datasets

to understand the level that can be expected in the type of problem being studied. If

heritability is low, as it often is, methods should be carefully selected to ensure they can

detect associated SNPs in that situation. If a new method is developed, it should be tested

to evaluate the limitations of performance with different levels of heritability so that its

limitations are well understood.

CHAPTER 5

FUTURE WORK AND CONCLUSIONS

In Chapter 2, we explored tuning parameters for SVMs, GBMs, and adaboost. We were

able to find tuning parameter spaces for each of the methods and find a fast optimization

algorithm for tuning a good model. Other statistical learning models, such as elastic net,

require tuning and similar evaluation for the behavior of α and λ would be beneficial.

Random forests typically performs well without additional tuning, but for datasets with

many features, the default parameter values do not perform well. We used R to explore the

tuning parameters, but Python is a powerful tool for machine learning and the functions

available in sci-kit learn [Pedregosa et al., 2011] may behave differently than those in R.

Replication of the analysis presented in this dissertation in Python could add insight into

the behavior of tuning parameters and may provide additional options for finding an optimal

model.

In Chapter 3 we presented the R package EZtune, which was written using the research

presented in Chapter 2. Further work can be done by providing a tool for tuning elastic

net and for including options for tuning random forests with large datasets. A multi-class

model tuning feature is also planned for the future. The current options in R for computing

multi-class models for SVM, GBM, and adaboost are computationally far more expensive

than those for binary classification or regression. Optimization algorithms failed to tune

the model with reasonable computation time. Python does not have an automatic tuning

tool similar to EZtune so we plan to do a Python implementation as well. Python has

some tools that may allow for expansion of capabilities beyond what can be done in R at

this time because of faster computation times. In particular, multi-class model tuning and

faster adaboost implementation may be more feasible in Python than it is in R.

Chapter 4 explores the behavior of some common, and not so common, GWAS tools for

different sizes of heritability. We found that the methods that were tested did not perform

77

well with low heritability. Further work can be done by testing other commonly used

GWAS methods for a range of heritability values to determine how the different methods

perform with different physical traits. Our results show that when heritability is low it can

appear that there are strong signals where there is, in fact, no association at all. Careful

data simulation is needed to ensure methods are fully evaluated. In situations where we

are looking for SNPs that are associated with a specific disease, the heritability can be

estimated from real data and then simulated data can be created that more closely mimics

the physical characteristics of the data.

78

APPENDICES

79

APPENDIX A

EZtune Vignette

A.1 Introduction to EZtune

EZtune is an R package that can automatically tune support vector machines (SVMs),

gradient boosting machines (GBMs), and adaboost. The idea for the package came from

frustration with trying to tune supervised learning models and finding that available tools

are slow and difficult to use, have limited capability, or are not reliably maintained. EZtune

was developed to be easy to use off the shelf while providing the user with well tuned

models within a reasonable computation time. The primary function in EZtune searches

through the hyperparameter space for a model type using either a Hooke-Jeeves or genetic

algorithm. Models with a binary or continuous response can be tuned.

EZtune was developed using research that explored effective hyperparameter spaces

for SVM, GBM, and adaboost for data with a continuous response variable or with a

binary response variable. Many optimization algorithms were tested to identify ones that

were able to find an optimal model with reasonable computation time. The Hooke-Jeeves

optimization algorithm out-performed all of the other algorithms in terms of model accuracy

and computation time. A genetic algorithm was sometimes able to find a better model than

the Hooke-Jeeves optimizatation algorithm, but the computation time is significantly longer.

Thus, the genetic algorithm is included as an option, but it is not the default.

The package includes two functions and four datasets. The functions are eztune and

eztune cv. The datasets are lichen, lichenTest, mullein, and mulleinTest.

A.2 Functions: eztune and eztune cv

The eztune function is used to find an optimal model given the data. eztune cv provides

a cross validated accuracy or MSE for the model.

80

eztune

The eztune function is the primary function in the EZtune package. The only required

arguments are the predictors and the response variable. The function is built on existing R

packages that are well maintained and well programmed to ensure that eztune performance

is reliable. SVM models are computed using the e1071 package, GBMs with the gbm

package, and adaboost with the ada package. The models produced by eztune are objects

from each of these packages so all of the peripheral functions for these packages can be used

on models returned by eztune. A summary of each of these packages and why they were

chosen follows.

Support vector machines using the e1071 package

The e1071 package was written by and is maintained by David Meyer. The package

was built using the LIBSVM platform, which is written in C++ and is considered one

of the best open source libraries for SVMs. e1071 has been around for many years and

has continuously been updated during that time frame. It has all of the features needed

to perform the tasks needed by eztune and includes other features that allow expansion

of eztune in future versions, such as selection of kernels other than the radial kernel and

multi-class modeling.

Gradient boosting machines using the gbm package

The gbm package was written by Greg Ridgeway gbm and has been maintained and

updated for many years. It performs GBM by using the framework of an adaboost model

with an exponential loss function, but uses Friedman’s gradient descent algorithm to op-

timize the trees rather than the algorithm originally proposed in adaboost. This package

was selected because it had all of the features needed for eztune and included the ability to

compute a multi-class model for future EZtune versions.

Adaboost implementation with the ada package

In contrast to SVMs and GBMs, there are several standard packages in R that can be

81

used to fit adaboost models. The most established and well known package is ada. Other

packages that are often used are fastAdaboost and adabag. fastAdaboost is a new package

with a fast implementation of adaboost that is quickly gaining popularity. However, it

is still being developed and does not have all of the functionality needed for eztune. It

may be considered as a platform for later versions of eztune as fastAdaboost gains more

functionality because adaboost is currently the slowest model to tune. The package adabag

provides an implementation of adaboost that allows for bagging to be incorporated. This

feature is useful, but it does not allow for independent tuning of shrinkage or tree depth.

Because these parameters are important tuning parameters, adabag was not considered.

The ada package has been maintained and updated consistently for many years and has the

capability to tune the number of trees, tree depth, and shrinkage independently. Thus, ada

was chosen as the primary adaboost package for eztune.

Implementation of eztune

The eztune function was designed to be easy to use. It can be used when only data

are provided, but arguments can be changed for user flexibility. The default settings were

chosen to provide fast implementation of the function with good error rates. The syntax is:

eztune(x, y, method = "svm", optimizer = "hjn", fast = TRUE, cross = NULL)

The arguments are:

• x: matrix or data frame of dependent variables

• y: numeric vector of responses

• method: ”svm” for SVMs, ”ada” for adaboost, and ”gbm” for GBMs

• optimizer: ”hjn” for Hooke-Jeeves algorithm or ”ga” for genetic algorithm

• fast: Indicates if the function should use a subset of the observations when optimizing

to speed up calculation time. Options include TRUE, a number between 0 and 1, and

a positive integer. A value of TRUE will use the smaller of 50% of the data or 200

82

observations for model fitting. A number between 0 and 1 specifies the proportion

of data that will be used to fit the model. A positive integer specifies the number of

observations that will be used to fit the model. A model is computed using a random

selection of data and the remaining data are used to validate model performance.

Validation error rate or MSE is used as the optimization measure.

• cross: If an integer k<1 is specified, k-fold cross validation is used to fit the model.

This parameter is ignored unless fast = FALSE.

The function determines if a response is binary or continuous and then performs the

appropriate grid search based on the function arguments. Testing showed that the SVM

model is faster to tune than GBMs and adaboost, with adaboost being substantially slower

than either of the other models. Tuning is also very slow as datasets get large. The mullein

and lichen datasets included this package tune very slowly because of their size. Testing

the package on these datasets indicated that the fast options should be set as the default.

If a user wants a more accurate model and is willing to wait for it, they can select cross

validation or fit with a larger subset of the data.

The Hooke-Jeeves optimization algorithm was chosen as the default optimization tool

because it is fast and it outperformed all of the other algorithms tested. It did not always

produce the best model out of the algorithms, but it was the only algorithm that was always

among the best performers. The only other algorithm that consistently produced models

with error measures as low, or lower, than those found by the Hooke-Jeeves algorithm were

those found by the genetic algorithm. The genetic algorithm was able to find a much better

model than Hooke-Jeeves in some situations, so it is included in the package. However,

computation time for the genetic algorithm is very slow, particularly for large datasets. If

a user is in need of a more accurate model and can wait for a longer computation time,

the genetic algorithm is worth trying. However, eztune will typically produce a very good

model using the Hooke-Jeeves option with a much faster computation time. The function

hjn from the optimx package optimx is used to implement the Hooke-Jeeves algorithm. The

package GA is used for genetic algorithm optimization in eztune.

83

The fast options were chosen to allow the user to adjust computation time for different

dataset sizes. The default setting uses 50% of the data for datasets with less than 400

observations. If the data have more than 400 observations, 200 observations are chosen

at random as training data and the remaining data are used for model verification. This

options allows for very large datasets to be tuned quickly while ensuring there is a sufficient

amount of verification data for smaller datasets. The user can change these setting to meet

the needs of their project and accommodate their dataset. For example, 200 observations

may not be enough to tune a model for a dataset as large as the mullein dataset. The user

can increase that number of observations used to train the model using the fast argument.

The function returns a model and numerical measures that are associated with the

model. The model that is returned is an object from the package used to create the model.

The SVM model is of class svm, the GBM model is of class gbm.object, and the adaboost

model is of class ada. These models can be used with any of the features and functions

available for those objects. The accuracy and MSE is returned as well as the final tuning

parameters. The names of the parameters match the names from the function used to

generate them. For example, the number of trees used in gbm is called n.trees while the same

parameter is called iter for adaboost. This may seem confusing, but it was anticipated that

users may want to use the functionality of the e1071, gbm, and ada packages and naming the

parameters to match those packages will make moving from EZtune to the other packages

easier. If the fast option is used, eztune will return the number of observations used to train

the dataset. If cross validation is used, the function will return the number of folds used

for cross validation.

eztune cv

Because eztune has many options for model optimization, a second function is included

to assess model performance using cross validation. It is known that model accuracy mea-

sures based on resubstitution are overly optimistic. That is, when the data that were used to

create the model are used to verify the model, model performance will typically look much

better than it actually is. Fast options in eztune use data splitting so that the models are

84

optimized using verification data rather than training data. Because the training dataset

may be a small fraction of the original dataset the resulting model may not be as accurate

as desired.

The function eztune cv was developed to easily verify a model computed by eztune

using cross validation so that a better estimate of model accuracy can be quickly obtained.

The predictors and response are inputs into the function along with the object obtained

from eztune. The eztune cv function returns a number that represents the cross validated

accuracy or MSE. Function syntax is:

eztune_cv(x, y, model, cross = 10)

Arguments:

• x: Matrix or data frame of dependent variables.

• y: Numeric vector of responses.

• model: Object generated with the function eztune.

• The number of folds for n-fold cross validation.

The function returns a numeric value that represents the cross validated accuracy or

MSE of the model.

A.3 Datasets

The datasets included in EZtune are the mullein, mullein test, lichen, and lichen test

datasets from the article “Random Forests for Classification in Ecology” [Cutler et al., 2007].

Both datasets are large for automatic tuning and were used as part of package development

to test performance and computation speed for large datasets. Datasets can be accessed

using the following commands:

data(lichen)

data(lichenTest)

85

data(mullein)

data(mulleinTest)

Lichen Data

The lichen data consist of 840 observations and 40 variables. One variable is a location

identifier, 7 (coded as 0 and 1) identify the presence or absence of a type of lichen species,

and 32 are characteristics of the survey site where the data were collected. Data were

collected between 1993 and 1999 as part of the Lichen Air Quality surveys on public lands

in Oregon and southern Washington. Observations were obtained from 1-acre (0.4 ha)

plots at Current Vegetation Survey (CVS) sites. Indicator variables denote the presences

and absences of seven lichen species. Data for each sampled plot include the topographic

variables elevation, aspect, and slope; bioclimatic predictors including maximum, minimum,

daily, and average temperatures, relative humidity precipitation, evapotranspiration, and

vapor pressure; and vegetation variables including the average age of the dominant conifer

and percent conifer cover.

Twelve monthly values were recorded for each of the bioclimatic predictors in the

original dataset. Principal components analyses suggested that for each of these predictors

two principal components explained the vast majority (95.0%-99.5%) of the total variability.

Based on these analyses, indices were created for each set of bioclimatic predictors. These

variables were averaged into yearly measurements. Variables within the same season were

also combined and the difference between summer and winter averages were recorded to

provide summer to winter contrasts. The averages and differences are included in the data

in EZtune.

Lichen Test Data

The lichen test data consist of 300 observations and 40 variables. Data were collected

from half-acre plots at CVS sites in the same geographical region and contain many of

the same variables, including presences and absences for the seven lichen species. The 40

variables are the same as those for the lichen data and it is a good test dataset for predictive

86

methods applied to the Lichen Air Quality data.

Mullein Data

The mullein dataset consists of 12,094 observations and 32 variables. It contains infor-

mation about the presence and absence of common mullein (Verbascum thapsus) at Lava

Beds National Monument. The park was digitally divided into 30m × 30m pixels. Park

personnel provided data on 6,047 sites at which mullein was detected and treated between

2000 and 2005, and these data were augmented by 6,047 randomly selected pseudo-absences.

Measurements on elevation, aspect, slope, proximity to roads and trails, and interpolated

bioclimatic variables such as minimum, maximum, and average temperature, precipitation,

relative humidity, and evapotranspiration were recorded for each 30m × 30m site.

Twelve monthly values were recorded for each of the bioclimatic predictors in the

original dataset. Principal components analyses suggested that for each of these predictors

two principal components explained the vast majority (95.0%-99.5%) of the total variability.

Based on these analyses, indices were created for each set of bioclimatic predictors). These

variables were averaged into yearly measurements. Variables within the same season were

also combined and the difference between summer and winter averages were recorded to

provide summer to winter contrasts. The averages and differences are included in the data

in EZtune.

Mullein Test Data

The mullein test data consists of 1512 observations and 32 variables. One variable

identifies the presence or absence of mullein in a 30m × 30m site and 31 variables are

characteristics of the site where the data were collected. The data were collected in Lava

Beds National Monument in 2006 that can be used to verify evaluate predictive statistical

procedures applied to the mullein dataset.

A.4 Examples

The following examples demonstrate the functionality of EZtune.

87

Examples with binary classifier as a response

The following examples use the Ionosphere dataset from the mlbench package to demon-

strate the package. The first variable is excluded because it only takes on a single value.

Note that the user does not need to specify the type of the response variable. EZtune

will automatically choose the binary response options if the response variable has only two

unique values.

library(mlbench)

data(Ionosphere)

y <- Ionosphere[, 35]

x <- Ionosphere[, -c(2, 35)]

dim(x)

This example shows the default options for eztune. It will fit an SVM using 50% of the

data and the Hooke-Jeeves algorithm. The eztune cv function returns the cross validated

accuracy of the model using 10-fold cross validation. Because the fast argument was used,

the n value that is returned indicates the number of observations that were used to train the

model. The accuracy value is the best accuracy obtained by the optimization algorithm.

ion_default <- eztune(x, y)

ion_default$n

ion_default$accuracy

eztune_cv(x, y, ion_default)

This next example tunes an SVM with a Hooke-Jeeves optimization algorithm that is

optimized using the accuracy obtained from 3-fold cross validation. Note that eztune will

only optimize on a cross validated accuracy of fast=FALSE. The function only returns the

nfold object if it cross validation is used.

ion_svm <- eztune(x, y, fast = FALSE, cross = 3)

88

ion_svm$nfold

ion_svm$accuracy

eztune_cv(x, y, ion_svm)

The following code tunes a GBM using a genetic algorithm and using only 50 randomly

selected observations to train the model.

ion_gbm <- eztune(x, y, method = "gbm", optimizer = "ga", fast = 50)

ion_gbm$n

ion_gbm$accuracy

eztune_cv(x, y, ion_gbm)

Examples with a continuous response

The following examples use the BostonHousing2 dataset from the mlbench package to

demonstrate the package. The variable medv is excluded because it is an incorrect version of

the response. Note that the user does not need to specify the type of the response variable.

EZtune will automatically choose the continuous response options if the response variable

has more than two unique values.

data(BostonHousing2)

x <- BostonHousing2[, c(1:4, 7:19)]

y <- BostonHousing2[, 6]

dim(x)

This example shows the default values for eztune with the regression response. It is

uses 200 observations to train an SVM because there are more than 400 observations in the

BostonHousing2 dataset. The MSE is returned along with the number of observations used

to train the model.

bh_default <- eztune(x, y)

bh_default$n

89

bh_default$mse

eztune_cv(x, y, bh_default)

This example tunes an SVM using a genetic algorithm and 200 observations.

bh_ga <- eztune(x, y, optimizer = "ga")

bh_ga$n

bh_ga$mse

eztune_cv(x, y, bh_ga)

This example tunes a GBM using Hooke-Jeeves and training on 50% of the data.

bh_gbm <- eztune(x, y, method = "gbm", fast = 0.75)

bh_gbm$n

bh_gbm$mse

eztune_cv(x, y, bh_gbm)

A.5 Performance and speed guidelines

Performance and speed were tested on seven datasets with a continuous response and

six datasets with a binary classifier as a response. The datasets varied in size. The following

guidelines and observations were made during the analysis:

• The default fast option produces very good results for most datasets. However, larger

datasets, such as the mullein dataset, often need more than 200 observations to get a

well tuned model. It is recommended to use at least 50% of the data in these situations

if the computation time can be spared.

• The best results are seen with models optimized using 10-fold cross validation. How-

ever, computation time is very slow and may be prohibitive for very large datasets.

• The fast options decrease computation time unilaterally and often produce results

nearly as good as with 10-fold cross validation.

90

• Tuning on resubstitution error or MSE is slow and yields poor results. It is recom-

mended to avoid this method.

• SVM has the fastest computation time and adaboost has the slowest computation

time.

• Models computed using small datasets (<75 observations) do not yield good results.

91

APPENDIX B

Guide to Dissertation Code

The primary code used to do the computations in this dissertations can be found at

https://github.com/jillbo1000/Dissertation-code. A brief guide to the code follows.

B.1 Tuning Research

The Tuning Research folder contains the code used to do the grid searches and opti-

mization tests for the research presented in Chapter 2. It consists of four primary folders:

• Data Files: contains all of the datasets used for the research that were not found in

R.

• Data Scripts: R scripts that were used to read in the data and wrangle it for use in

the grid search and optimization functions. The source of all of the datasets is listed

in Chapter 2.

• Examples of Grid Search Code: Subset of R scripts and bash files used to perform

the grid searches. An examples for each of the five types of models (SVM, GBM, and

adaboost for regression and binary classification) is included.

• Examples of Optimization Code: Contains the R scripts and bash files used to test the

optimization algorithms. R scripts for generating the graphs seen in the dissertation

are also included.

Data Files

Most of the data used in this dissertation was obtained from R packages that are

identified in chapter 2. The datasets Crime, Ohio Housing, Union, and Wage were obtained

from outside sources and the data files are included in the Data Files folder.

92

Data Scripts

The datasets were wrangled into the same format to enable better automation of the

grid searches and optimization tests on a cluster computing system. The scripts in the Data

Scripts folder retrieve the data from its folder or R package, rearranges the variables, and

changes the name of the response variable to y. The data that are returned by these scripts

can be used in the script in the grid search or optimization code. There is one script for

each dataset.

Examples of Grid Search Code

This folder contains examples of all of the scripts that were used to do the grid searches.

The code was run on a cluster computing system and an example slurm batch file and

configure file is included to illustrate how the scripts were run. The files are organized by

model type and each of the sub-folders have similar files. The files from the GBM binary

models are used as a guide through the script files.

The initial set of files were used to do the grid search. The grid search script is

GBM Bin.R. The GBM lit1.slurm and myGBMlit1.conf files controlled one of the grid search

runs on the cluster computing system. Dozens of slurm bash and configure files were used

to do the grid search so only one example is included. The file GBMbin-cvpred.R was called

by GBM Bin.R to do compute the cross validation error rates.

The remaining script files were used to retrieve the data obtained from the grid search

and plot it. The get-data.R was called by the GBM Binary Plots X .R scripts to generate

the plots that were used to determine a practical hyperparameter space.

Examples of Optimization Code

The scripts in the Examples of Optimization Code folder are also organized by model

type. The primary number crunching was done using a cluster computing system and an

example of the slurm bash file and the configuration file is also included. The code for each

of the folders is organized similarly so the GBM binary code is used as a guide through the

scripts.

93

The data scripts from the Data Scripts folder were called by the GBM X.R script, where

X represents the optimization algorithm used. The script GBM opt funs.R controlled the

optimization calculations. The files GBM bin opt1.slurm and myGBMopt1.conf were used

to control the optimization calculations on the cluster computing system. Dozens of runs

were done on the cluster computing system so many slurm bash and configuration scripts

were used. The two in the folder are examples of the how all of them worked.

Once the optimization runs were completed on the cluster computing system, the

GBM bin opt graphs.R file was used to create the plots used to analyze the performance

of each algorithm. Get opt data.R and get-data.R were sourced by the plotting script

to retrieve and organize the data from the optimization runs and the grid search. The

file make summary tables.R was used to compute summary statistics within the plotting

script.

B.2 EZtune

The EZtune folder contains the code used to test the performance of the EZtune package

and compare the performance of the fast options to resubstitution and cross validation. The

code is organized into the folders Run Calculations with EZtune and Analyze EZtune Test

Results.

Run Calculations with EZtune

The code in the Run Calculations with EZtune contains the scripts used to test the

functionality of the different eztune argument choices and the verification of each with

eztune cv. There are two R script files that were used to do the calculations. The file

eztune test2.R was used to do most of the calculations. Each tested set of argument

options was tested ten times and the results were returned by the script. The ez1 2.slurm

and ez1 2.conf files were used to compute the calculations on the cluster computing system.

As with the Tuning Research script, many slurm bash files and configuration files were

used to run all of the calculations. The two in the folder are examples. Some of the

cross validation calculations were too slow to complete ten runs in the allowed time. The

94

eztune test3.R file was used to compute one run and the script was run ten times to obtain

all of the results. Examples of the slurm bash and configuration files are ez3 1.slurm and

ez3 1.conf

Analyze EZtune Test Results

The Analyze EZtune Test Results folder contains the code for generating the plots and

tables that were used to analyze the tests on EZtune. The files Get eztune results.R,

Get eztune results.R, eztune table.R, Get opt data.R, and get data.R were sourced

by the eztune X Y performance2.R script to retrieve and summarize the data from the

EZtune.

B.3 GWAS Work

The GWAS Work folder contains four sub-folders: genotypes, Data Simulation, CHPC,

and Plot Scripts.

genotypes

The genotypes folder contains the genotypes that were used to simulate the data. The

genotypes are for the fruit fly (rhag), stick insect (timema), and mouse (moust) data. These

files were called by many of the files in the other folders.

Data Simulation

The files in this folder contain the code used to simulate the data. Each organism

has two files associated with it because the data with a heritability of 0.8 were simulated

separately than those with heritability of 0.1 and 0.3.

CHPC Files

These are the files that were used to do the analysis on the cluster computer system.

The gwas filter.R file was used to run the first phase filter calculations. The slurm

and configuration files are f1.slurm and f2.conf. The en.R script was used to do the

95

elastic net, CART, and random forests calculations for each of the simulated datasets. The

en.slurm and en.conf files are the slurm batch and configure files for those runs.

Plot Scripts

This folder contains the files that were used to construct the plots that were shown in

the dissertation. The plots were initially constructed as PDF files, but they were too large

to maneuver or include in the latex file. PNG files were computed later because the smaller

file size was more manageable. The folder only contains the examples for the fruit fly data.

The other files were identical with only a few variable references, plot titles, and file name

changes to reflect the different organism. the files that have png in the file name were used

to construct the PNG files. The other files were used to create PDFs.

96

REFERENCES

[Alfaro et al., 2013] Alfaro, E., Gámez, M., and Garćıa, N. (2013). adabag: An R package
for classification with boosting and bagging. Journal of Statistical Software, 54(2):1–35.

[Bates et al., 2014] Bates, D., Mullen, K. M., Nash, J. C., and Varadhan, R. (2014). minqa:
Derivative-free optimization algorithms by quadratic approximation. R package version
1.2.4.

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995). Controlling the
false discovery rate: a practical and powerful approach to multiple testing. Journal of
the Royal Statistical Society: Series B (Methodological), 57(1):289–300.

[Birgin et al., 2000] Birgin, E. G., Mart́ınez, J. M., and Raydan, M. (2000). Nonmonotone
spectral projected gradient methods on convex sets. SIAM Journal on Optimization,
10(4):1196–1211.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[Breiman et al., 1984] Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Clas-
sification and regression trees. Chapman and Hall/CRC, New York, NY, USA.

[Byrd et al., 1995] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208.

[Carlsen et al., 2016] Carlsen, M., Fu, G., Bushman, S., and Corcoran, C. (2016). Exploit-
ing linkage disequilibrium for ultrahigh-dimensional genome-wide data with an integrated
statistical approach. Genetics, 202(2):411–426.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27.

[Chatterjee, 2016] Chatterjee, S. (2016). fastAdaboost: A fast implementation of adaboost.
R package version 1.0.0.

[Chen et al., 2011] Chen, Z., Zhao, H., He, L., Shi, Y., Qin, Y., Shi, Y., Li, Z., You, L.,
Zhao, J., Liu, J., Liang, X., Zhao, X., Zhao, J., Sun, Y., Zhang, B., Jiang, H., Zhao,
D., Bian, Y., Gao, X., Geng, L., Li, Y., Zhu, D., Sun, X., Xu, J., Hao, C., Ren, C.,
Zhang, Y., Chen, S., Zhang, W., Yang, A., Yan, J., Li, Y., Ma, J., and Zhao, Y. (2011).
Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome
on chromosome 2p16. 3, 2p21 and 9q33. 3. Nature Genetics, 43(1):55.

[Comeault et al., 2015] Comeault, A. A., Flaxman, S. M., Riesch, R., Curran, E., Soria-
Carrasco, V., Gompert, Z., Farkas, T. E., Muschick, M., Parchman, T. L., Schwander,
T., Slate, J., and Nosil, P. (2015). Selection on a genetic polymorphism counteracts
ecological speciation in a stick insect. Current Biology, 25(15):1975–1981.

97

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.

[Culp et al., 2016] Culp, M., Johnson, K., and Michailidis, G. (2016). ada: The R package
ada for stochastic boosting. R package version 2.0-5.

[Cutler et al., 2007] Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T.,
Gibson, J., and Lawler, J. J. (2007). Random forests for classification in ecology. Ecology,
88(11):2783–2792.

[Dai and Yuan, 2001] Dai, Y.-H. and Yuan, Y. (2001). An efficient hybrid conjugate gradi-
ent method for unconstrained optimization. Annals of Operations Research, 103(1-4):33–
47.

[De Cock, 2011] De Cock, D. (2011). Ames, Iowa: Alternative to the Boston housing data
as an end of semester regression project. Journal of Statistics Education, 19(3).

[Duan et al., 2003] Duan, K., Keerthi, S. S., and Poo, A. N. (2003). Evaluation of simple
performance measures for tuning svm hyperparameters. Neurocomputing, 51:41–59.

[Egan et al., 2015] Egan, S. P., Ragland, G. J., Assour, L., Powell, T. H., Hood, G. R.,
Emrich, S., Nosil, P., and Feder, J. L. (2015). Experimental evidence of genome-wide
impact of ecological selection during early stages of speciation-with-gene-flow. Ecology
Letters, 18(8):817–825.

[Freidlin et al., 2002] Freidlin, B., Zheng, G., Li, Z., and Gastwirth, J. L. (2002). Trend
tests for case-control studies of genetic markers: power, sample size and robustness.
Human Heredity, 53(3):146–152.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: a gradient boost-
ing machine. Annals of Statistics, pages 1189–1232.

[Gold et al., 2005] Gold, C., Holub, A., and Sollich, P. (2005). Bayesian approach to feature
selection and parameter tuning for support vector machine classifiers. Neural Networks,
18(5-6):693–701.

[Goldberg, 1999] Goldberg, D. (1999). Genetic algorithms in search optimization and ma-
chine learning. Addison-Wesley Longman Publishing Company, Boston, MA, USA.

[Greenwell et al., 2019] Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G.
(2019). gbm: Generalized boosted regression models. R package version 2.1.5.

[Hastie et al., 2004] Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). The en-
tire regularization path for the support vector machine. Journal of Machine Learning
Research, 5(Oct):1391–1415.

98

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of
statistical learning: data mining, inference, and prediction. Springer, New York, NY,
USA.

[Jain, 2016] Jain, A. (2016). Complete guide to parameter tuning in gradient
boosting (gbm) in python. https://www.analyticsvidhya.com/blog/2016/02/

complete-guide-parameter-tuning-gradient-boosting-gbm-python/. Accessed:
2010-09-30.

[Kaggle, 2019] Kaggle (2019). Kaggle. https://www.kaggle.com/. Accessed: 2019-02-13.

[Kelley, 1999] Kelley, C. T. (1999). Iterative methods for optimization. Society for Industrial
and Applied Mathematics, Philidelphia, PA, USA.

[Kuhn and Johnson, 2018] Kuhn, M. and Johnson, K. (2018). AppliedPredictiveModeling:
Functions and data sets for ’Applied Predictive Modeling’. R package version 1.1-7.

[Kuhn et al., 2018] Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt,
A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R.,
Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt., T. (2018). caret: Classification
and regression training. R package version 6.0-81.

[Kuiper and Sklar, 2013] Kuiper, S. and Sklar, J. (2013). Practicing statistics: Guided
investigations for the second course. Pearson, Boston, MA, USA.

[Lai and Chan, 2007] Lai, L. L. and Chan, T. F. (2007). Distributed generation. Distributed
Generation Induction and Permanent Magnet Generators, John Wiley & Sons, Hoboken,
NJ, USA].

[Lundell, 2017] Lundell, J. F. (2017). There has to be an easier way: a simple alterna-
tive for parameter tuning of supervised learning methods. JSM Proceedings, Statistical
Computing Section. Alexandria, VA: American Statistical Association, pages 3028–3036.

[Mahdavi et al., 2007] Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). An im-
proved harmony search algorithm for solving optimization problems. Applied Mathemat-
ics and Computation, 188(2):1567–1579.

[Mease and Wyner, 2008] Mease, D. and Wyner, A. (2008). Evidence contrary to the sta-
tistical view of boosting. Journal of Machine Learning Research, 9(Feb):131–156.

[Melgani and Bazi, 2008] Melgani, F. and Bazi, Y. (2008). Classification of electrocar-
diogram signals with support vector machines and particle swarm optimization. IEEE
transactions on information technology in biomedicine, 12(5):667–677.

[Meyer et al., 2019] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.
(2019). e1071: Misc functions of the Department of Statistics, Probability Theory Group
(Formerly: E1071), TU Wien. R package version 1.7-0.1.

[Mirjalili, 2015a] Mirjalili, S. (2015a). The ant lion optimizer. Advances in Engineering
Software, 83:80–98.

https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
https://www.kaggle.com/

99

[Mirjalili, 2015b] Mirjalili, S. (2015b). Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm. Knowledge-Based Systems, 89:228–249.

[Mirjalili, 2016a] Mirjalili, S. (2016a). Dragonfly algorithm: a new meta-heuristic optimiza-
tion technique for solving single-objective, discrete, and multi-objective problems. Neural
Computing and Applications, 27(4):1053–1073.

[Mirjalili, 2016b] Mirjalili, S. (2016b). SCA: a sine cosine algorithm for solving optimization
problems. Knowledge-Based Systems, 96:120–133.

[Mirjalili and Lewis, 2016] Mirjalili, S. and Lewis, A. (2016). The whale optimization algo-
rithm. Advances in Engineering Software, 95:51–67.

[Mirjalili et al., 2014] Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf opti-
mizer. Advances in Engineering Software, 69:46–61.

[Nash, 2014a] Nash, J. C. (2014a). On best practice optimization methods in R. Journal
of Statistical Software, 60(2):1–14.

[Nash, 2014b] Nash, J. C. (2014b). Rcgmin: Conjugate Gradient Minimization of Nonlinear
Functions. R package version 2013-2.21.

[Nash et al., 2015] Nash, J. C., Zhu, C., Byrd, R., Nocedal, J., and Morales, J. L. (2015).
lbfgsb3: Limited memory BFGS minimizer with bounds on parameters. R package version
2015-2.13.

[Nasiri et al., 2009] Nasiri, J. A., Naghibzadeh, M., Yazdi, H. S., and Naghibzadeh, B.
(2009). ECG arrhythmia classification with support vector machines and genetic algo-
rithm. In 2009 Third UKSim European Symposium on Computer Modeling and Simula-
tion, pages 187–192. IEEE.

[National Institutes of Health United States Library of Medicine, 2019] National Insti-
tutes of Health United States Library of Medicine (2019). What is heritability?
https://ghr.nlm.nih.gov/primer/inheritance/heritability. Accessed: 2019-06-
10.

[Newman et al., 1998] Newman, D., Hettich, S., Blake, C., and Merz, C. (1998). UCI reposi-
tory of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.
html.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Perneger, 1998] Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments. BMJ,
316(7139):1236–1238.

[Powell, 2009] Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained
optimization without derivatives. Cambridge NA Report NA2009/06, University of Cam-
bridge, Cambridge, pages 26–46.

https://ghr.nlm.nih.gov/primer/inheritance/heritability
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

100

[R Core Team, 2019] R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.

[Rizzo and Székely, 2018] Rizzo, M. and Székely, G. (2018). energy: E-statistics: Multi-
variate inference via the energy of data. R package version 1.7-5.

[Saremi et al., 2017] Saremi, S., Mirjalili, S., and Lewis, A. (2017). Grasshopper optimisa-
tion algorithm: theory and application. Advances in Engineering Software, 105:30–47.

[Schumacher et al., 2001] Schumacher, C., Vose, M. D., and Whitley, L. D. (2001). The no
free lunch and problem description length. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, pages 565–570. Morgan Kaufmann Publishers
Inc.

[Scrucca, 2013] Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of
Statistical Software, 53(4):1–37.

[Septem Riza et al., 2017] Septem Riza, L., Iip, and Prasetyo Nugroho, E. (2017). meta-
heuristicOpt: Metaheuristic for optimization. R package version 1.0.0.

[Shi and Eberhart, 1998] Shi, Y. and Eberhart, R. (1998). A modified particle swarm opti-
mizer. In 1998 IEEE International Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pages 69–73.
IEEE.

[Smola and Schölkopf, 2004] Smola, A. J. and Schölkopf, B. (2004). A tutorial on support
vector regression. Statistics and Computing, 14(3):199–222.

[Székely et al., 2007] Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and
testing dependence by correlation of distances. The Annals of Statistics, 35(6):2769–2794.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso.
Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

[Tsirikoglou et al., 2017] Tsirikoglou, P., Abraham, S., Contino, F., Lacor, C., and Ghor-
baniasl, G. (2017). A hyperparameters selection technique for support vector regression
models. Applied Soft Computing, 61:139–148.

[Varadhan and Gilbert, 2009] Varadhan, R. and Gilbert, P. (2009). BB: An R package
for solving a large system of nonlinear equations and for optimizing a high-dimensional
nonlinear objective function. Journal of Statistical Software, 32(4):1–26.

[Varadhan et al., 2018] Varadhan, R., University, J. H., Borchers, H. W., and ABB Corpo-
rate Research. (2018). dfoptim: Derivative-free optimization. R package version 2018.2-1.

[Waldmann et al., 2013] Waldmann, P., Mészáros, G., Gredler, B., Fuerst, C., and Sölkner,
J. (2013). Evaluation of the lasso and the elastic net in genome-wide association studies.
Frontiers in Genetics, 4:270.

[Wellcome Trust Case Control Consortium, 2007] Wellcome Trust Case Control Consor-
tium (2007). Genome-wide association study of 14,000 cases of seven common diseases
and 3,000 shared controls. Nature, 447(7145):661.

101

[Wu et al., 2009] Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., and Lange, K. (2009).
Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics,
25(6):714–721.

[Yang, 2009] Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Inter-
national Symposium on Stochastic Algorithms, pages 169–178. Springer.

[Zeng et al., 2015] Zeng, P., Zhao, Y., Qian, C., Zhang, L., Zhang, R., Gou, J., Liu, J., Liu,
L., and Chen, F. (2015). Statistical analysis for genome-wide association study. Journal
of Biomedical Research, 29(4):285.

[Zhang et al., 2012] Zhang, W., Korstanje, R., Thaisz, J., Staedtler, F., Harttman, N., Xu,
L., Feng, M., Yanas, L., Yang, H., Valdar, W., Churchill, G. A., and DiPetrillos, K.
(2012). Genome-wide association mapping of quantitative traits in outbred mice. G3:
Genes, Genomes, Genetics, 2(2):167–174.

[Zou and Hastie, 2005] Zou, H. and Hastie, T. (2005). Regularization and variable selec-
tion via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320.

102

CURRICULUM VITAE

Jill F. Lundell

EDUCATION

Ph.D. in Mathematical Sciences with and emphasis in Statistics 2015-2019

Utah State University, Logan, Utah

M.S. Statistics 1997-1998

Utah State University, Logan, Utah

B.S. in Mathematics with an emphasis in Statistics 1993-1996

Utah State University, Logan, Utah

CREDENTIALS

Accredited Professional StatisticianTM (PSTAT) 2014-Present

American Statistical Association

EMPLOYMENT HISTORY

Senior Statistician, North Wind, Inc. 2017-Present

Idaho Falls, Idaho

Senior Statistician, Portage, Inc. 2000-2016

Idaho Falls, Idaho

Faculty, Brigham Young University Idaho 2011-2014

Rexburg, Idaho

Adjunct Faculty, Idaho State University 2001-2003

Idaho Falls, Idaho

Temporary Lecturer and Consultant, Utah State University 1998-2000

Logan, Utah

103

Graduate Research Assistant, Los Alamos National Laboratories 1997

Los Alamos, New Mexico

AWARDS

Second place winner of the 2018 Data Expo at JSM 2017-Present

Ellis R. Ott Scholarship for Applied Statistics 2018

Presidential Doctoral Research Fellow at Utah State University 2015-2019

Exemplary Faculty Award at Brigham Young University Idaho 2013

Superior Student Scholarship at Utah State University 1993-1996

Hunsaker Scholarship for Mathematics at Utah State University 1993-1996

Cora T. Hayward Scholarship for Community Service 1992

NSF travel award for the Conference on Statistical Learning and Data Science 2018

Travel award for the Graybill Conference on Statistical Genomics and Genetics 2017

R PACKAGES

EZtune: a package for auto tuning supervised learning models 2018

gwas3: a package for GWAS tools and data simulation 2019

SUBMITTED PUBLICATIONS

• Lundell JF, Bean B, and Symanzik J. Lets talk about the weather: a cluster-based

approach to weather forecast accuracy. Submitted to Computational Statistics April

2019.

• Lundell JF, Bean B, Symanzik J. Lets talk about the weather. JSM Proceedings,

Statistical Computing Section. Alexandria, VA: American Statistical Association.

August 2018.

104

• Lundell JF. There has to be an easier way: a simple alternative for parameter tuning

of supervised learning methods. JSM Proceedings, Statistical Computing Section.

Alexandria, VA: American Statistical Association. August 2017.

• Lundell JF, Magnuson SO, Scherbinske P, Case MJ. Data quality objectives support-

ing the environmental direct radiation monitoring program for the Idaho National

Laboratory. INL/EXT-15-34803. June 2015.

• Lundell JF. On the model selection in a frailty setting, Unpublished Masters Thesis.

Utah State University Department of Mathematics and Statistics. August 1998.

PRESENTATIONS

• Lundell JF. “Tuning hyperparameters in supervised learning models and applications

of statistical learning in genome-wide association studies with an emphasis on heri-

tability,” Doctoral Dissertation Defense, Utah State University, Logan, Utah. 2019.

• Lundell JF. “Where do I begin? Tuning support vector machines and boosted trees,”

Joint Statistical Meetings, Denver, Colorado. 2019.

• Lundell JF, Bean B, Symanzik J. “Lets talk about the weather,” Joint Statistical

Meetings, Vancouver, British Columbia. 2018.

• Lundell JF. “Which genes are really causing my problems? Filtering with LASSO

and elastic net to find the signal in ultra-high dimensional data,” The Conference

on Statistical Learning and Data Science / Nonparametric Statistics, New York City,

New York. 2018.

• Lundell JF. “There has to be an easier way: a simple alternative for parameter tuning

of supervised learning methods,” Joint Statistical Meetings, Baltimore, Maryland.

2017.

105

• Lyons R, Lundell JF, Peralta R, “Groundwater modeling of the Uinta Basin, Utah,

as a boundary condition of the Birds Nest Aquifer”, Utah State University Spring

Run-Off Conference, Logan, Utah. 2016.

• Lundell JF, Fu G, “Analysis of ultra-high-dimensional polycystic ovary syndrome

genome using DC-RR,” Joint Statistical Meetings, Chicago, Illinois. 2016.

• Lundell JF, Oates B, “Why I should stick my nose in other peoples business or why I

should participate in all phases of the data life cycle,” Radiobioassay and Radiochem-

ical Measurements Conference, Knoxville, Tennessee. 2014.

• Lundell JF, Oates B, “How far can you drive with three flat tires and one good

tire or why the data life cycle matters to me,” Radiobioassay and Radiochemical

Measurements Conference, Knoxville, Tennessee. 2014.

• Lundell JF, LaCroix D, Oates B, “Data quality assessment: what is it, why use it,

and whats in it for me?” EPA Quality Management Conference, San Antonio, Texas.

2009.

TEACHING EXPERIENCE

Utah State University

STAT 1040 (formally STAT 201) Introduction to Statistics 1998-2000, 2016-2017

STAT 508 Sampling 2000

MATH 121 Calculus Techniques 1999

STAT 502 Intermediate Statistics 1998

STAT 2000 Statistics for Life Sciences 1998

MATH 101 Algebra 1997

Brigham Young University Idaho

MATH 325 Intermediate Statistics 2012-2014

MATH 221X Introduction to Statistics 2011-2014

106

MATH 108 Math for the Real World 2011-2013

Portage, Inc.

Introduction to Data Quality Assessment 2007

Introduction to Sampling Design 2004

Idaho State University

MATH 1153 Introduction to Statistics 2002-2003

MATH 1108 Intermediate Algebra 2002-2003

MATH 0015 Arithmetic and Pre-Algebra 2002

COMPUTER SKILLS

Proficient Working Knowledge Exposure

R Deep learning C++

Python C

SAS

cluster computing

LaTeX

GIT

Linux, Unix

AFFILIATIONS

American Statistical Association 2005-Present

Society of Industrial and Applied Mathematics 2016-Present

Western North American Region of The International Biometric Society 2016-Present

	Tuning Hyperparameters in Supervised Learning Models and Applications of Statistical Learning in Genome-Wide Association Studies with Emphasis on Heritability
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Introduction
	Overview of Statistical Learning Methods
	Statistical Model Parameter Tuning Literature Review and Background
	Genome-Wide Association Study Literature Review and Background

	TUNING SUPERVISED LEARNING METHODS
	Introduction
	Optimization Algorithms
	Methods
	Grid Search
	Optimization Algorithms

	Results
	Results of Grid Search
	Results of Optimization Algorithms

	Conclusions

	EZTUNE: AN R PACKAGE FOR AUTOMATIC TUNING OF SUPPORT VECTOR MACHINES, GRADIENT BOOSTING MACHINES, AND ADABOOST
	Introduction
	Package Components and How to Use Them
	Datasets
	Automatic Tuning with eztune
	Model Performance Verification with eztune_cv

	Performance and Benchmarking
	Conclusions

	THREE-PHASE FILTERING METHOD FOR GENOME-WIDE ASSOCIATION STUDIES
	Introduction
	Method
	Data Simulation
	Initial Filtering
	LASSO and Elastic Net for Further Refinement
	Random Forests and Classification and Regression Trees for Final SNP Selection
	Final Assessment of Results

	Results
	Heritability
	Initial Filter
	Elastic Net
	Random Forests and CART
	Datasets

	Conclusions

	FUTURE WORK AND CONCLUSIONS
	APPENDICES
	A EZtune Vignette
	Introduction to EZtune
	Functions: eztune and eztune_cv
	Datasets
	Examples
	Performance and speed guidelines

	B Guide to Dissertation Code
	Tuning Research
	EZtune
	GWAS Work

	REFERENCES
	CURRICULUM VITAE

