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 ABSTRACT 

 

This research focuses on the improvement of the Bees Algorithm, a swarm-based nature-

inspired optimisation algorithm that mimics the foraging behaviour of honeybees. The 

algorithm consists of exploitation and exploration, the two key elements of optimisation 

techniques that help to find the global optimum in optimisation problems. This thesis presents 

three new approaches to the Bees Algorithm in a pursuit to improve its convergence speed and 

accuracy. 

The first proposed algorithm focuses on intensifying the local search area by incorporating 

Hooke and Jeeves’ method in its exploitation mechanism. This direct search method contains 

a pattern move that works well in the new variant named “Bees Algorithm with Hooke and 

Jeeves” (BA-HJ). The second proposed algorithm replaces the randomly generated recruited 

bees deployment method with chaotic sequences using a well-known logistic map. This new 

variant called “Bees Algorithm with Chaos” (ChaosBA) was intended to use the characteristic 

of chaotic sequences to escape from local optima and at the same time maintain the diversity 

of the population. The third improvement uses the information of the current best solutions to 

create new candidate solutions probabilistically using the Estimation Distribution Algorithm 

(EDA) approach. This new version is called Bees Algorithm with Estimation Distribution 

(BAED).   

Simulation results show that these proposed algorithms perform better than the standard BA, 

SPSO2011 and qABC in terms of convergence for the majority of the tested benchmark 

functions. The BA-HJ outperformed the standard BA in thirteen out of fifteen benchmark 

functions and is more effective in eleven out of fifteen benchmark functions when compared 

to SPSO2011 and qABC. In the case of the ChaosBA, the algorithm outperformed the standard 

BA in twelve out of fifteen benchmark functions and significantly better in eleven out of fifteen 
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test functions compared to qABC and SPSO2011. BAED discovered the optimal solution with 

the least number of evaluations in fourteen out of fifteen cases compared to the standard BA, 

and eleven out of fifteen functions compared to SPSO2011 and qABC. Furthermore, the results 

on a set of constrained mechanical design problems also show that the performance of the 

proposed algorithms is comparable to those of the standard BA and other swarm-based 

algorithms from the literature.  
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INTRODUCTION 

 

1.1 Research background 

 

To assist organisations with improving their profitability, researchers in industrial engineering 

have been searching for the most effective optimisation approach that maximises revenue and 

simultaneously minimises costs under given constraints. Over the years, numerous 

optimisation techniques have been developed to help engineers with tasks such as line 

balancing, job scheduling, process and production planning, and facility layout optimisation. 

 

Due to the complexity of real industrial engineering problems, traditional optimisation could 

no longer offer the best solutions to users. The need for advanced approaches has seen the rise 

of metaheuristic optimisation algorithms, including the Evolutionary Algorithm (EA) and the 

Genetic Algorithm (GA), that can provide a reliable approximate solution. In recent years, 

researchers have developed a new type of metaheuristic algorithm inspired by the behaviour of 

biological living creatures such as ants, bees, birds, and fireflies. Among the most common 

algorithms of this group are Ant Colony Optimisation (ACO), Bees Algorithm (BA), Artificial 

Bee Colony (ABC), Particle Swarm Optimisation (PSO), and Firefly Algorithm (FA). ACO is 

inspired by the foraging behaviour of ants, while PSO is inspired by the behaviour of bird 

flocking. FA mimics the flashing behaviour of fireflies, while BA and ABC imitate the foraging 

behaviour of honeybees to locate sources of nectar. 
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1.2 Motivation 

 

Since its establishment in 2005 (Pham et al., 2005), the Bees Algorithm has become prominent 

among bee-inspired algorithms. The Bees Algorithm’s unique approach of combining 

exploitation and exploration in the search procedure of the bees in a colony produces an 

excellent performance comparable to that of other optimisation algorithms.  Previously, the 

Bees Algorithm has undergone numerous enhancements that mostly focused on neighbourhood 

search, parameter tuning, population size, and hybridisation with other algorithms. 

  

Although several improvements have been introduced to the Bees Algorithm, there is still a 

need for further developments. For instance, the current standard Bees Algorithm abandons the 

‘elite bees’ after a few iterations according to the chosen parameter. These elite bees could 

possibly reach the global optimum, but the current procedure prevents the algorithm from 

reaching it. A direct search method used to gather information from these elite bees could 

intensify the local search of the algorithm to reach the optimum point.  

 

Introducing different methods in the deployment of bees is worth exploring. Random methods 

currently practised might be unsuitable for the Bees Algorithm. Another important area to 

consider is the ability of the algorithm to use its current information to produce new promising 

solutions. For example, a statistical method of analysis could be used in this approach to make 

the Bees Algorithm converge faster. 
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1.3 Aim and objectives 

 

The overall aim of this research is to advance the ability of the Bees Algorithm to find solutions 

for single objective optimisation problems.  

The following objectives were set to attain this aim: 

i. To develop an improved Bees Algorithm by incorporating Hooke and Jeeves method 

in the local search procedure to intensify and speed up the search. 

ii. To introduce chaos in the deployment method of the bees in local and global search 

phases of the Bees Algorithm. 

iii. To develop a version of Bees Algorithm that uses the current information of the best-

so-far solutions to produce new points using estimation distribution approach. 

 

1.4 Research methods 

 

The methods adopted are as follows: 

i. Review recent developments in swarm-based optimisation by focusing on honeybees 

related algorithms and learning mechanisms of other algorithms to identify current 

trends, research gaps, and directions for further investigation.  

ii. Develop the proposed algorithms in R, an open source programming language.  

iii. Evaluate the performance of the developed algorithms on a set of unconstrained 

continuous benchmark functions with various landscapes including unimodal and 

multimodal functions. The improved Bees Algorithms were further tested on 

constrained mechanical design problems and the results were compared with other 

algorithms from the literature. 
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iv. Analyse the comparison results using the Mann-Whitney test to examine the 

significance of the performance improvements achieved. 

 

1.5 Outline of the thesis 

 

The remainder of the thesis is organised as follows: 

Chapter 2 begins by defining optimisation and swarm intelligence. The chapter reviews swarm 

intelligence, focusing on swarm-based algorithms particularly those mimicking the foraging 

behaviour of honeybees. The Bees Algorithm’s concept, procedures, applications, and 

evolutions are also reviewed in detail. 

 

Chapter 3 describes the incorporation of Hooke and Jeeves’ method in the neighbourhood 

search of the Bees Algorithm. The modified Bees Algorithm is tested on a set of continuous 

benchmark functions and its performance is compared with the standard Bees Algorithm and 

the other two swarm-based algorithms. Furthermore, the modified Bees Algorithm is tested on 

several unconstrained benchmark mechanical design problems. The results are also compared 

with the standard Bees Algorithm and other algorithms from the literature.  

 

Chapter 4 introduces the Bees Algorithm with chaos replacing the random deployment of the 

bees in local and global search phases. The proposed algorithm is tested on the same set of 

benchmark functions as in Chapter 3. Similar comparisons as in the previous chapter are also 

used in both unconstrained and constrained benchmark problems. 
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Chapter 5 presents the use of estimation distribution in the improved Bees Algorithm. This 

statistical method is applied to the best-so-far population to generate new promising solutions 

before entering the local search phase of the algorithm. Similarly, the performance of the 

improved version is evaluated and compared via the methods adopted in Chapter 3 and Chapter 

4.  

 

Chapter 6 summarises the contributions and conclusions drawn from this research. Suggestions 

for future work are presented in this chapter.  
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LITERATURE REVIEW 

 

2.1 Preliminaries 

 

This chapter reviews the intelligent optimisation concept, primarily that based on Swarm 

Intelligence (SI). The review presents the learning mechanism of the canonical Bees 

Algorithm, past improvements to it, and its applications in real-world optimisation problems. 

 

2.2 Global Optimisation 

 

In almost every field of science, engineering, economics, and business, the quest to find 

acceptable solutions for global optimisation problem has always motivated researchers and 

practitioners to produce new theories and methods. From designing an expensive sports car to 

producing a mass production of recyclable plastic bottles, engineers need to optimise the 

configuration parameters that provide a balance between maximising profit, quality, safety, and 

efficiency; and minimising cost, defects, and energy consumption.  

 

Global optimisation is a branch of applied mathematics and numerical analysis that focuses on 

optimisation by finding the optimal value of a given function among all possible solutions 

(local optima) in the neighbourhood of the candidate solution (Weise, 2009). Optimisation can 

be defined as mathematical methods in solving quantitative problems by finding the most 
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suitable value for an objective function within a given domain in many disciplines including 

engineering, physics, biology, business, and economics (Vora & Mirnalinee, 2015). 

 

Mathematically, optimisation problems can be classified as discrete or continuous depending 

on the variables involved. The process of having a countably infinite set of potential solutions 

and searching for an optimal solution at the same time is known as a discrete optimisation 

process. In discrete optimisation problems, the goal is to find the best combination among the 

given variables. Modelling with discrete variables is part of discrete optimisation, while 

modelling with continuous variables is part of continuous optimisation problems. In discrete 

optimisation, some or all the variables in a model are required to belong to a discrete set. 

Conversely, continuous optimisation can take on any value within a range of values, usually 

real numbers. Continuous optimisation problems are typically solved using algorithms that 

generate a sequence value of the variables that converge to a solution of the problem. Therefore, 

to find a reasonably good global solution in a reasonable amount of time, various optimisation 

algorithms have been developed. 

 

2.3 Optimisation Algorithms 

 

For years, researchers have made numerous efforts to develop optimisation algorithms in 

solving global optimisation problems. These optimisation algorithms can be classified into 

deterministic and stochastic algorithms. Deterministic algorithms seek to find the global 

optimum with guaranteed convergence following the same computation steps. It is often used 

in a problem that has a clear relation between the characteristics of the possible solutions and 

their fitness values. However, if the relation between a solution candidate and its fitness is 
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unclear or too complicated, or has a high dimensionality search space, it becomes harder to 

solve the problem by using deterministic algorithms (Weise, 2009). Then, stochastic algorithms 

provide an alternative solution by offering a non-deterministic algorithm which relies on 

probabilistic operations (Das, Panigrahi, & Pattnaik, 2010). These algorithms use randomness 

in their procedures and focus only on promising areas during the search. An important class of 

algorithm under this stochastic type of operations is metaheuristics algorithms as shown in 

Figure 2.1.  

 

The most well-known deterministic algorithms are State Space Search, Branch and Bound, and 

Algebraic Geometry. Stochastic algorithms can be classified into single-solution based and 

population-based algorithms. The most popular single-solution based algorithms are Tabu 

Search (TS), Simulated Annealing (SA), and Iterated Local Search (ILS). In the population-

based category, the most popular evolutionary algorithms are Genetic Algorithms (GA) and 

Differential Evolution (DE). The most popular physics-based algorithms are Gravitational 

METAHEURISTICS 

Optimisation 
Algorithms 

Deterministic 
Algorithms 

Stochastic 
Algorithms 

Physics-based 
Algorithms 

Swarm 
Intelligence 
Algorithms 

Single-solution 
based 

Population 
based 

Evolutionary 
Algorithms 

Human-based 
Algorithms 

Figure 2.1: Classification of Metaheuristics in Optimisation Algorithms 
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Search Algorithm (GSA), Central Force Optimization (CFO), Charged System Search (CSS), 

and Ray Optimization (RO). The most popular human based algorithms include Teaching and 

Learning Based Optimization algorithm (TLBO), Seeker Optimization Algorithm (SOA), and 

Mine Blast Algorithm (MBA). Finally, the most well-known Swarm Intelligence (SI) 

algorithms include Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), 

Firefly Algorithm (FA), Cuckoo Search (CS), Artificial Bee Colony (ABC), and Bees 

Algorithm (BA). 

 

2.4 Metaheuristics 

 

The term “Metaheuristics” was initially introduced in 1986 by Glover in his publication to 

describe Tabu Search characteristics (Glover, 1986). Since then, a metaheuristics algorithm has 

been widely defined as a high-level algorithm that intelligently orchestrates interaction between 

heuristics to solve a wide range of optimisation problems (Osman & Laporte, 1996). Two major 

contradictory components in metaheuristics algorithms are exploration (diversification) and 

exploitation (intensification). 

 

In developing a metaheuristic algorithm, these components are essential in balancing the need 

to maintain the diversity of the solutions while simultaneously avoiding premature 

convergence. Figure 2.2 (Talbi, 2009) shows the relationship between the two components and 

their roles in determining the type of metaheuristics algorithms. In general, the exploitation 

procedure guides the algorithm to thoroughly search for better solutions in a promising region 

to accelerate its convergence. Likewise, the exploration procedure helps the algorithm to reach 

unexplored regions in the hope of finding new good solutions.  
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Metaheuristics algorithms can be classified based on the number of solutions being 

manipulated: single-solution based algorithms and population-based algorithms. Generally, 

single-solution or trajectory-based algorithms work on a single candidate solution and describe 

a trajectory in the search space during the progress of the search such as Tabu Search (TS) 

(Glover, 1986), Simulated Annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983) and Iterated 

Local Search (ILS) (Glover & Kochenberger, 2003). Meanwhile, population-based algorithms 

deal with a set of solutions and iteratively improve them through the search space. Some 

examples of established population-based algorithms are Genetic Algorithms (GA) (Goldberg, 

1989), Differential Evolution (DE) (Storn & Price, 1997) and Swarm Intelligence (SI). Among 

the algorithms associated with SI include Ant Colony Optimisation (ACO) (Dorigo & Di Caro, 

1999), Particle Swarm Optimisation (PSO) (Kennedy & Eberhart, 1995), Cuckoo Search (CS) 

(Yang & Deb, 2009), Artificial Bee Colony (ABC) (Karaboga, 2005), Firefly Algorithm (FA) 

(Yang, 2008), and Bees Algorithm (BA) (Pham et al., 2005). 

 

2.5 Swarm Intelligence 

 

In the last two decades, Swarm Intelligence (SI) algorithms, a family of population-based 

metaheuristics, have garnered a significant amount of interest from researchers due to their 

robustness and flexible behaviour in solving difficult optimisation problems. The term “Swarm 

Local search 

Intensification Diversification 

Random search 

Design space of a metaheuristic 

Population-based 
metaheuristics 

Single-solution 
based metaheuristics 

Figure 2.2: Criteria in designing a metaheuristic: diversification versus intensification  
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Intelligence” was popularised by Beni and Wang in their paper when discussing Cellular 

Robotic System (CRS), where simple agents organise themselves through neighbourhood 

interactions (Beni & Wang, 1993). Different from other population-based metaheuristics, SI 

algorithms were inspired by the collective behaviours and self-organising agents such as in 

colonies foraging, animal herding, bacteria growth, fish schooling, honeybees, and so on 

(Mavrovouniotis, Li, & Yang, 2017). 

 

The impressive abilities of SI to organise itself without an organiser has encouraged attempts 

to develop algorithms inspired by swarms in nature. Hence, during the last decades, numerous 

algorithms have been developed and tested. Examples of algorithms inspired by SI include 

Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO), Cuckoo Search (CS), 

Artificial Bee Colony (ABC), and Bees Algorithm (BA). Table 2.1 shows the list of SI 

algorithms found in the literature in the past decades. 

 

2.5.1 Particle Swarm Optimisation (PSO) 

 

One of the pioneer SI algorithms that received great attention in the world of optimisation is 

Particle Swarm Optimisation (PSO). Originated from the socially organised behaviour of bird 

flocks in nature, PSO is an algorithm that uses each bird as a particle representing the potential 

solutions around the search space according to its position and velocity. Eberhert and Kennedy 

proposed that the method could be used to guide the particles towards a better position using 

the information collected through communication with neighbouring particles (Kennedy & 

Eberhart, 1995). 
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Table 2.1: Swarm Intelligence (SI) algorithms in the literature 

Entities Swarming Behaviour SI Algorithms 
Particles Aggregating Particle Swarm Optimization (Kennedy & Eberhart, 1995) 
Ants Foraging Ant Colony Optimization (ACO) (Dorigo & Di Caro, 1999) 
Bees Foraging Marriage in Honey Bees Optimization Algorithm (Abbass, 

2001), Bees Algorithm (Pham et al., 2005), Artificial Bee 
Colony Algorithm (Karaboga, 2005) , Bee Colony 
Algorithm (Teodorović et al., 2006), Bee Collecting Pollen 
Algorithm (Lu & Zhou, 2008) 

Glowworm Foraging Glowworm Swarm Optimization (Krishnanand & Ghose, 
2005) 

Fireworks Explosion Fireworks Algorithm (Tan & Zhu, 2005) 
Cat Behaviour Cat Swarm Optimization (Chu, Tsai, & Pan, 2006) 
Weed Ecological Invasive Weed Optimization (IWO) (Mehrabian & Lucas, 

2006) 
Monkeys Climbing Monkey Search (Mucherino & Seref, 2007) 
Fireflies Gathering Firefly Algorithm (Yang, 2008) 
Cockroaches Foraging Roach Infestation Optimization (Havens et al., 2008) 
Frogs  Jumping Jumping Frogs Optimization (Garcia & Perez, 2008) 
Masses Gathering Gravitational Search Algorithm (Rashedi, Nezamabadi-pour, 

& Saryazdi, 2009) 
Cuckoos Brooding Cuckoo Search Algorithm (Yang & Deb, 2009) 
Dolphins Clustering Dolphin Partner Optimization (Yang, Jiang, & Yan, 2009) 
Bats Echolocation Bat Algorithm (Yang, 2010) 
Bacteria Growth Bacteria Foraging Optimization (Passino, 2010) 
Flies Foraging Fruit fly Optimization Algorithm (Pan, 2012) 
Krill Herding Krill Herd Algorithm (Gandomi & Alavi, 2012) 
Lion Social Lion׳s Algorithm (Rajakumar, 2012) 
Birds Mating Bird Mating Optimizer (Askarzadeh & Rezazadeh, 2013) 
Wolves Preying Gray Wolf Optimizer (Mirjalili, Mirjalili, & Lewis, 2014) 
Algae Lifestyle Artificial algae algorithm (AAA) (Uymaz, Tezel, & Yel, 

2015) 
Tree-seed Reproduction Tree-seed algorithm (TSA) (Kiran, 2015) 
Spider Foraging Social Spider Algorithm (SSA) (Yu & Li, 2015) 
Ions Motion Ion Motion Algorithm (Javidy, Hatamlou, & Mirjalili, 2015) 
Whale Foraging Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 

2016) 
Dragonfly Navigating Dragonfly Algorithm (DA) (Mirjalili, 2016) 
Moth Pathfinding Moth Swarm Algorithm (MSA) (Mohamed et al., 2017) 
Salp Foraging Salp Swarm Algorithm (SSA) (Mirjalili et al., 2017) 
Meerkat Foraging & care Meerkat Clan Algorithm (Al-obaidi, Abdullah, & Ahmed, 

2018) 
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In the PSO algorithm, particles move around the search space according to the variation of 

velocity based on the individual particle’s previous best position and other particle’s best 

position. Unless the termination criteria are met, each particle is updated in each iteration by 

the following rule: 

 
 

(1.1) 

  (1.2) 

where  is the particle’s index in the swarm and  denotes the 

component’s index of the corresponding particle. Also,  is the positive inertia weight,  and 

 are the cognitive and social learning factors, respectively, and  and  are the two random 

numbers uniformly distributed from zero to one.  

 

The PSO algorithm has been successfully applied to various areas of real-world applications 

such as telecommunications, neural network training, system simulation and identification, 

decision making and planning, and signal processing (Gogna & Tayal, 2013). Various attempts 

to improve the PSO are noted in the literature because it has simpler and fewer parameters that 

require tuning and is efficient in solving optimisation problems (Jordehi & Jasni, 2012). Many 

researchers have tried to improve the PSO by implementing new learning mechanisms inside 

the algorithm or combining it with other algorithms that can overcome the weaknesses of the 

PSO. The latest standard version of PSO is called Standard Particle Swarm Optimisation 2011 

(SPSO2011). This improved version of PSO is equipped with an adaptive random topology 

and rotational invariance (Zambrano-Bigiarini, Clerc, & Rojas, 2013). 
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2.5.2 Ant Colony Optimisation (ACO) 

 

The ACO algorithm was inspired by the collective intelligence of ants scouting for food around 

their nest. The development of the ACO algorithm started from the Ant System (AS) that was 

applied to the Traveling Salesman Problem (TSP) (Dorigo, Maniezzo, & Colorni, 1991). The 

core principle that underlies the mechanism of ACO is based on the pheromones deposited by 

the ants on their trip back to the nest after collecting food. The more pheromone is deposited 

means the more regular the path is used and thus, the more ants will be attracted to follow the 

same path to reach the highly rated food source (Dorigo & Di Caro, 1999). 

 

In nature there is a kind of ants that can use a trail substance or pheromone to create a path 

from their nest to the food source, and in some way, they can optimize this path. In ACO, the 

algorithm uses artificial ants, and each one represents a solution to the problem in which it is 

applied. In order to update the positions of the artificial ants, the pheromone trails by 

evaporation, the levels of pheromone trails and to calculate the amount of pheromone that was 

deposited by the artificial ants, respectively, the ACO dynamics equations are used as follows: 

  (1.3) 

  (1.4) 

  (1.5) 

  (1.6) 
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where  is the probability of an ant  to select the node j from the node i,  is the level of 

pheromone trail of an arc between the nodes i and j,  is an heuristic value or the visibility from 

one node to another, is an exponent that determines how much the pheromone trail influences 

the final probability, is an exponent that determines the influence of the heuristic information, 

and N is the neighbourhood of the actual node or the nodes that the ant k has not visited yet. 

The rate of evaporation of the pheromone trail is given as L is a set of valid arcs of the graph, 

 denotes the amount of pheromone that the ant k deposited in the arc between the nodes i and 

j, based on the length of the tour of the ant k and finally, T represents the full tour constructed 

by the ant k, while C is the length of that particular tour. 

 

Later on, ACO was extended and adapted for continuous optimisation by Bilchev and Parmee 

in their work (Bilchev & Parmee, 1995). The development of ACO for continuous optimisation 

was followed by a few more researchers by using probability density functions instead of 

discrete probability distributions in the algorithm (Socha, 2004; Socha & Dorigo, 2008; 

Tsutsui, 2004). Recently, new variants of ACO were introduced with improved concepts of 

pheromones to speed up the execution (Ismkhan, 2017) and fuzzification of the parameters in 

order to advance the performance (Liao & Su, 2017; Olivas et al., 2017). The ACO algorithm 

has also been successfully applied to several optimisation problems such as maintenance 

optimisation problem (Zhou et al., 2013), photovoltaic systems (Jiang, Maskell, & Patra, 2013), 

delimiting urban growth boundaries (Ma, Li, & Cai, 2017), and economic emission dispatch 

(Zhou et al., 2017). 
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2.5.3 Cuckoo Search (CS) 

 

The Cuckoo Search (CS) algorithm was developed by Young and Deb to emulate the parasitic 

breeding behaviour of some cuckoo birds in combination with the Lévi flight behaviour of 

some birds and fruit flies (Yang & Deb, 2009). Brood parasitism in some cuckoo species was 

the main mechanism in the development of the CS algorithm. Cuckoos lay their eggs in the 

nest of other host birds and match them through mimicking the colour and pattern of the eggs. 

If the host bird discovers the eggs are not theirs, it will either throw the eggs out or simply 

abandon its nest and build a new one elsewhere. With the ability to hatch slightly earlier than 

the host eggs, the hatched cuckoo chick will evict the host eggs out of the nest and increase 

their share of food provided by its host bird. In the optimisation context, each egg in the nest 

represents a candidate solution and as the cuckoo lays only one egg, it also represents one 

solution. The purpose is to generate new and potentially better solutions that will replace the 

worse solutions in the current nest population. Furthermore, the quality of solutions is evaluated 

through the objective function of the problem to be solved. 

 

The CS uses a balance between exploration and exploitation. This algorithm is equiponderant 

to the integration of Lévy flights. When generating new solutions  for a cuckoo i, a Lévy 

flight is performed according to Eq. 1.7. 

  (1.7) 

where, > 0 is the step size related to the scales of the problem of interests. The  in the above 

equation represents the current location, which is the only way to determine the next location 

. This is called the random walk and the Markov chain. The product  denotes the entry 
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wise multiplications. A global explorative random walk by using Lévy flights can be expressed 

as follows: 

  (1.8) 

 

Since the development of CS in 2009, much effort has been dedicated by researchers to improve 

the performance of the algorithm. Some recent modifications include: 

i. a Modified Cuckoo Search-based Rough Sets (MCSRS) that used rough sets theory to 

build the fitness function based on two factors: the number of features and classification 

quality (Aziz & Hassanien, 2016);  

ii. a new Modified Cuckoo Search Algorithm (MCSA) that proposed crossover operation 

to balance exploration and exploitation processes (Giridhar et al., 2017);  

iii. the Adaptive Cuckoo Search Algorithm (ACSA) that focused on generating a new 

solution of the CS algorithm and keep the solution generation based on alien egg 

discovery (Dinh, Nguyen, & Vo, 2016);  

iv. and a new modified version of the CS algorithm that proposed a two-stage initialisation 

process: divide the population into subpopulations; and combine all the best strings to 

a new form of the subpopulation ( Rao & Venkaiah, 2017).  

 

Various applications of the CS algorithm to real-world problems have been reported in the 

literature. A summary of recent applications of the CS algorithm is presented in Table 2.2.  
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Table 2.2: Summary of recent applications of CS algorithm in the literature 

Application Publication 

Engineering design and applications Kaveh (2017); Qu and He (2016); Mohamad et 
al.(2015); Ahmed and Salam (2014); Esfandiari 
(2014) 

Power and energy Zamani, Tavakoli, and Etedali (2017); Majumder 
(2016); Khoshgoftar Manesh and Ameryan 
(2016); Sanajaoba and Fernandez (2016); T. T. 
Nguyen, Vo, and Dinh (2016); Nguyen and Vo 
(2016); Sudabattula and Kowsalya (2016); Abd 
Elazim and Ali (2016); Devabalaji, Yuvaraj, and 
Ravi (2015) 

Image processing Sri Madhava Raja and Vishnupriya (2016); 
Bhandari et al.(2014)  

Economic dispatch problems Pham et al.(2016); Sekhar and Mohanty (2016) 
Clustering and mining Amsaleka and Latha (2014); Cobos et al. (2014); 

Abbas et al.(2014) 
Medical Chatterjee et al.(2017); Liu and Fu (2014) 

 

2.5.4 Artificial Bee Colony (ABC) 

 

ABC was introduced by Karaboga and was inspired by the foraging behaviour of honeybees in 

nature based on the concept proposed by Tereshko and Loengarov in their study on collective 

decision making of honeybees (Tereshko & Loengarov, 2005). In the ABC algorithm, the 

location of food source represents the candidate solution to the problem being considered while 

the amount of nectar found in the food source denotes the quality of the solution. The colony 

of artificial bees in the ABC algorithm contains three kinds of bees: employed bees, onlooker 

bees, and scout bees. Employed bees is a group of bees that is associated with food sources 

(candidate solutions), nectar amounts (quality of the candidate solutions) and sharing the 

information (through the waggle dance) with onlooker bees in the hive. Onlooker bees is the 

group of bees waiting in the hive and deciding the location of the food source by watching the 

employed bees dancing. Meanwhile, scout bees are the ones searching for food randomly 

across the search space (Karaboga, 2005; Karaboga et al., 2014). 
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The general algorithmic structure of the ABC approach started with the initialisation phase 

according to Eq. (1.9), 

  (1.9) 

where i is the dimension of the food source m, while  and  are the lower and upper bounds 

of the parameter , respectively. Employed bees search for new food sources ( ) having 

more nectar within the neighbourhood of the food source  in their memory. They find a 

neighbour food source and evaluate its fitness. The neighbour food source is determined using, 

  (1.10) 

where  is a randomly selected food source, i is a randomly chosen parameter index and  

is a random number within the range of . After producing the new food source , its 

profitability is calculated, and a greedy selection is applied between  and  . The fitness of 

the solution fit  can be calculated using, 

  (1.11) 

where  is the objective function value of solution  Employed bees share their food 

source information with onlooker bees waiting in the hive. Depending on this information, the 

onlooker bees probabilistically choose their food sources. The probability value  with which 

 is chosen by an onlooker bee can be calculated using, 

  (1.12) 

After a food source for an onlooker bee is probabilistically selected, a neighbour source  is 

determined by using Eq. (1.10), and its fitness value is computed. 
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Since the invention of the ABC algorithm, numerous applications and extensions of the 

algorithm have been developed. Applications range from different areas in neural networks, 

engineering, image processing, data mining, sensor networks, and protein structure (Karaboga 

& Akay, 2009). As in other optimisation algorithms, some modifications to the ABC are still 

necessary to significantly improve its performance. The scientific community has proposed 

various improvements to the original ABC including a novel algorithm called Quick Artificial 

Bee Colony (qABC) that has a new position update equation for onlooker bees. The qABC also 

introduced a new method in site abandonment and a new parameter for neighbourhood radius 

(Karaboga & Gorkemli, 2012).  Some of the recently improved versions of ABC are:  

i. a self-adaptive ABC algorithm based on the global best candidate (SABC-GB) that was 

initialised by adopting chaotic systems and opposition-based learning method, by 

modifying the employed bee phase, and by using a probabilistic method in the onlooker 

bee phase (Xue et al., 2017);  

ii. a new variant named ABC with memory algorithm (ABCM) which has a memory 

mechanism to let the artificial bees memorise their previous successful experiences (Li 

& Yang, 2016); and  

iii. an ABC with multiple solution update rules for each employed bees or onlooker bees 

to obtain candidate solutions (Kiran et al., 2015). 

 

2.6 The Canonical Bees Algorithm 

 

Inspired by the food foraging behaviour of honeybees in nature, a group of researchers from 

Cardiff University successfully developed the Bees Algorithm in 2005. The algorithm 

performed a combination of exploitation and exploration to search for the best solution to a 
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given optimisation problem (Pham et al., 2005). In general, the bees represent problem 

variables in vector form and the food sources visited by the bees symbolize the candidate 

solutions to the problem. 

 

Extensive research on honeybee behaviour has been conducted for years by various researchers 

around the world. Areas of interest cover hive selection, mating behaviour, and food foraging 

process in a bee colony. In the honeybee food foraging activity, the process starts with part of 

the population despatched to search for food sources near the hive. This group of bees are called 

scout bees and they return to the hive with nectar and information of the visited flower patches. 

Apart from the quality of the nectar collected, the bees transmitted vital information such as 

the location and distance from the hive. This information is shared with other bees in the 

population through a movement called “waggle dance” inside the hive. Then, the bees from the 

population is recruited by the scout bees to form a group of bees to be directed to the visited 

flower patch with high quality nectar. More bees are recruited to flower patches with higher 

quality nectar. The recruited bees will return to the hive and the process of sharing information 

and recruitment will continue. 

 

In the canonical Bees Algorithm, several control parameters were required for the user to start 

the search. Table 2.3 shows the control parameters of the canonical Bees Algorithm (Pham & 

Castellani, 2015). The algorithm starts with scout bees (ns) randomly scattered across the 

search space. The number of scout bees represents the initial population for the search. Then, 

each site visited by the scout bees is evaluated by the fitness function to measure the quality of 

the candidate solutions. Next, the scout bees are ranked according to the quality of the fitness 

values. The higher the fitness value the higher the rank of the candidate solutions. Further, the 
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best site (nb) is selected from the ranked population. This is the beginning of the exploitation 

phase of the algorithm. The top-rated sites in the selected best sites (nb) are chosen as elite sites 

(ne) and the remaining best sites are noted as (nb-ne). Subsequently, the elite sites (ne) and 

remaining best sites (nb-ne) recruit other bees from the hive to exploit their locations according 

to nre and nrb respectively. The value of nre is always greater than nrb in this case (nre > nrb). 

At this stage, the recruited bees (nre and nrb) are randomly placed across the neighbourhood 

of the ne and nb-ne, respectively. Then, the fitness values of the nre and nrb are evaluated and 

the best recruited bees for each neighbourhood are selected as the new scout bees in the 

population. In this process, only the fittest scout bee is retained from each neighbourhood of 

the nb. The newly selected scout bees (from the neighbourhood of ne and nb-ne) are returned 

to the hive to share the current fittest solution. 

Table 2.3: Bees Algorithm parameters 

Parameter Description 
ns Number of scout bees 
ne Number of elite sites 
nb Number of best sites 
nre Recruited bees for elite sites 
nrb Recruited bees for remaining best sites 
ngh Initial size of neighbourhood 
stlim Limit of stagnation cycles for site abandonment 

 

In order to increase the search accuracy and to avoid unnecessary computations in the local 

search phase previously discussed, two strategies called neighbourhood shrinking and site 

abandonment were introduced (Pham & Castellani, 2009). In neighbourhood shrinking 

strategy, the patch size (ngh) is initially set to a large value and as the search continues, the ngh 

shrinks if the recruited bees fail to produce better fitness. However, the value of ngh is kept 

constant if the recruited bees provide better fitness values than the scout bees in the 

neighbourhood. The formula for the shrinking procedure is set as follows: 



23 
 

  (13.13) 

        (1.14) 

where t denotes the tth iteration of the algorithm. The second strategy, the site abandonment 

procedure, is applied when the neighbourhood strategy fails to produce fitness improvement 

after a predefined number of consecutive stagnation cycles (stlim). At this stage, the local 

search is assumed to be at the local fitness peak and the search is terminated; thus, a new 

random solution is generated. Furthermore, if the abandoned site has the best-so-far fitness 

value, the corresponding site would be chosen as the final solution. 

 

In the next stage, the algorithm performs an exploration phase as the global search is executed 

to search for candidate solutions. The remaining scout bees, ns-nb are randomly placed across 

the search space to search for new promising sites. Finally, the new population is formed by 

combining the best bees (nb) from the local search and the newly found scout bees from the 

global search (ns-nb). The stopping criterion for the algorithm could be either the completion 

of a predefined number of iterations or when the solution fitness is above a predefined 

threshold. The flow chart of the canonical Bees Algorithm is shown in Figure 2.3. 
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Figure 2.3: Flow chart of standard Bees Algorithm 
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2.7 Improvements and Applications 

 

Since the introduction of the algorithm in 2005, many improvements have been conducted 

worldwide to advance the performance of the Bees Algorithm. This section will review the 

advancements of the algorithm and the applications carried out in the literature. Figure 2.4 

shows the number of improved Bees Algorithm variants developed by researchers compared 

to the total publications based on the Bees Algorithm from 2005 to 2017.  

 

In the early years of the algorithm (2005-2006), the publications focused more on testing out 

the algorithm performance in the real-world applications. Pham et al. (2006) applied the Bees 

Algorithm in Multi-Layered Perceptron (MLP) training for control chart pattern recognition. 

The application of Bees Algorithm in control chart pattern recognition was extended by Pham 

et al. (2006a)  and Pham et al. (2006b) to train Learning Vector Quantisation Networks and 

Radial Basis Function Networks. In addition, Pham et al. (2006) applied the usage of Bees 

Algorithm in the wood defect detection optimisation problem. 
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From 2007 to 2009, six publications had been published on the improvements of the algorithm. 

The total publications have also increased to around eight publications each year. The first 

improvement had been proposed by Pham, Castellani, and Ghanbarzadeh (2007) for the 

application of computer-aided preliminary design. The proposed algorithm was intended to 

increase algorithm performance and avoid unnecessary computations by introducing two 

procedures called “shrinking method” and “abandon sites without new information”. 

Furthermore, Pham, Castellani, and Fahmy (2008), and Pham and Castellani (2009) applied 

this enhanced version in the robot manipulator problem and numerical optimisation problems, 

respectively. Meanwhile, Pham and Darwish (2008) introduced an enhanced version of the 

Bees Algorithm with fuzzy greedy selection in its local search procedure. This version of Bees 

Algorithm automated the selection and recruitment processes, thus reducing the number of 

parameters. Pham and Kalyoncu (2009) conducted the application of this version of Bees 

Algorithm to optimise the parameters of the controller for a flexible single-link robot arm. On 

the other hand, Packianather et al. (2009) proposed an enhanced Bees Algorithm based on the 

pheromone-based communication system of honeybees in the recruitment process, thus making 

the algorithm more dynamic compared to the basic version. Moreover, the number of 

paramaters were also reduced. 

 

The applications of the Bees Algorithm were also increased during the same period of time. 

Publications on applications were extended to multiobjective problems such as Printed Circuit 

Board (PCB) assembly (Pham, Otri, & Darwish, 2007), mechanical design (Pham & 

Ghanbarzadeh, 2007), Environmental/Economic Dispatch (EED) (Lee & Darwish, 2008; 

Pham, Lee, Darwish, & Soroka, 2008), Multiple-Input Multiple-Output (MIMO) 

communication (Sayadi et al., 2009) and Flexible AC Transmission System (FACTS) devices 

allocation (Mohamad Idris, Khairuddin, & Mustafa, 2009). The Bees Algorithm has also been 
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utilised in linear antenna arrays (Guney & Onay, 2007; Guney & Onay, 2008), data clustering 

(Pham, AL-Jabbouli, Mahmuddin, Otri, & Darwish, 2008; Pham, Otri, Afify, Mahmuddin, & 

Al-Jabbouli, 2007), scheduling (Lara, Flores, & Calderon, 2008; Pham, Koç, Lee, & 

Phrueksanant, 2007), fuzzy logic controller (Pham, Darwish, Eldukhri, & Otri, 2007), wood 

defect classification (Pham et al., 2007) and protein confirmational search (Bahamish, 

Abdullah, & Salam, 2008). Another application of the Bees Algorithm was in manufacturing 

cell formation (D. T. Pham, Afify, & Koç, 2007), Proportional-Integral-Derivative (PID) 

controller tuning (Jones & Bouffet, 2008), motion planning for robot arm (Ang, Pham, & Ng, 

2009) and mechanical design optimisation (Pham et al., 2009). 

 

Since 2010, publications on the Bees Algorithm have escalated to at least 24 publications per 

year and the publications on Bees Algorithm improvement have shown a significant increase. 

2017 had shown the most publications of improvement with 24 improvements followed by 

2014 with 18 improvements and 2012 with 15 improvements. The summary of the literature 

review on the major improvements from 2010 to 2017 is illustrated in Table 2.4. In recent years, 

the applications of BA were also expanded to environmental contamination and toxilogy 

(Farajvand et al., 2018), software testing (Zabil, Zamli, & Lim, 2018), wheeled mobile robot 

path planning (Haj Darwish, Joukhadar, & Kashkash, 2018), thermoelectric materials (Uysal 

et al., 2017), remanufacturing (Zheng et al., 2017), biopartitioning micellar chromatography 

(Zarei, Atabati, & Ahmadi, 2017), grid independent hybrid renewable energy systems (Maleki, 

2017), contaminant hydrology (Mehdinejadiani, 2017), power generation of wind turbine 

(Assareh & Biglari, 2016), and retailing industry (Martino et al., 2016). 
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Table 2.4: Summary of the improvements on Bees Algorithm 

Author Improvement Type of 
improvement 

Type of application 

Mahmudin and 
Yusof (2010) 

Proposed a hybrid called K-
Bees algorithm to find near-
optimal centroids. 
 

Hybridisation: 
K-means 
algorithm 

Numerical 
benchmarking 

Özbakir et al. 
(2010) 

Proposed initialisation with 
GRASP algorithm and 
introduced re-initialisation 
mechanism for the scout 
bees.  
 

Learning 
mechanism: 
Initialisation & 
local search 

Generalized 
assignment 
problems (GAP) 

Li et al. (2010) Proposed initialisation using 
controlled randomisation and 
frequency memory method 
based on polar coordinate. 
Using the neighbourhood 
search by dividing the circle 
into 3 groups by the radius. 
 

Learning 
mechanism: 
Initialisation & 
local search 

Large-scale layout 
optimization 

Ang et al. (2010) Proposed a version of Bees 
Algorithm with TRIZ-
inspired operators to reduce 
the amount of time required 
for PCB assembly. 
 

Learning 
mechanism: 
Local search & 
global search 

PCB Assembly 

Pham and 
Darwish (2010) 

Proposed a combined 
enhanced fuzzy greedy 
selection system and Kalman 
filtering to update the 
positions of recruited bees in 
local search phase of Bees 
Algorithm 

Learning 
mechanism: 
Local search 

Wood defects 
identification 

Taroq Sadiq and 
Ghazi Hamad 
(2010) 

Proposed a hybrid version 
called Bees Simulated 
Annealing (BSA) which used 
Simulated Annealing in the 
selection method of the 
recruited bees to form next 
population. 

Hybridisation: 
Simulated 
Annealing 
algorithm 

Four colour map 
problem and classical 
transportation 
problem. 

Xu et al. (2011) Proposed  a version of Bees 
Algorithm called Adaptive 
Bees Algorithm (ABA). The 
ABA used an adaptive patch 
adjustment method according 
to the source and the rate of 
change of the current 
optimum 

Learning 
mechanism: 
Local search 

Semi-track 
aircushion 
vehicle (STACV) 
fuel economy 
optimisation 
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Table 2.4: Summary of the improvements on Bees Algorithm (continued) 

Author Improvement Type of 
improvement 

Type of application 

Muhamad et al. 
(2011) 

Proposed an enhanced Bees 
Algorithm with Local Search 
Manoeuvres (LSM) 
recruitment factor that 
increase or decrease 
the neighbourhood size in 
different dimensions. 

Learning 
mechanism: 
Local search 

Numerical 
benchmarking 

Dereli and Das 
(2011) 

Proposed a hybrid Bees 
Algorithm called hybrid-BA. 
A heuristic filling procedure 
based on the ‘wall building’ 
approach is utilised in the 
hybridisation. 

Hybridisation: 
Filling 
procedure 

Container Loading 
(CL) optimization 
problem 

Q. T. Pham, 
Pham, and 
Castellani (2012) 

Introduced a modified Bees 
Algorithm with the addition 
of young bees concept that 
are protected from 
competition with the selected 
bees until they become 
adults. A statistical based 
procedure for parameter 
tuning was also introduced 
for the modified algorithm. 

Learning 
mechanism: 
Local search & 
global search, 
parameter 
tuning 

Numerical 
benchmarking 

Alfi and 
Khosravi (2012) 

Proposed a hybrid algorithm 
called BA-SD combining 
Bees Algorithm (BA) and 
Steepest Descent (SD). The 
SD used the global best 
found in BA to search for 
new solution. 

Hybridisation: 
Steepest 
Descent (SD) 

Numerical 
benchmarking 

Sadiq and Hamad 
(2012) 

Proposed a new Exploration 
Balanced Bees Simulated 
Annealing Algorithm 
(EBBSAA) to solve 
combinatorial optimisation 
problems.  

Hybridisation: 
BSA & EBBA 

Numerical 
benchmarking 

Abdullah and 
Alzaqebah 
(2013) 

Proposed a modified Bees 
algorithm with disruptive 
selection strategy, adaptive 
neighbourhood structure and 
Basic Late Acceptance Hill 
Climbing (Basic LAHC) 
hybridisation. 

Learning 
mechanism: 
Local search & 
global search 
Hybridisation: 
Basic LAHC  

Examination 
timetabling problems 
(ETTPs) 
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Table 2.4: Summary of the improvements on Bees Algorithm (continued) 

Author Improvement Type of 
improvement 

Type of application 

Shatnawi, 
Sahran, and 
Mohammad 
Faidzul (2013) 

Proposed local and global 
memories in Bees Algorithm 
to mimic the natural 
behaviour of honeybees. 

Learning 
mechanism: 
Local search & 
global search 
 

Numerical & 
engineering design 
benchmarking 

Yuce et al. 
(2013) 

Introduced an adaptive 
neighbourhood size change 
and site abandonment 
strategy in the local search. 
 

Learning 
mechanism: 
Local search 

Numerical 
benchmarking 

Hussein, Sahran, 
and Sheikh 
Abdullah (2014) 

Introduced Patch-Lévy-based 
Initialisation Algorithm 
(PLIA) that models the patch 
concept and Lévy motion for 
the initialisation phase in 
Bees Algorithm. 
 

Learning 
mechanism: 
Initialisation 

Numerical 
benchmarking 

Tsai (2014) Proposed a Novel Bees 
Algorithm (NBA) that uses 
stochastic self-adaptive 
neighbourhood search. 
 

Learning 
mechanism: 
Local search 

Numerical 
benchmarking 

Packianather et 
al. (2014) 

Proposed a novel Genetic 
Bees Algorithm (GBA) that 
has genetic operators called 
Reinforced Global Search 
and a Jumping Function. 
 

Hybridisation: 
Genetic 
Algorithm 

Single Machine 
Scheduling problem 

Lien and Cheng 
(2014) 

Proposed a hybrid algorithm 
called Particle Bee Algorithm 
(PBA) that integrates the 
respective advantages of 
Particle Swarm Optimisation 
(PSO) and Bees Algorithm 
(BA). 
 

Hybridisation: 
Particle Swarm 
Optimisation 

Tower Crane Layout 
(TCL) optimisation 
problem 

Jana, Sil, and Das 
(2015) 

Proposed an Adaptive 
Polynomial Mutation based 
Bees Algorithm (APM-BA) 
that mutates each of best 
scout bees with adaptive 
polynomial mutation 
technique. 
 

Learning 
mechanism: 
Local search 

Protein Structure 
Prediction (PSP) 
problem 
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Table 2.4: Summary of the improvements on Bees Algorithm (continued) 

Author Improvement Type of 
improvement 

Type of application 

Hussein et al. 
(2015) 

Proposed a new version 
called Patch-Lévy-based 
Bees Algorithm (PLBA) that 
incorporates PLIA in 
initialisation phase, Greedy 
Lévy-based Local Search 
Algorithm (GLLSA) in local 
search and new Levy-based 
method for global search. 

Learning 
mechanism: 
Initialisation, 
Local search & 
Global Search 

Protein Structure 
Prediction (PSP) 
problem 

Xie et al. (2015) Proposed a new variation of 
Bees Algorithm call Forager 
Adjustment Strategy-Bees 
Algorithm (FAS-BA) that 
adaptively manages the 
forager allocation in the 
algorithm. 

Learning 
mechanism: 
Parameter 
tuning 

Numerical 
benchmarking & 
Resource Service 
Composition (RSC) 
problem 

Yuce et al. 
(2015) 

Proposed an improved 
version of Bees Algorithm 
(BA) based on Slope Angle 
Computation and Hill 
Climbing Algorithm   
(SACHCA) strategy. 

Learning 
mechanism: 
Local search 

Numerical 
benchmarking & 
Single Machine 
Scheduling 

Nguyen (2015) Proposed a novel algorithm 
called Hybrid SFL-Bees 
Algorithm that combined the 
strenghts of SFLA and BA to 
find global optimum. 

Hybridisation: 
Shuffled Frog 
Leaping 
Algorithm 
(SFLA) 

Numerical 
benchmarking 

Zhou et al. 
(2016) 

Proposed an improved Bees 
Algorithm with dynamic 
colony size, Balance Search 
Technique (BST) based local 
search, Hill Valley (HV) 
method based global search 
and two new procedures of 
radius estimation and optima 
elitism.  

Learning 
mechanism: 
Initialisation, 
Local search & 
Global Search 

Numerical 
benchmarking 

Martino et al. 
(2016) 

Proposed a new hybrid 
algorithm called Tabu-Bees 
Algorithm that utilised Tabu 
Search in the selection of the 
elite and the best patches to 
avoid going back to 
previously visited points. 
 

Learning 
mechanism: 
Local search 

Fashion retail 
replenishment 
problem 
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Table 2.4: Summary of the improvements on Bees Algorithm (continued) 

Author Improvement Type of 
improvement 

Type of application 

Xu et al. (2016) Proposed a multi-objective 
optimisation algorithm called 
Enhanced Pareto Bees 
Algorithm (EPBA) that 
adopts adaptive variable 
neighborhood search, local 
depth search based on the 
critical path, crossover and 
mutation operators, fastnon-
dominated sorting, and local 
depth search strategies. 

Learning 
mechanism: 
Local search 

Manufacturing 
equipment services 
scheduling problem 

Al-Araji (2016) Proposed a novel hybrid 
algorithm called Bees-Slice 
Genetic Algorithm (BSGA). 
The BSGA combined the 
effectiveness of Slice Genetic 
(SG) algorithm in the local 
search procedure 

Learning 
mechanism: 
Local search 

Inverted pendulum 
system problem 

Yuce et al. 
(2017) 

Introduced a hybrid named 
Genetic Bees Algorithm 
(GBA) that includes two 
strategies into the Bees 
Algorithm. The strategies are 
“reinforced global search” 
and “jumping function” 

Learning 
mechanism: 
Global search 

Single Machine 
Scheduling problem 

Nasrinpour, 
Bavani, and 
Teshnehlab 
(2017) 

Proposed a new version of 
Bees Algorithm with fewer 
parameter setting called 
Grouped Bees Algorithm 
(GBA). In the GBA, the bees 
are grouped to search 
different patches with various 
neighbourhood sizes.  

Learning 
mechanism: 
Local search & 
Global Search 

Numerical 
benchmarking 

Al-Araji and 
Yousif (2017) 

Proposed a new hybrid called 
Hybrid Bees-PSO (HBPSO) 
algorithm. This combination 
uses PSO and Bees 
Algorithm ability in the local 
search and global search 
phase respectively 

Hybridisation: 
Particle Swarm 
Optimisation 
(PSO) 

Dynamic wheeled 
mobile robot 

Ghiasi et al. 
(2017) 

Proposed a new variant of 
Bees Algorithm with new 
method called dynamic 
recruitment, proportional 
shrinking for selected sites 
and site abandonment. 

Learning 
mechanism: 
Local search & 
Global Search 

Load forecasting 
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Table 2.4: Summary of the improvements on Bees Algorithm (continued) 

Author Improvement Type of 
improvement 

Type of application 

Tandis and 
Assareh (2017) 

Introduced a new hybrid 
algorithm called Genetic-
based Bees Algorithm 
(GBBA). This hybrid uses 
crossover and neighborhood 
searching operators, from 
GA and BA, respectively, to 
create an algorithm with 
good performance in 
accuracy and speed 
convergence. 

Hybridisation: 
Genetic 
Algorithm 

Inverse Shape 
Design (ISD) 
problem 

 

Based on the summary in Table 2.4, the improvements of the BA are focusing more on the 

learning mechanism of the algorithm. The majority areas of improvements include the 

initialisation, local search and global search phase in the BA. Some of the newly improved BA 

incorporates various concepts either from other algorithms or fundamental theories in 

optimisations. The hybrid BA algorithms have been proven successful in solving a wide range 

of applications. These include a myriad of different areas, such as numerical benchmarking, 

scheduling, forecasting, protein prediction, facilities planning, product design and many others. 

 

Another type of improved version of BA is through the hybridisation techniques. Concentrating 

on strengths and weaknesses, exploitation and exploration criteria of the algorithm, researchers 

have combined the merits of few algorithms into the framework of BA to produce a profitable 

synergy. Amongst them are the GA and PSO algorithms. Hybridising other algorithm in the 

mechanism of the BA produced different characteristics of algorithm with improved 

performances and extended capabilities. However, there are few issues concerning the hybrid 

algorithms. For example, most of them will increase the number of parameters in the 
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algorithms, thus making it harder to tune their parameters. Furthermore, due to the complexity 

of hybrids, they are slightly harder to be implemented, and thus more prone to error. 

  

2.8 Summary 

 

This chapter was aimed at giving a glimpse of optimisation algorithms and focusing on 

population-based algorithms, predominantly those in the Swarm Intelligence category. The 

chapter also reviewed the Bees Algorithm concept, search method, and procedures. 

Furthermore, the chapter discussed the development and applications of the Bees Algorithm in 

various fields of real optimisation problems. 
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THE BEES ALGORITHM WITH HOOKE AND JEEVES METHOD (BA-HJ) 

 

3.1 Preliminaries 

 

Honeybees are one of the many species of animals that benefit from behavioural specialisation, 

a significant element in SI based algorithms. Forager bees in a colony specialised in finding 

food search the area surrounding the hive and bring food back to the hive, recruiting other bees 

to help with the food collection process. More bees are recruited to go to areas that are richer 

in food.  This unique foraging behaviour was adopted in the development of the Bees 

Algorithm to solve optimisation problems. The work presented here aims to propose an 

enhanced version of the Bees Algorithm with the Hooke and Jeeves’ (HJ) method for 

continuous global optimisation problems. In this work, the HJ method was incorporated into 

the BA to intensify the existing BA local search mechanism. The performance of the proposed 

algorithm was tested on a set of continuous benchmark functions and mechanical design 

optimisation problems. 

 

The chapter is organised as follows. Section 3.2 presents the strategy of HJ and the proposed 

method to be incorporated into the BA.  Section 3.3 explains the experimental setup for 

unconstrained benchmark functions tests followed by the results and discussion in Section 3.4. 

In Section 3.5, the experimental setup and results for several constrained mechanical 

engineering benchmark problems are presented and discussed. Section 3.6 concludes the 

chapter. 
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3.2  Bees Algorithm with the Hooke and Jeeves (BA-HJ) 

 

The ability of the BA to get to the optimum value is largely dependent on its local search and 

global search unique procedures as described in the previous chapter. The importance of the 

local search procedure to exploit promising candidate solutions is an easy target to try to 

improve the way the algorithm works. In the standard BA procedure, the local search starts 

with randomly deploying recruited bees in the neighbourhood of the best bees and finally select 

the bee that provides a better solution. Using the same procedures, in this proposed algorithm, 

a strategy called Hooke and Jeeves (HJ) is incorporated into BA to intensify the local search 

mechanism. 

 

The Hooke and Jeeves (HJ) strategy was originally introduced in 1961 (Hooke and Jeeves 

1961). In this strategy, they used a ‘direct search’ method to solve problems related to 

optimisation. The ‘direct search’ method does not depend upon the knowledge of the 

background of the objective function. The HJ method consists of a sequence of exploratory 

moves about a base point  that, if successful, is followed by pattern moves (Lai & Chan, 

2007). Exploratory moves are performed to look for an improving direction in which to move 

while pattern moves are a larger search in the improving direction. Larger and larger moves 

are made if the improvement continues. The new point for the pattern move is calculated as: 

  (14.1) 

where  is temporary base point for a new exploratory move.   

The HJ strategy is detailed as follows (Moser & Chiong, 2009):  

Step 1: Obtain an initial base point . Determine the set of step lengths.  
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Step 2: Move the base point along each of the D-dimensional axes at a time and evaluate the 

result. Adopt a new point if there is improvement on the previous point. This takes at 

least D, at most 2D evaluations. If any of the moves are successful, go to Step 3. If none 

is successful, go to Step 4. 

Step 3: Repeat the successful moves in a combined pattern move. If the new point has better 

fitness, assume it as the new base point. Return to Step 2, whichever the outcome.  

Step 4: Adjust step length to the next smaller step. If there is a smaller step, continue from Step 

2. If not, terminate. 

The HJ procedure repeats until no improvement can be made in any dimension. The step size 

is reduced, and the procedure is repeated until there are no more step sizes. 

To enhance the capability of standard BA, the proposed methodology introduces the HJ method 

in the local search procedure as shown in Figure 3.1. The HJ method was implemented to 

intensify exploitation in the most promising neighbourhood, elite sites. In this approach, the 

HJ method uses the location of the best-so-far solution as the starting point. The new location 

obtained by the HJ method is recorded as the new elite sites for the current population. The 

new elite sites will undergo the same procedure as in the standard BA. 

 

The main steps of the proposed algorithm known as Bees Algorithm with Hooke and Jeeves 

(BA-HJ) are summarised as follows. After the elite sites identify the best so far solution using 

fitness evaluation and the ranking procedure, the HJ procedure is executed. A local search is 

activated using the current best solution as the base point until the predetermined maximum 

function evaluations is reached. Next, the new best solution is selected to form the new 

population. Finally, the new population is evaluated as in the standard BA to complete the 

cycle. 
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Figure 3.1: Flow chart of Bees Algorithm with Hooke and Jeeves (BA-HJ) 
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3.3 Experimental Setup 

 

In this section, the proposed algorithm was applied on a set of 15 continuous benchmark 

functions collected from several references to evaluate its performance. The benchmark 

functions are listed in Table 3.1 and Appendix A. This set includes unimodal functions (f1, f2, 

f7-f10) and multimodal functions (f3-f6, f11-f15), more details about these functions are reported 

in (Jamil & Yang, 2013; Karaboga & Akay, 2009; Mirjalili, Mirjalili, & Lewis, 2014). The 

selection of these functions was based on the variety of their characteristics and surface 

landscapes. All the tests were executed on a computer with an Intel Xeon 2.40 GHz processor 

and 8GB of RAM.  

 

Table 3.1: Benchmark functions name and features 

Function Name Feature 

f1 Martin & Gaddy Unimodal 

f2 Booth Unimodal 

f3 Goldstein & Price Multimodal 

f4 Schaffer Multimodal 

f5 Six Hump Camel Multimodal 

f6 Michalewicz Multimodal 

f7 Hypersphere Unimodal 

f8 Rosenbrock Unimodal 

f9 Powell Unimodal 

f10 Axis Unimodal 

f11 Ackley Multimodal 

f12 Griewank Multimodal 

f13 Rastrigin Multimodal 

f14 Zakharov Multimodal 

f15 Styblinski-Tang Multimodal 
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The algorithms were coded using the R programming language. The parameters adopted in the 

implementation of the standard BA and the proposed algorithm are listed in Table 3.2. R 

package ‘dfoptim’ (Varadhan & Borchers, 2011) was used in the implementation of HJ for the 

proposed algorithm with a maximum number of objective function evaluations of 200. All the 

algorithms were run for 50 times until either the minimum of the function was approximated 

to be better than 0.001 or a maximum number of function evaluations (500,000) elapsed. The 

following subsections present the comparison results obtained on the given test benchmark 

functions between the proposed algorithm and standard BA. 

  

To further validate the proposed algorithm, comparisons were also made with two well-known 

swarm-based algorithms, the Standard Particle Swarm Optimisation 2011 (SPSO2011) and the 

Quick Artificial Bee Colony (qABC). The selection of SPSO2011 was based on the criteria of 

being one of the most popular swarm-based algorithms available in the literature while qABC 

was chosen based on the similarity in the concept of the honeybee foraging behaviour used in 

the algorithm. The parameter settings of SPSO2011 and qABC were based on the original 

publications by Zambrano-Bigiarini, Clerc, and Rojas (2013) and Karaboga and Gorkemli 

(2012) respectively. However, for a fair comparison, the number of population size for both 

algorithms was set to 100 according to BA-HJ parameter setting. 

Table 3.2: Parameter setting for the BA-HJ and the standard Bees Algorithm 

Parameter Value 
Number of scout bees, ns 26 
Number of elite sites, ne 2 
Number of best sites, nb 6 
Recruited bees for elite sites, nre 20 
Recruited bees for remaining best sites, nrb 10 
Initial size of neighbourhood, ngh 0.01 
Limit of stagnation cycles for site abandonment, stlim 10 
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3.4 Results and Discussion 

 

In this section, the performances of BA-HJ and standard BA are recorded in Table 3.3. As 

shown in Table 3.3, both algorithms were evaluated according to the number of success runs, 

median accuracy of the final solutions and median speed of the algorithms to get to the global 

optimum of the functions. In this approach, the closer the accuracy to zero, the more accurate 

the solution was, and the lesser the speed of the algorithm, the faster the algorithm attained the 

optimum value.  

 

For statistical comparison purposes, the Mann-Whitney statistical significance test was used in 

this study. To determine whether the difference between the medians was statistically 

significant, the p-values for accuracy and speed obtained from the set of benchmark functions 

were compared at α = 0.05 significance level and recorded in Table 3.4. The difference between 

the population medians is statistically significant if the p-value is less or equal to 0.05. 

Contrarily, there is not enough evidence to conclude the difference between the population 

medians if the p-value is greater than 0.05. The algorithm that shows significance over the other 

is recorded in boldface. 

 

As shown in Table 3.3, the BA-HJ outperformed the standard BA in thirteen out of fifteen 

benchmark functions tested in this study. By referring to Table 3.4, only one function (f4, 

Schaffer) showed a non-significant relationship between standard BA and BA-HJ. This 

indicated that the performance of both algorithms was comparable for this function. Figure 3.2 

shows the convergence graphs of standard BA and BA-HJ for the benchmark functions. These 
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convergence graphs display the performance of the algorithms in one out of the fifty runs for 

each benchmark function.  

Table 3.3: Performance comparison between standard Bees Algorithm and BA-HJ 

Function Standard Bees Algorithm BA-HJ 
Success Accuracy Speed Success Accuracy Speed 

f1  50 3.90E-04 1376 50 1.42E-08 311 
f2 50 3.81E-04 1226 50 5.48E-08 287.5 
f3 50 5.06E-04 1826 50 7.09E-06 275 
f4 50 2.39E-04 7583.5 50 1.54E-11 7584.5 
f5 50 3.90E-04 926 50 2.84E-05 271.5 
f6 50 5.20E-04 96096.5 50 4.90E-04 15795.5 
f7 50 7.95E-04 12326 50 5.09E-04 717 
f8 0 4.54E+00 500000 0 1.25E-01 500000 
f9 8 1.56E-03 500000 50 9.21E-04 8338.5 
f10 50 7.55E-04 17776 50 2.65E-04 1060 
f11 0 2.16E+00 500000 50 5.75E-04 1650.5 
f12 0 1.06E-01 500000 3 3.69E-02 500000 
f13 0 1.20E+01 500000 50 6.10E-04 1986.5 
f14 50 8.93E-04 20826 50 8.32E-04 6008.5 
f15 42 4.87E-04 231150 24 1.68E-03 500000 

 

Table 3.4: Statistical comparison between standard Bees Algorithm and BA-HJ 

Function Standard Bees Algorithm 
BA-HJ 

Accuracy 
(p-value) 

Speed 
(p-value) 

f1 1.0000 0.0000 
f2 1.0000 0.0000 
f3 1.0000 0.0000 
f4 1.0000 0.8808 
f5 1.0000 0.0000 
f6 1.0000 0.0000 
f7 1.0000 0.0000 
f8 0.0000 1.0000 
f9 0.0000 0.0000 
f10 1.0000 0.0000 
f11 0.0000 0.0000 
f12 0.0000 0.6101 
f13 0.0000 0.0000 
f14 1.0000 0.0000 
f15 0.0000 0.0007 
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In the low dimensional unimodal type benchmark functions such as Martin Gaddy (f1) and 

Booth (f2), the superiority of BA-HJ finding the global optimum is observed in Figures 

3.2(a),(b). The addition of HJ in the local search seems to work very well in this type of 

landscape. The median speed of BA-HJ in both functions increased around four times 

compared to standard BA. Meanwhile, the performance of BA-HJ in low dimensional 

multimodal functions demonstrated some tremendous increase in the speed of the algorithm. 

Out of the four functions tested, three functions namely Goldstein and Price (f3), Six Hump 

Camel (f5) and Michalewicz (f6) gave better results than standard BA. Figures 3.2(c),(e),(f) 

show the convergence graphs of the algorithms. However, in Schaffer (f4), no significant 

improvement in the speed for both algorithms is observed. Nevertheless, as can be inferred 

from Figure 3.2(d), BA-HJ gave better fitness value at the beginning of the search compared 

to the standard BA due to the intensification of the local search but was insufficient to improve 

the final solution. 

 

In high dimensional unimodal functions like Hypersphere (f7), Powell (f9) and Axis (f10), BA-

HJ excelled in terms of speed compared to standard BA but both algorithms failed to converge 

in Rosenbrock (f8). However, there was an improvement in the accuracy of the solution for 

Rosenbrock (f8) by BA-HJ. The median accuracy of the BA-HJ was closer to the global 

optimum compared to the standard BA as recorded in Table 3.3. Figures 3.2(g),(h),(i),(j) show 

the convergence graphs of the algorithms. 

  

The set of benchmark functions used in this study comprised high dimensional multimodal 

functions such as Ackley (f11), Griewank (f12), Rastrigin (f13), Zakharov (f14) and Styblinsky-

Tang (f15). The convergence graphs of these functions are shown in Figures 3.2(k)-(o). The 
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BA-HJ outperformed the standard BA in four functions, Ackley (f11), Griewank (f12), Rastrigin 

(f13), and Zakharov (f14). However, the performance of BA-HJ in Styblinsky-Tang (f15) was 

weaker than the standard BA. As can be inferred from Table 3.3, the BA-HJ success rate was 

only 48% compared to 84% by the standard BA and the p-value in Table 3.4 shows that the 

result was significant. This is maybe due to the further intensification of the local search using 

the HJ method that had trapped the algorithm in the local optima of the Styblinsky-Tang (f15) 

and thus failed to converge. 

  

Overall, the experimental results revealed that the standard BA has difficulty in dealing with 

some extremely complex multimodal functions such as Michalewicz (f6), Ackley (f11), 

Griewank (f12), Rastrigin (f13) and Zakharov (f14). However, the success run, accuracy and 

convergence speed of the BA-HJ showed tremendous improvement in the case of these hard 

problems for the standard BA. This is because the pattern move in the HJ method can increase 

the number of directional searches of the standard BA. On the other hand, the global search 

mechanism in the BA-HJ can avoid premature convergence while approaching optimum by 

creating a large diversity of population. 

 

Comparison was also made with SPSO2011 and qABC to gauge the performance of the BA-

HJ.  Table 3.5 presents the comparison results of the algorithms for the same set of benchmark 

functions mentioned earlier. The best solutions were highlighted in boldface. The same method 

of comparison was adopted by using the Mann-Whitney significance test and the results were 

recorded in Table 3.6. As can be inferred from Table 3.5, BA-HJ outclassed SPSO2011 and 

qABC in eleven (f1, f2, f3, f5, f6, f7, f9, f10, f11, f13, and f14) out of fifteen functions. In the remaining 

four functions (f4, f8, f12 and f15), BA-HJ performed better than SPSO2011 in terms of the 
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accuracy in two functions (f8 and f15). No improvement in performance was noted for function 

f12 while SPSO2011 came out as the winner for function f4. Meanwhile, BA-HJ was better than 

qABC in functions f4 and f12. The results were comparable for functions f8 and f15. 
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To further compare the performance of the BA-HJ, standard BA, SPSO2011 and qABC in each 

benchmark functions, the results of 50 runs for all algorithms are shown in Figures 3.3 to 3.17. 

The speed performance was compared to see if many of the algorithms have found the optimum 

value whereas the accuracy performance was compared to assess if most of the algorithms have 

reached the maximum number of function evaluations. All figures clearly showed that BA-HJ 

produced a consistent result in all 50 runs for each function compared to others. This further 

validates the effectiveness of HJ in helping the search thus increasing the speed and accuracy 
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of the algorithm. The blue box in some of the figures represents the zoomed area of the graph 

for comparison purposes. 

 

3.5 Engineering benchmark constrained and mechanical design problems 

 

In this section, five well-studied constrained mechanical design problems are presented. These 

design problems have been solved and the best results obtained by the proposed BA-HJ have 

been compared with those produced by the standard BA and other algorithms reported in the 

literature. All the considered design problems have different kinds of objective functions, 

design variables, and constraints as shown in Table 3.7. These problems are discussed in detail 

in the following sub-sections and Appendix B. To evaluate the performance of the proposed 

BA-HJ for optimising the design problems, the parameter setting as in Table 3.8 was employed 

for both BA-HJ and the standard BA. Both algorithms were tested 30 times under the same 

environment using a computer with an Intel Xeon 2.40 GHz processor and 8GB of RAM. The 

maximum number of function evaluations was set to 30,000 for both algorithms. 
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Table 3.6: Statistical comparison between BA-HJ, SPSO2011 and qABC 

Function BA-HJ 
SPSO2011 qABC 

Accuracy Speed Accuracy Speed 
f1 1.0000 0.0000 1.0000 0.0000 
f2 1.0000 0.0000 1.0000 0.0000 
f3 1.0000 0.0000 1.0000 0.0000 
f4 1.0000 0.0000 1.0000 0.13104 
f5 1.0000 0.0000 1.0000 0.0000 
f6 1.0000 0.0000 1.0000 0.0000 
f7 1.0000 0.0000 1.0000 0.0000 
f8 0.0000 0.4902 0.07346 1.0000 
f9 1.0000 0.0000 1.0000 0.0000 
f10 1.0000 0.0000 1.0000 0.0000 
f11 0.0000 0.0000 0.0000 0.0000 
f12 0.62414 0.56192 0.0000 0.61006 
f13 0.0000 0.0000 0.01278 0.0000 
f14 0.0000 0.0000 0.0000 0.0000 
f15 0.0000 0.00988 0.0000 0.0027 
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Figure 3.3: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f1 
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Figure 3.4: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f3 
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Figure 3.6: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f4 

 

 

 

Figure 3.7: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f5 
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Figure 3.8: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f6 
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Figure 3.9: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f7 
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Figure 3.11: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f9 
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Figure 3.10: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f8 
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Figure 3.12: Comparison graph of speed performance between BA-HJ, SPSO2011 and qABC 
for f10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f11 
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Figure 3.14: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f12 
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Figure 3.15: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f13 
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Figure 3.16: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f14 
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Figure 3.17: Comparison graph of accuracy performance between BA-HJ, SPSO2011 and 
qABC for f15 
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Table 3.7: Constrained benchmark mechanical design problems 

No Problems No. of 
design 
variables 

Continuous 
design 
variables  

Discrete 
design 
variables  

No. of 
constraints 

Objective 

1 Three-bar truss 2 2 0 3 Minimise 
volume 

2 Tension/compression 
spring 

3 3 0 4 Minimise 
weight 

3 Pressure vessel 4 2 2 4 Minimise 
cost 

4 Welded beam 4 4 0 7 Minimise 
cost 

5 Speed reducer 7 6 1 11 Minimise 
weight 

 

 

Table 3.8: Parameter setting for constrained benchmark mechanical design problems 

Parameter Value 
Number of scout bees, ns 10 
Number of elite sites, ne 2 
Number of best sites, nb 5 
Recruited bees for elite sites, nre 8 
Recruited bees for remaining best sites, nrb 
Limit of stagnation cycles for site abandonment, stlim 

5 
5 

Initial size of neighbourhood, ngh  
1. Three-truss bar 
2. Tension/compression spring 
3. Pressure vessel 
4. Welded beam 
5. Speed reducer 

0.08 
0.003 
1.0 
0.08 
0.001 

 

 

3.5.1 Three-bar truss design problem 

 

The three-bar truss design problem is one of the engineering minimisation test problems for 

constrained algorithms. The objective of this design problem is to minimise the volume of a 

loaded three-bar truss subject to stress (r) constraints on each of the truss members by adjusting 

cross-sectional areas ( and ) as shown in Figure 3.18. The formulation of the problem is 

shown in Appendix B.1. 
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Figure 3.18: Schematic of three-bar truss design problem 

 

3.5.2 Tension/compression spring design problem 

 

This design optimisation problem as described by Arora (Arora, 1989) for which the objective 

is to minimise the weight of a tension/compression spring (Figure 3.19) subject to constraints 

on minimum deflection, shear stress, surge frequency, limits on outside diameter, and on design 

variables. The continuous independent variables are the wire diameter , the mean coil 

diameter , and the number of active coils . The formulation of the problem is 

presented in Appendix B.2. 

 

 

Figure 3.19: Tension/compression spring design problem 
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3.5.3 Pressure vessel design problem 

 

In this constrained optimisation problem, proposed by Kannan and Kramer (Kannan & Kramer, 

1994), the total cost of designing a pressure vessel is to be minimised (Figure 3.20). The total 

cost involves the cost of material, forming, and welding. The design variables for this 

optimisation problem are  ( , thickness of the shell), ( , thickness of the head), ( , 

inner radius), and ( , length of the cylindrical section of the vessel). The design variables, 

 and  are expected to be integer multiples of 0.0625 , and  and  are continuous 

variables. The mathematical formulation of the problem is presented in Appendix B.3. 

 

Figure 3.20: Pressure vessel design problem 

 

 

3.5.4 Welded beam design problem 

 

This well-known design problem (Figure 3.21) was proposed by Coello (Coello, 2000) aimed 

to minimise the cost of a welded beam design subject to constraints on shear stress ( ), bending 

stress ( ) in the beam, buckling load on the bar ( ), end deflection of the beam ( ), and side 

constraints. There are four design variables as shown in Appendix B.4: ( ), ( ), ( ) and 

( . 
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Figure 3.21: Welded beam design problem 

 

 

3.5.5 Speed reducer design problem 

 

The objective of this problem is to minimise the weight of the speed reducer (Figure 3.22) 

subject to constraints on bending stress of the gear teeth, surface stress, transverse deflections 

of the shafts, and stresses in the shafts (Mezura-Montes & Coello, 2005). Variables  to  in 

this problem represent the face width ( ), module of teeth ( ), number of teeth in the pinion 

( ), length of the first shaft between bearings ( ), length of the second shaft between bearings 

( ), and the diameter of first ( ), and second shafts ( ), respectively, as shown in Appendix 

B.5. The third variable  (number of teeth in the pinion) is of integer values while all other 

variables are continuous. 
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Figure 3.22: Speed reducer design problem 

 

3.5.6 Comparison results of BA-HJ and standard BA 

 

The performance of the newly developed algorithm, BA-HJ was compared to the standard BA 

on the five design problems presented in the previous sub-sections. Table 3.9 shows the best 

solutions for BA-HJ and the design variables obtained from the test experiments. The Mann-

Whitney significant test was used on the results for 30 independent runs for all problems. To 

determine whether the difference between the medians was statistically significant, the p-

values were compared to significance level of 0.05.  The difference between the population 

medians was statistically significant if the p-value was less or equal to 0.05. Conversely, there 

was not enough evidence to conclude the difference between the population medians if the p-

value was greater than 0.05.  

 

The comparison results are shown in Table 3.10 and the best solution and statistically 

significant median are highlighted in boldface. The best solution found by BA-HJ was better 

than standard BA in all five benchmark mechanical design problems. In terms of median 

solutions, the BA-HJ was significantly superior than the standard BA in pressure vessel, welded 

beam, and speed reducer problems. Both algorithms performed equally in three-bar truss and 

tension/compression spring problems.   
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Table 3.9: Best results obtained by BA-HJ for constrained benchmark mechanical design 
problems 

 Three-truss 
bar 

Tension/compression 
spring 

Pressure 
vessel 

Welded 
beam 

Speed 
reducer 

f(x) 263.8962445 0.012666717 6066.19086 1.737432914 3005.542698 
x1 0.78891855 0.051854723 0.8125 0.203246944 3.500003345 
x2 0.407563819 0.360703654 0.4375 3.525229355 0.700000383 
x3  11.05981036 42.06142524 9.050190466 17 
x4   177.1799022 0.206611094 7.848867419 
x5     7.812147392 
x6     3.36489985 
x7     5.28713161 

 

 

Table 3.10: Comparison of the statistical results obtained from BA-HJ and standard BA for 
constrained benchmark mechanical design problems 

Problem  Standard Bees 
Algorithm 

BA-HJ 

Three-bar truss Best 263.8964263 263.8962445 
Median 263.9015189 263.9015998 
Mean 263.9032913 263.9029512 
SD 0.005504271 0.005893028 
Worst 263.919459 263.9227632 
Evaluations 30,000 30,000 

Tension/compression 
spring 

Best 0.012670733 0.012666717 
Median 0.012681849 0.012682768 
Mean 0.012760301 0.012706748 
SD 0.00017804 5.53558E-05 
Worst 0.013402018 0.012871292 
Evaluations 30,000 30,000 

Pressure vessel Best 6119.246703 6066.19086 
Median 6222.419644 6176.766071 
Mean 6259.109338 6180.711514 
SD 126.2859774 65.45648595 
Worst 6522.111587 6294.84658 
Evaluations 30,000 30,000 

Welded beam Best 1.73958454 1.737432914 
Median 1.767187634 1.755177218 
Mean 1.766361958 1.758962845 
SD 0.0150332 0.0137442 
Worst 1.810428812 1.788860218 
Evaluations 30,000 30,000 

Speed reducer Best 3006.240405 3005.542698 
Median 3038.251131 3031.239948 
Mean 3035.608189 3029.411968 
SD 10.27826125 9.650873923 
Worst 3050.226338 3046.51389 
Evaluations 30,000 30,000 
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3.5.7 Comparison results with algorithms reported in the literature 

 

The BA-HJ performance in the five design problems was further compared to other algorithms 

available in the literature. In the three-truss bar design problem, their performance was 

compared to the Society and Civilisation algorithm (SC) (Ray & Liew, 2003) and Particle 

Swarm with Differential Evolution (PSO-DE) (Liu, Cai, & Wang, 2010). For 

tension/compression spring, pressure vessel, and welded beam optimisation problem, 

comparison were made with genetic algorithm with co-evolution adaptation (GA1) (Coello, 

2000), dominance-based selection scheme for genetic algorithm (GA2) (Coello & Montes, 

2002), unified particle swarm optimisation (UPSOm) (Parsopoulos & Vrahatis, 2005), artificial 

bee colony algorithm (ABC) (Akay & Karaboga, 2012), and PSO-DE. The chosen algorithms 

for speed reducer optimisation problem are SC, PSO-DE, and ABC. The statistical results are 

presented in Tables 3.11 to 3.15. 

 

As observed from Tables 3.11 through 3.15, the BA-HJ produced generally comparable results 

in comparison with other algorithms. Even though the comparison results showed that PSO-

DE found the best solution in three-truss bar and pressure vessel, ABC found the best solution 

in tension/compression spring and welded beam, and SC found the best solution in speed 

reducer, these results are comparatively close to the results of BA-HJ.  

Table 3.11: Comparison results for the three-truss bar optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 263.895846 263.903356 263.969756 17,610 
PSO-DE 263.89584338 263.89584338 263.89584338 17,600 
Bees Algorithm 263.8964263 263.9032913 263.919459 30,000 
BA-HJ 263.8962445 263.9029512 263.9227632 30,000 
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Table 3.12: BA-HJ comparison results for the tension/compression spring optimisation 
problem 

Algorithm Best Mean Worst Evaluations 
GA1 0.0127048 0.0127690 0.0128220 900,000 
GA2 0.0126810 0.0127420 0.0129730 80,000 
PSO-DE 0.012665233 0.012665233 0.012665233 42,100 
UPSOm 0.0131200 0.0229478 - 100,000 
ABC 0.012665 0.012709 - 30,000 
Bees Algorithm 0.012670733 0.012760301 0.013402018 30,000 
BA-HJ 0.012666717 0.012706748 0.012871292 30,000 

 

Table 3.13: BA-HJ comparison results for the pressure vessel optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA1 6288.7445 6293.8432 6308.4970 900,000 
GA2 6059.9463 6177.2533 6469.3220 80,000 
PSO-DE 6059.714335 6059.714335 6059.714335 42,100 
UPSOm 6544.27 9032.55 - 100,000 
ABC 6059.714736 6245.308144 - 30,000 
Bees Algorithm 6119.246703 6259.109338 6522.111587 30,000 
BA-HJ 6066.19086 6180.711514 6294.84658 30,000 

 

Table 3.14: BA-HJ comparison results for the welded beam optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA1 1.748309 1.771973 1.785835 900,000 
GA2 1.728226 1.792654 1.993408 80,000 
PSO-DE 1.724852309 1.724852309 1.724852309 66,600 
UPSOm 1.92199 2.83721 - 100,000 
ABC 1.724852 1.741913 - 30,000 
Bees Algorithm 1.73958454 1.766361958 1.810428812 30,000 
BA-HJ 1.737432914 1.758962845 1.788860218 30,000 

 

Table 3.15: BA-HJ comparison results for the speed reducer optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 2994.744241 3001.758264 3009.964736 54,456 
PSO-DE 2996.348165 2996.348165 2996.348166 70,100 
ABC 2997.058412 2997.058412 - 30,000 
Bees Algorithm 3006.240405 3035.608189 3050.226338 30,000 
BA-HJ 3005.542698 3029.411968 3046.51389 30,000 
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3.6 Summary 

 

This chapter presented the modified version of the Bees Algorithm called BA-HJ. It was aimed 

at enhancing the convergence speed by intensifying the local search phase of the algorithm 

using the HJ method. The proposed BA-HJ was tested on a set of unconstrained benchmark 

functions and has showed a very reliable performance in most cases. Then, when compared 

with the standard BA and two well-known swarm-based algorithms, the proposed BA-HJ 

demonstrated strong competitive results in terms of its success at locating the optimum 

solution, convergence speed, and accuracy. The pattern move element in the BA-HJ helped to 

increase the directional search in the local search and at the same time maintained the 

population diversity through its unique global search mechanism. 

 

Furthermore, the effectiveness of HJ in guiding local search in BA-HJ was shown in the results 

of constrained mechanical design optimisation problems. The proposed BA-HJ produced the 

best solution in all five design problems tested compared to standard BA. Finally, when 

compared to other algorithms reported in the literature, the proposed algorithm had shown 

comparable performance in terms of best solution found. 
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BEES ALGORITHM WITH CHAOS (CHAOSBA) 

 

4.1 Preliminaries 

 

Randomisation has been used by many algorithms in the local or global search procedure 

including the standard BA. This method is practised in the deployment of bees for the standard 

BA exploitation and exploration phases. Recently, chaotic sequences have been successfully 

adopted to replace the random method to enrich the search behaviour and to avoid getting 

trapped at local optima (Caponetto et al., 2003). In this chapter, the chaos method was used to 

propose the Bees Algorithm with Chaos (ChaosBA) and the performance of the algorithm was 

tested on several benchmark functions and applications. 

   

The rest of the chapter is organised as follows.  Section 4.2 presents the proposed ChaosBA, 

Section 4.3 and Section 4.4 respectively explain the experimental setup and the results obtained 

for unconstrained function optimisation; Section 4.5 presents the experimental setup and results 

for the selected constrained mechanical engineering benchmark problems; Section 4.6 

concludes the chapter. 

 

4.2 Bees Algorithm with Chaos (ChaosBA) 

 

The inspiration behind the development of ChaosBA was based on the idea of replacing the 

random method currently used in standard BA. Previous studies have shown improvements in 



68 
 

the performance of other algorithms using chaos sequences (Gandomi et al., 2013; Gandomi & 

Yang, 2014; Gholipour, Khosravi, & Mojallali, 2015; Lewis, 2014; Liu et al., 2005). Based on 

the consideration to take advantage of the well-known characteristics of the chaotic systems, 

ChaosBA was developed to enrich and increase the exploitation power of the standard BA in 

the quest to improve the performance of the algorithm. 

 

Chaos theory is coined by Lorenz (Lorenz, 1963) as the so-called ‘butterfly effect’ in his 

attempt to simulate the global weather system. He discovered that minute changes in the initial 

conditions directed the resulting simulations towards drastically different final results. In 

general, chaos is a classical nonlinear system characterised by ergodicity, randomicity, and 

sensitivity to its initial conditions (Koupaei, Hosseini, & Ghaini, 2016; Li & Jiang, 1998). Due 

to these unique characteristics, chaotic sequences generated from the well-known logistic map 

were used in ChaosBA. The logistic map equation employed in the proposed algorithm is as 

follows: 

  (15.1) 

where μ is a control parameter, n = 0,1,2,…, and x is a variable. Suppose 0 < < 0, 0 ≤ μ ≤ 4. 

It is easy to find that Eq. (4.1) is a deterministic system without any stochastic disturbance. It 

seems that its long-time behaviour can be predicted. But that is not true. The behaviour of 

system Eq. (4.1) is greatly changed with the variation of μ. When μ = 4, Eq. (4.1) behaves 

chaotically in an unpredictable pattern, the equation is changed to: 

  (4.2) 

As seen in Figure 4.1, the logistic map presents significantly different dynamics, periodic 

sequences in μ ≤ 3.71 and chaotic sequences in 3.71 ≤ μ ≤ 4. Very small changes in the initial 
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value of μ will cause a large difference in its long-term behaviour, a typical chaotic 

characteristic. 

 

The ChaosBA proposed in this chapter uses the chaotic sequences from Eq. (4.2) to generate 

new candidate solutions in the elite sites, best sites, and global search procedures. In the 

standard BA, after the elite and best sites are located, the process of producing new candidate 

solutions in the local search by sending out recruited bees are randomly generated. Similarly, 

the remaining bees in the global search procedure are also randomly produced in the search 

space. The procedures of ChaosBA is illustrated in the flowchart in Figure 4.2.  

 

Figure 4.1: Bifurcation diagram of logistic map 

 

ChaosBA begins with initialising the whole population as the scout bees. The idea was to get 

as many points as possible to cover the search space. In this case, the population was set to 100, 

therefore, the scout bees parameter was set to 100 for initialisation. According to the flowchart 

in Figure 4.2, ChaosBA continues with the fitness evaluations procedure to determine the elite 

and best sites for the local search procedure to take place. All procedures up to this phase are 
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similar to standard BA procedures. Once the elite and best sites are selected, the deployment 

of recruited bees for both sites is made by using chaotic sequences from Eq. (4.2).   

 

 

 

The points of the current elite and best sites were utilised as the initial points for the chaotic 

sequences to start with. After that, ChaosBA undergoes similar procedures as the standard BA 

Patch Shrinking 

Selection 

Patch Shrinking 

Fitness Evaluation 
Stop? 

Solution 

New Population  

Random initialisation 

Global Search 

Fitness Evaluations 

Local Search 

Site Abandonment Site Abandonment 

Select Fittest Patch Select Fittest Patch 

For unimproved site 

Chaos (ns-ne) 

Fitness Evaluation Fitness Evaluation 

Chaos Elite Sites 
(ne) nre bees per 

patch 

Chaos Best Sites 
(nb-ne) nrb bees 

per patch 

Figure 4.2: Flow chart of Bees Algorithm with chaos (ChaosBA) 
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to select the fittest patches for each site. For the global search procedure, ChaosBA uses Eq. 

(4.2) to generate chaotic sequences using the domains of the problem as the upper and lower 

limits. Finally, the points gathered from the local search (elite and best sites) and global search 

are put together in the newly improved population.   

4.3 Experimental Setup 

 

In general, the experimental setup in this chapter followed the setup as in Section 3.3. 

Moreover, this chapter used similar benchmark functions as in Appendix A and parameters 

setting in Table 3.1, as well as the stopping criteria described in Section 3.3. The performance 

of the proposed algorithm was compared to similar as algorithms in Section 3.3. 

 

4.4 Results and Discussion 

 

Likewise, the performance of ChaosBA was compared to the standard BA to measure the 

improvement of the algorithm. Table 4.1 presents the comparison between these two 

algorithms in terms of success runs, accuracy compared to the known optimum value, and 

convergence speed. The performance of the algorithm that is significant over the other is 

written in boldface. The Mann-Whitney significance test was used and the p-values for both 

algorithms are tabulated in Table 4.2. If both algorithms found the known optimum value of 

the function, the speed of the algorithm to get there was compared. Since the speed used in this 

research was the number of function evaluation being called during the search, the lesser speed 

indicates the better the algorithm for that function. 
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As seen in Table 4.1, there is a significant improvement in the results of the ChaosBA in the 

majority of the functions. Altogether, ChaosBA outperformed the standard BA in twelve out 

of fifteen benchmark functions. In the other three benchmark functions, the ChaosBA and 

standard BA produced a comparable performance. In addition, Figure 4.3 shows the sample 

graphs of convergence for both algorithms in all fifteen benchmark functions. As seen in some 

of the sample graphs such as Booth, Goldenstein & Price, Six Hump Camel, Rastrigin, Ackley 

and Zakharov, the ChaosBA managed to reach the optimum faster even though they started the 

search with higher fitness value than the standard BA. The simulation results above showed 

that the newly proposed optimisation method, ChaosBA has successfully improved the 

performance of the standard BA by utilising the three basic traits of chaotic variables, namely 

pseudo-randomness, ergodicity, and irregularity in its search. The addition of these unique 

characteristics showed that the capability and applicability of the proposed method were fully 

illustrated through all the benchmark functions simulation results. 

Table 4.1: Performance comparison between standard Bees Algorithm and ChaosBA 

Function Standard Bees Algorithm ChaosBA 
Success Accuracy Speed Success Accuracy Speed 

f1  50 3.90E-04 1376 50 3.99E-04 900 
f2 50 3.81E-04 1226 50 4.21E-04 1000 
f3 50 5.06E-04 1826 50 4.27E-04 1802.5 
f4 50 2.39E-04 7583.5 50 1.63E-04 2552 
f5 50 3.90E-04 926 50 2.83E-04 650 
f6 50 5.20E-04 96096.5 23 4.12E-02 500000 
f7 50 7.95E-04 12326 50 8.11E-04 5058 
f8 0 4.54E+00 500000 0 2.75E+00 500000 
f9 8 1.56E-03 500000 50 7.74E-04 38294 
f10 50 7.55E-04 17776 50 8.29E-04 10274 
f11 0 2.16E+00 500000 0 7.26E-02 500000 
f12 0 1.06E-01 500000 0 1.01E-01 500000 
f13 0 1.20E+01 500000 0 1.06E-02 500000 
f14 50 8.93E-04 20826 50 7.90E-04 11881 
f15 42 4.87E-04 231150 50 6.03E-04 10272 
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Table 4.2: Statistical comparison between standard Bees Algorithm and ChaosBA 

Function Standard Bees Algorithm 
ChaosBA 

Accuracy 
(p-value) 

Speed 
(p-value) 

f1 1.0000 0.0010 
f2 1.0000 0.0018 
f3 1.0000 0.1310 
f4 1.0000 0.0000 
f5 1.0000 0.0002 
f6 0.0000 0.0000 
f7 1.0000 0.0000 
f8 0.0000 1.0000 
f9 0.0000 0.0000 
f10 1.0000 0.0000 
f11 0.0000 1.0000 
f12 0.6892 1.0000 
f13 0.0000 1.0000 
f14 1.0000 0.0001 
f15 1.0000 0.0000 
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In order to test the performance of the proposed method, SPSO2011 and qABC were introduced 

for comparison as in Chapter 3. The comparison of the algorithms performance in the fifteen 

benchmark functions is shown in Table 4.3 and the results of the significance test are presented 

in Table 4.4. The results that show significance over the other is written in boldface. Overall, 

ChaosBA outperformed SPSO2011 and qABC in eleven out of fifteen benchmark functions. 

The effectiveness of chaos in ChaosBA helped the algorithm to perform faster in unimodal 

functions like Martin & Gaddy, Booth, Hypersphere, Powell and Axis. However, ChaosBA 

could not surpass the performance of qABC in Rosenbrock. Additionally, the performance of 

ChaosBA was significantly better than SPSO2011 and qABC in multimodal functions such as 

Goldenstein & Price, Schaffer, Six Hump Camel, Griewank, Zakharov and Styblinski-Tang. 

Nonetheless, qABC showed better results than ChaosBA in Michalewicz, Ackley and Rastrigin. 

 

As mentioned in the previous chapter, the algorithms were run 50 times for each benchmark 

function. To observe the consistency of the results, comparison graphs of the algorithm’s 

performance in every benchmark function were exhibited in Figures 4.4 through 4.18. The 

speed of the algorithms was compared to assess if most of the algorithms found the optimum 

value of the function while the accuracy of the algorithms was compared to evaluate if most of 

the algorithms had reached the maximum function evaluations without converging to the global 

optimum. The blue box in some of the figures represents the zoomed area of the graph for clear 

comparison. As seen from the graphs, the ChaosBA performances are quite consistent in all 50 

runs for each benchmark function. These graphs indicate that the implementation of the chaos 

method in the proposed algorithm not only improved the accuracy and speed but also helped 

to maintain the consistency of the algorithm in most of the benchmark functions. 
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Table 4.4: Statistical comparison between ChaosBA, SPSO2011 and qABC 

Function ChaosBA 
SPSO2011 qABC 

Accuracy Speed Accuracy Speed 
f1 1.0000 0.0000 1.0000 0.0000 
f2 1.0000 0.0000 1.0000 0.0000 
f3 1.0000 0.0000 1.0000 0.0198 
f4 1.0000 0.0332 1.0000 0.0002 
f5 1.0000 0.0000 1.0000 0.0000 
f6 0.4777 0.0536 0.0000 0.0000 
f7 1.0000 0.0000 1.0000 0.0000 
f8 0.0000 0.4902 0.0000 1.0000 
f9 1.0000 0.0000 1.0000 0.0000 
f10 1.0000 0.0000 1.0000 0.0000 
f11 0.0000 1.0000 0.0000 0.0000 
f12 0.0000 0.3030 0.0000 1.0000 
f13 0.0000 1.0000 0.0000 0.0000 
f14 1.0000 0.0000 0.0000 0.0000 
f15 0.0000 0.0000 0.6599 0.0000 
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Figure 4.6: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f3 
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Figure 4.8: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f5 
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qABC for f4 



81 
 

 

Figure 4.9: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f6 
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Figure 4.10: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f7 
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Figure 4.11: Comparison graph of accuracy performance between ChaosBA, SPSO2011 and 
qABC for f8 

 

 

Figure 4.12: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f9 
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Figure 4.13: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f10 

 

 

Figure 4.14: Comparison graph of accuracy performance between ChaosBA, SPSO2011 and 
qABC for f11 
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Figure 4.15: Comparison graph of accuracy performance between ChaosBA, SPSO2011 and 
qABC for f12 
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Figure 4.16: Comparison graph of accuracy performance between ChaosBA, SPSO2011 and 
qABC for f13 
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Figure 4.17: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f14 

 

 

Figure 4.18: Comparison graph of speed performance between ChaosBA, SPSO2011 and 
qABC for f15 
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4.5 Engineering benchmark constrained and mechanical design problems 

 

To further test the proposed optimisation method’s capability of handling more complex real 

problems, the proposed ChaosBA was tested on a set of constrained mechanical design problem 

with experimental setup as explained in Section 3.5. To make a fair comparison throughout the 

experiment, a similar parameter setting as in Table 3.7 was adopted in this exercise. 

Correspondingly, ChaosBA was tested 30 times under the same environment using a computer 

with an Intel Xeon 2.40 GHz processor and 8GB of RAM. The maximum number of function 

evaluations was set to 30,000. The results of the ChaosBA were compared to the standard BA 

and other well-known algorithms from the literature. The best solutions and parameters 

obtained by ChaosBA for the benchmark mechanical design problems are presented in Table 

4.5. Further, Table 4.6 presents the statistical comparison between ChaosBA and the standard 

version of BA. Similarly, the Mann-Whitney significance test was used in the comparison and 

the statistically significant median and the best solution are shown in boldface. 

 

As seen in Table 4.6, ChaosBA produces the best solutions in all five constrained benchmark 

mechanical design problems tested in this exercise. In the median solutions of the 30 

independent runs for each problem, ChaosBA results were significantly better than the standard 

BA in the speed reducer problem. However, the experimental results reveal that the 

performance of ChaosBA in the three-truss bar, spring and welded beam were comparable to 

the standard BA based on the test by Mann-Whitney that show non-significant values for the 

aforementioned problems. On the contrary, the standard BA showed a significantly better 

performance than ChaosBA in the pressure vessel problem. The implementation of chaos in 

ChaosBA seemed to hamper the performance of the algorithm in this design problem. 



87 
 

Table 4.5: Best results obtained by ChaosBA for constrained benchmark mechanical design 
problems 

 Three-truss 
bar 

Tension/compression 
spring 

Pressure 
vessel 

Welded 
beam 

Speed 
reducer 

f(x) 263.8959558 0.012668692 6102.338976 1.735254909 2999.052075 
x1 0.788626505 0.052012134 0.8125 0.20456954 3.500016455 
x2 0.40838696 0.364513649 0.4375 3.502195764 0.700000015 
x3  10.84720497 41.99251914 9.084976954 17 
x4   178.8954069 0.205670748 7.449262502 
x5     7.847933958 
x6     3.351446569 
x7     5.2867058 

 

Table 4.6: Comparison of the statistical results obtained from ChaosBA and standard BA for 
constrained benchmark mechanical design problems 

Problem  Standard Bees 
Algorithm 

ChaosBA 

Three-bar truss Best 263.8964263 263.8959558 
Median 263.9015189 263.9037329 
Mean 263.9032913 263.9048236 
SD 0.005504271 0.00682598 
Worst 263.919459 263.9226124 
Evaluations 30,000 30,000 

Tension/compression 
spring 

Best 0.012670733 0.012668692 
Median 0.012681849 0.012698967 
Mean 0.012760301 0.012798607 
SD 0.00017804 0.000245459 
Worst 0.013402018 0.013712851 
Evaluations 30,000 30,000 

Pressure vessel Best 6119.246703 6102.338976 
Median 6222.419644 6654.207513 
Mean 6259.109338 6590.201192 
SD 126.2859774 234.6677032 
Worst 6522.111587 7050.021657 
Evaluations 30,000 30,000 

Welded beam Best 1.73958454 1.735254909 
Median 1.767187634 1.758684186 
Mean 1.766361958 1.762479433 
SD 0.0150332 0.014575534 
Worst 1.810428812 1.793574405 
Evaluations 30,000 30,000 

Speed reducer Best 3006.240405 2999.052075 
Median 3038.251131 3027.828475 
Mean 3035.608189 3025.771844 
SD 10.27826125 10.98674355 
Worst 3050.226338 3051.562288 
Evaluations 30,000 30,000 

 

 



88 
 

Further comparison was made to the results of ChaosBA and other algorithms in the 

engineering application design problems as in the previous chapter. In this case, SCA and PSO-

DE were compared in the three-bar truss problem, while GA1, GA2, PSO-DE, UPSOm, and 

ABC were used in the spring, pressure vessel, and welded beam problems. Also, comparison 

was made with SC, PSO-DE and ABC in the speed reducer problem. Tables 4.7 to 4.11 exhibit 

the comparison results for all constrained mechanical design problems. In all five design 

problems, the results show that the ChaosBA performance is comparable to other algorithms 

as far as the best solutions are concerned. 

Table 4.7: ChaosBA comparison results for the three-truss bar optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 263.895846 263.903356 263.969756 17,610 
PSO-DE 263.89584338 263.89584338 263.89584338 17,600 
Bees Algorithm 263.8964263 263.9032913 263.919459 30,000 
ChaosBA 263.8959558 263.9048236 263.9226124 30,000 

 

 

Table 4.8: ChaosBA comparison results for the tension/compression spring optimisation 
problem 

Algorithm Best Mean Worst Evaluations 
GA3 0.0127048 0.0127690 0.0128220 900,000 
GA4 0.0126810 0.0127420 0.0129730 80,000 
PSO-DE 0.012665233 0.012665233 0.012665233 42,100 
UPSOm 0.0131200 0.0229478 - 100,000 
ABC 0.012665 0.012709 - 30,000 
Bees Algorithm 0.012670733 0.012760301 0.013402018 30,000 
ChaosBA 0.012668692 0.012798607 0.013712851 30,000 

 

 

Table 4.9: ChaosBA comparison results for the pressure vessel optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA3 6288.7445 6293.8432 6308.4970 900,000 
GA4 6059.9463 6177.2533 6469.3220 80,000 
PSO-DE 6059.714335 6059.714335 6059.714335 42,100 
UPSOm 6544.27 9032.55 - 100,000 
ABC 6059.714736 6245.308144 - 30,000 
Bees Algorithm 6119.246703 6259.109338 6522.111587 30,000 
ChaosBA 6102.338976 6590.201192 7050.021657 30,000 
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Table 4.10: ChaosBA comparison results for the welded beam optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA3 1.748309 1.771973 1.785835 900,000 
GA4 1.728226 1.792654 1.993408 80,000 
PSO-DE 1.724852309 1.724852309 1.724852309 66,600 
UPSOm 1.92199 2.83721 - 100,000 
ABC 1.724852 1.741913 - 30,000 
Bees Algorithm 1.73958454 1.766361958 1.810428812 30,000 
ChaosBA 1.735254909 1.762479433 1.793574405 30,000 

 

  

Table 4.11: ChaosBA comparison results for the speed reducer optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 2994.744241 3001.758264 3009.964736 54,456 
PSO-DE 2996.348165 2996.348165 2996.348166 70,100 
ABC 2997.058412 2997.058412 - 30,000 
Bees Algorithm 3006.240405 3035.608189 3050.226338 30,000 
ChaosBA 2999.052075 3025.771844 3051.562288 30,000 

 

 

4.6 Summary 

 

This chapter presented the Bees Algorithm with chaos (ChaosBA) which intended to improve 

the convergence speed and solution accuracy of the standard BA. A well-known logistic map 

was utilised to generate the chaotic sequences for local and global search procedures in the 

proposed algorithm. Randomly generated points in the standard BA were replaced by these 

chaotic sequences in the deployment method of the recruited bees. The effectiveness of the 

ChaosBA was evaluated in fifteen unconstrained benchmark functions with different 

dimensions and characteristics, as well as five constrained mechanical design problems.  

 

The proposed algorithm performed effectively for the unconstrained benchmark functions 

compared to the standard BA. The experimental results revealed that the proposed algorithm 

is an efficient and effective algorithm in comparison with the standard BA including difficult 
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multimodal functions such as Rosenbrock, Powell, Ackley, and Rastrigin. Comparison results 

with another two state-of-the-art algorithms also provided evidence that the ChaosBA 

performance is significantly better for most of the test functions. The efficiency of the proposed 

algorithm was due to its impressive combination of pseudo-randomness, ergodicity, and 

irregularity properties of chaotic approach of the local search in avoiding being trapped at local 

optima and the desirable global search ability of the ChaosBA. The results proved that a chaotic 

sequence can have a noticeable effect on the performance of ChaosBA for unconstrained 

benchmark functions. Additionally, ChaosBA found the best solution in all constrained design 

problems and performs effectively for engineering applications such as in the speed reducer 

problem when compared to the standard BA. Most importantly, the performance of ChaosBA 

in the design problems was found to be comparable with other well-known algorithms in the 

literature.  
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BEES ALGORITHM WITH ESTIMATION DISTRIBUTION (BAED) 

 

5.1 Preliminaries 

 

The ability to use any information during the initial search to aid an algorithm in the next search 

phase is ideal for finding the optimum solution. Information from the current best solutions 

could provide the algorithm with a clue to which direction the next search should be conducted. 

Therefore, this chapter proposes a new variant of Bees Algorithm that utilises the Estimation 

Distribution Algorithm (EDA) method in the best solution found so far.       

 

The remainder of this chapter is organised as follows. Section 5.2 presents the EDA method 

and the proposed Bees Algorithm with Estimation Distribution (BAED), Section 5.3 explains 

the experimental setup for unconstrained benchmark functions followed by the results and 

discussion in Section 5.4. The experimental setup and results for constrained mechanical 

engineering benchmark problems are presented and discussed in Section 5.5.  Section 5.6 

summarises the chapter. 

 

5.2 Bees Algorithm with Estimation Distribution (BAED) 

 

In this section, a new variant of Bees Algorithm is developed with the aim of using the current 

information of the best solutions to guide the search towards a promising area by sampling new 

solutions from a probability model inspired by EDA. BAED uses the EDA method on the “best 
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bees” before the local and global search procedures intended to provide solutions which are 

more promising than solutions currently generated. 

 

EDA is a stochastic optimisation technique that searches for potential solutions in the search 

space by building and sampling probabilistic models to generate promising candidate solutions 

(Hauschild & Pelikan, 2011; Larrañaga & Lozano, 2002). In general, EDA typically works in 

three phases as follows (Ahn, An, & Yoo, 2012): 

Step 1: Select good individuals from a population. 

Step 2: Estimate the probability distribution from the selected individuals. 

Step 3: Generate new individuals from the estimated distribution. 

The probability distribution of the promising solutions can be modelled by the Gaussian 

distribution (Larrañaga & Lozano, 2002), Gaussian mixture (Bosman & Thierens, 2000) or a 

histogram (Tsutsui et al., 2001).  

 

Initially, EDA generates a set of random individuals from the search space. These individuals 

are scored using the fitness function to give a numerical ranking on how accurate each 

individual is for the given problem. The higher the rank the better the solution. Based on this 

ranked population, a subset of the most promising solutions is selected by a truncation selection 

method. Then, EDA constructs a probabilistic model to estimate the probability distribution of 

the selected individuals. Once the model is constructed, a new set of individuals are generated 

by sampling the distribution. These newly generated individuals are then combined with the 

initial population. This process is iterated until the optimum solution is found or the number of 

iterations has reached a certain threshold.     
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The proposed BAED uses a similar method in EDA to generate new candidate solutions from 

the existing population during the initialisation phase of the standard BA. However, few 

modifications have been implemented in terms of the selection procedure, sampling of the 

probability distribution and number of candidate solutions to be generated. These modifications 

are important to suit this method into the learning mechanisms and parameters of BAED. 

Figure 5.1 illustrates the process of new population generation in BAED.  

 

 

 
 
After the initialisation phase, the population is evaluated and ranked. From this ranked 

population, a subset of the most promising solutions is selected as best sites according to 

standard BA parameter. An example selection is best sites nb = 5 and elite sites ne = 2 as 

Figure 5.1: Population operation diagram for BAED 

Best sites 

“New” Best sites 

“New” Elite sites 

Elite sites Worst sites 

ED generated sites 
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demonstrated in Figure 5.1. Then, the algorithm estimates the probability distribution of the 

selected best sites and a probabilistic model using the Gaussian distribution is constructed. 

Thus, the new candidate solutions are generated by sampling the distribution induced by this 

model.  

 

The candidate solutions are then evaluated and merged back into the old population to be 

ranked once again. Finally, the ranked population is truncated according to the parameter of 

BAED for number of scout bees, ns. The newly truncated population now has new best sites 

and elite sites to be carried over for the exploitation and exploration phases in local search and 

global search respectively. The process is repeated until some termination criteria are met. The 

termination criteria are typically when the optimum solution is found, or a number of iterations 

have elapsed. The overall procedure of BAED is outlined in Figure 5.2.         

 

5.3 Experimental setup 

 

In this chapter, the performance of BAED was tested on the same set of benchmark functions 

as in Section 3.3 and Section 4.3 (see Appendix A). Similar stopping criteria and parameters 

setting as in previous experimental setups in Chapter 3 and Chapter 4 was also used in this 

chapter for BAED as well as for SPSO2011 and qABC. For comparison purposes, the Mann-

Whitney statistical significance test was used as in the previous chapters.  
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Figure 5.2: Flow chart of Bees Algorithm with estimation distribution (BAED) 
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5.4 Results and Discussion 

 

Table 5.1 shows the comparison of BAED and the standard BA performances over 50 runs. 

Based on the median speed results in Table 5.1, the BAED demonstrates significantly better 

speed than the standard BA in all low dimensional benchmark functions (f1-f6). The comparison 

shows an improvement in speed which varies from 52% to 90%. In high dimensional 

benchmark functions (f7-f15), the BAED found an optimum value faster than standard BA in 

Hypersphere, Powell, Axis, Zakharov and Styblinski-Tang. Meanwhile, for functions Ackley, 

Griewank, and Rastrigin the BAED finds better median accuracy than the standard BA even 

though both algorithms failed to converge to the optimum values. Overall, the experimental 

results revealed that the proposed algorithm outperforms the standard BA in fourteen out of 

fifteen benchmark functions. Table 5.2 presents the summary of the statistical significance test 

conducted between the two algorithms. The algorithm that shows significance over the other 

is highlighted in boldface. Furthermore, Figures 5.2 to 5.7 show the convergence graphs of 

both algorithms for all fifteen benchmark functions. 

 

Based on the performance of the proposed algorithm in the unconstrained benchmark functions 

simulation above, it is evident that the inclusion of the EDA method in utilising the current best 

population’s information has helped the BAED to converge faster than the standard BA. The 

adoption of the EDA method in the local search procedures has increased the ability of the elite 

bees to find the most promising points in the search area by using the probabilistic model. 

Therefore, the efficiency of the proposed algorithm has been fully illustrated in the 

improvement of difficult functions for the standard BA including Michalewicz, Powell, Axis, 

Zakharov and Styblinski-Tang. However, the BAED performance in the Rosenbrock function 
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with the global optimum located inside a long, narrow, parabolic shaped flat valley has caused 

problems to the algorithm, thus failing to find the optimum value. The EDA method in the 

proposed algorithm was unable to help the local search in this type of function and the results 

showed that the standard BA accuracy was significantly better than the BAED even though 

both did not converge.   

Table 5.1: Performance comparison between standard Bees Algorithm and BAED 

Function Standard Bees Algorithm BAED 
Success Accuracy Speed Success Accuracy Speed 

f1  50 3.90E-04 1376 50 2.39E-04 656 
f2 50 3.81E-04 1226 50 2.58E-04 530 
f3 50 5.06E-04 1826 50 2.32E-04 782 
f4 50 2.39E-04 7583.5 50 1.10E-04 782 
f5 50 3.90E-04 926 50 2.03E-04 404 
f6 50 5.20E-04 96096.5 50 2.34E-04 11748.5 
f7 50 7.95E-04 12326 50 7.03E-04 2231 
f8 0 4.54E+00 500000 0 5.77E+00 500000 
f9 8 1.56E-03 500000 50 9.34E-04 98939 
f10 50 7.55E-04 17776 50 8.28E-04 3176 
f11 0 2.16E+00 500000 7 1.32E-01 500000 
f12 0 1.06E-01 500000 9 1.51E-02 500000 
f13 0 1.20E+01 500000 2 1.99E+00 500000 
f14 50 8.93E-04 20826 50 8.75E-04 7964 
f15 42 4.87E-04 231150 50 5.76E-04 25104.5 

 

Table 5.2: Statistical comparison between standard Bees Algorithm and BAED 

Function Standard Bees Algorithm 
BAED 

Accuracy 
(p-value) 

Speed 
(p-value) 

f1 1.0000 0.0000 
f2 1.0000 0.0000 
f3 1.0000 0.0000 
f4 1.0000 0.0000 
f5 1.0000 0.0000 
f6 1.0000 0.0000 
f7 1.0000 0.0000 
f8 0.0111 1.0000 
f9 0.0000 0.0000 
f10 1.0000 0.0000 
f11 0.0000 0.2301 
f12 0.0000 0.1211 
f13 0.0000 0.7279 
f14 1.0000 0.0000 
f15 0.8808 0.0000 
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Furthermore, the performance of BAED was compared to SPSO2011 and qABC in similar 

benchmark functions. The results for 50 runs were tabulated in Table 5.3 and the p-values for 

accuracy and speed were recorded in Table 5.4. As seen in Table 5.3, the BAED outperforms 

the other algorithms in eleven out of fifteen benchmark functions. The BAED seems to work 

exceptionally well in low dimensional benchmark functions (f1-f6) compared to SPSO2011 and 

qABC especially in Michalewicz, Schaffer, and Martin and Gaddy. Tremendous improvement 

has been observed in the Michalewicz function where the median speed of BAED is 37 times 

and 9 times faster than SPSO2011 and qABC, respectively. Moreover, BAED maintains 100% 

success rate in all 50 runs in low dimensional functions (f1-f6). 
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Meanwhile, the performance of BAED in high dimensional benchmark functions (f7-f15) 

compared to SPSO2011 and qABC is excellent. In high dimensional unimodal functions (f7-

f10), the BAED produces the best results in Hypersphere and Axis, qABC in Rosenbrock and 

BAED and qABC produce comparable performance but better than SPSO2011 in Powell. The 

results in high dimensional multimodal functions (f11-f15) show that BAED found that the 

optimum is faster in Griewank, Zakharov and Styblinski-Tang. However, in Ackley and 

Rastrigin the best performer is qABC with a higher number of success rate in the 50 runs 

conducted. 

 

To further compare the performance of BAED, SPSO2011, and qABC, comparison graphs for 

50 runs in each function have been constructed as in Figures 5.8 to 5.22. The blue box in some 

of the graphs represents a zoomed area for clarity purposes. For each function, the graph of 

speed is compared whether the algorithms have found the optimum value and inversely, the 

graph of accuracy is compared whether the algorithms could not find the optimum until the 

maximum number of iterations has elapsed. The definition of speed in this research is the 

number of function evaluation being called by the function and accuracy is defined as the 

difference between the best value found and the optimum value. The smaller the value of the 

speed of the algorithm, the faster the algorithm is in attaining the optimum value. 

   

As can be inferred from the comparison graphs, in most functions the BAED shows good 

consistency in the 50 experimental runs. This characteristic indicates that the performance of 

the proposed algorithm is reliable and the improvement to the standard BA is significant and 

is not achieved by random coincidences. 
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Table 5.4: Statistical comparison between BAED, SPSO2011 and qABC 

Function BAED 
SPSO2011 qABC 

Accuracy Speed Accuracy Speed 
f1 1.0000 0.0000 0.0000 0.0000 
f2 1.0000 0.0000 0.0615 0.0000 
f3 1.0000 0.0000 1.0000 0.0000 
f4 1.0000 0.0000 0.0000 0.0000 
f5 1.0000 0.0000 1.0000 0.0000 
f6 0.0244 0.0000 1.0000 0.0000 
f7 1.0000 0.0000 1.0000 0.0000 
f8 0.0035 0.4902 0.0000 1.0000 
f9 1.0000 0.3421 0.0004 0.0000 
f10 1.0000 0.0000 1.0000 0.0000 
f11 0.0000 0.2301 0.0000 0.0854 
f12 0.0001 0.7114 0.0000 0.1211 
f13 0.0000 0.7279 0.0000 0.0000 
f14 1.0000 0.0000 0.0000 0.0000 
f15 0.0000 0.0000 0.5029 0.0000 
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Figure 5.4: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f1 



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

100000

200000

300000

400000

500000

600000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sp
ee

d

Number of runs

Standard BA BAED SPSO2011 qABC

0

-1000

1000

3000

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sp
ee

d

Number of runs

0

50000

100000

150000

200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sp
ee

d

Number of runs

Standard BA BAED SPSO2011 qABC

0

-1000

1000

3000

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sp
ee

d

Number of runs
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Figure 5.6: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f3 
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Figure 5.8: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f5 
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Figure 5.9: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f6 

 

 

Figure 5.10: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f7 
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Figure 5.11: Comparison graph of accuracy performance between BAED, SPSO2011 and 
qABC for f8 

 

 

Figure 5.12: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f9 
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Figure 5.13: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f10 

 

Figure 5.14: Comparison graph of accuracy performance between BAED, SPSO2011 and 
qABC for f11 
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Figure 5.15: Comparison graph of accuracy performance between BAED, SPSO2011 and 
qABC for f12 

 

 

Figure 5.16: Comparison graph of accuracy performance between BAED, SPSO2011 and 
qABC for f13 
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Figure 5.17: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f14 

 

 

Figure 5.18: Comparison graph of speed performance between BAED, SPSO2011 and qABC 
for f15 
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5.5 Engineering benchmark constrained and mechanical design problems 

 

This section presents the performance of BAED on a set of constrained mechanical design 

problems as in Section 3.5 and Section 4.5. The parameter settings as previously adopted from 

Table 3.7 were used throughout this experiment and the stopping criteria and number of runs 

were set at 30,000 function evaluations and 30 times, respectively. Similarly, the Mann-

Whitney significance test was used to determine whether the difference between the medians 

were statistically significant and the p-values were compared to significance level of 0.05. The 

results of BAED were compared to the standard BA and other selected algorithms reported in 

the literature. The best solutions and parameters obtained by BAED for the five constrained 

benchmark mechanical design problems are presented in Table 5.5. In addition, Table 5.6 

shows the statistical results of BAED and the standard BA. The comparisons were made on the 

best solutions and medians obtained. The best results are written in boldface. 

Table 5.5: Best results obtained by BAED for constrained benchmark mechanical design 
problems 

 Three-truss 
bar 

Tension/compression 
spring 

Pressure 
vessel 

Welded 
beam 

Speed 
reducer 

f(x) 263.8958485 0.01266783 6068.717201 1.725871682 2996.3563 
x1 0.788657254 0.051834644 0.8125 0.205939743 3.500002974 
x2 0.408298916 0.360192003 0.4375 3.469242949 0.700000011 
x3  11.089647 42.08819024 9.031924329 17 
x4   176.7638704 0.205949659 7.300228813 
x5     7.800000042 
x6     3.350216172 
x7     5.286690329 

    

The performance of BAED is observed in Table 5.6. In all design problems tested, BAED 

produces better best solutions than standard BA. Nevertheless, BAED is significantly better in 

the three-truss bar, welded beam, and speed reducer problem in terms of the median data from 

30 individual runs. According to Mann-Whitney significance test, there were no significant 
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differences between the solutions obtained from BAED and standard BA for 

tension/compression spring and pressure vessel. 

Table 5.6: Comparison of the statistical results obtained from BAED and standard BA for 
constrained benchmark mechanical design problems 

Problem  Standard Bees 
Algorithm 

BAED 

Three-bar truss Best 263.8964263 263.8958485 
Median 263.9015189 263.8979926 
Mean 263.9032913 263.8985122 
SD 0.005504271 0.00204039 
Worst 263.919459 263.9057836 
Evaluations 30,000 30,000 

Tension/compression 
spring 

Best 0.012670733 0.01266783 
Median 0.012681849 0.012682025 
Mean 0.012760301 0.012683243 
SD 0.00017804 9.8593E-06 
Worst 0.013402018 0.012709633 
Evaluations 30,000 30,000 

Pressure vessel Best 6119.246703 6068.717201 
Median 6222.419644 6180.218102 
Mean 6259.109338 6280.003493 
SD 126.2859774 181.9933838 
Worst 6522.111587 6848.8576 
Evaluations 30,000 30,000 

Welded beam Best 1.73958454 1.725871682 
Median 1.767187634 1.727991681 
Mean 1.766361958 1.728883382 
SD 0.0150332 0.002299125 
Worst 1.810428812 1.735313946 
Evaluations 30,000 30,000 

Speed reducer Best 3006.240405 2996.3563 
Median 3038.251131 2996.828155 
Mean 3035.608189 2998.712697 
SD 10.27826125 6.212292616 
Worst 3050.226338 3030.379617 
Evaluations 30,000 30,000 

 

Regarding the comparison with other algorithms from the literature, BAED was compared to 

previously solved problems as shown in Tables 5.7 to 5.11. As can be inferred from Table 5.7, 

the performance of BAED in terms of best solution for the three-truss bar problem is 

comparable to other algorithms. The difference in the best solutions found is relatively very 

small. 
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For tension/compression spring problem as shown in Table 5.8, the best solution is produced 

by ABC. The best solution of PSO-DE came second and BAED third. However, the best 

solution of these three top-ranked algorithms for this tension/compression spring problem can 

be said to be comparable to each other because differences were small. The performance of 

BAED in the remaining three mechanical design problems, pressure vessel, welded beam, and 

speed reducer were also found comparable to the other well-known algorithms. 

      

Table 5.7: BAED comparison results for the three-truss bar optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 263.895846 263.903356 263.969756 17,610 
PSO-DE 263.89584338 263.89584338 263.89584338 17,600 
Bees Algorithm 263.8964263 263.9032913 263.919459 30,000 
BAED 263.8958485 263.8985122 263.9057836 30,000 

 

 

Table 5.8: BAED comparison results for the tension/compression spring optimisation 
problem 

Algorithm Best Mean Worst Evaluations 
GA3 0.0127048 0.0127690 0.0128220 900,000 
GA4 0.0126810 0.0127420 0.0129730 80,000 
PSO-DE 0.012665233 0.012665233 0.012665233 42,100 
UPSOm 0.0131200 0.0229478 - 100,000 
ABC 0.012665 0.012709 - 30,000 
Bees Algorithm 0.012670733 0.012760301 0.013402018 30,000 
BAED 0.01266783 0.012683243 0.012709633 30,000 

 

 

Table 5.9: BAED comparison results for the pressure vessel optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA3 6288.7445 6293.8432 6308.4970 900,000 
GA4 6059.9463 6177.2533 6469.3220 80,000 
PSO-DE 6059.714335 6059.714335 6059.714335 42,100 
UPSOm 6544.27 9032.55 - 100,000 
ABC 6059.714736 6245.308144 - 30,000 
Bees Algorithm 6119.246703 6259.109338 6522.111587 30,000 
BAED 6068.717201 6280.003493 6848.8576 30,000 
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Table 5.10: BAED comparison results for the welded beam optimisation problem 

Algorithm Best Mean Worst Evaluations 
GA3 1.748309 1.771973 1.785835 900,000 
GA4 1.728226 1.792654 1.993408 80,000 
PSO-DE 1.724852309 1.724852309 1.724852309 66,600 
UPSOm 1.92199 2.83721  100,000 
ABC 1.724852 1.741913 - 30,000 
Bees Algorithm 1.73958454 1.766361958 1.810428812 30,000 
BAED 1.725871682 1.728883382 1.735313946 30,000 

 

 

Table 5.11: BAED comparison results for the speed reducer optimisation problem 

Algorithm Best Mean Worst Evaluations 
SC 2994.744241 3001.758264 3009.964736 54,456 
PSO-DE 2996.348165 2996.348165 2996.348166 70,100 
ABC 2997.058412 2997.058412 - 30,000 
Bees Algorithm 3006.240405 3035.608189 3050.226338 30,000 
BAED 2996.3563 2998.712697 3030.379617 30,000 

 

 

5.6 Summary 

 

This chapter demonstrated the validity of a new variant of BA called BAED that utilises the 

EDA method and analyses its performance on continuous global optimisation problems. 

Experimental results to compare the performance of this new variant on a set of optimisation 

problems in continuous domains were compared with those for the standard BA and other well-

known algorithms as well. In light of the results, it can be concluded that BAED had proved to 

be capable of improving on the standard BA and achieving significantly better performance 

than those obtained by SPSO2011 and qABC for most of the benchmark functions. 

Specifically, BAED discovered the optimal solution with the least number of evaluations in 

fourteen out of fifteen cases compared to the standard BA, and eleven out of fifteen functions 

compared to SPSO2011 and qABC. In addition, BAED produced the best solution in all five 

constrained mechanical design problems compared to the standard BA. Evaluation against 
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other algorithms from the literature showed that BAED was comparable in terms of 

performance in the constrained design problems. 
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CONCLUSION 

 

This chapter summarises the main contributions of this research and the conclusions reached 

and makes suggestions for future work. 

 

6.1 Summary 

 

The objectives specified in Chapter 1 have all been accomplished. 

This thesis proposed three different enhanced versions of the Bees Algorithm to improve its 

performance in terms of accuracy and convergence speed in handling global continuous 

optimisation problems. The proposed algorithms were tested on unconstrained numerical 

benchmark functions with known solutions and constrained mechanical design benchmark 

problems. All simulation results were provided in related chapters. The summary and 

conclusions reached were as follows:  

i. The intensification of the local search procedure by applying a direct search method 

called the Hooke and Jeeves’ method to yield the Bees Algorithm with Hooke and 

Jeeves (BA-HJ) were established. In this approach, the HJ used the location of the best-

so-far solution as the starting point and the new location obtained by this method was 

recorded as the new elite sites for the current population. Then, the new elite sites will 

undergo the same procedure as in the standard BA. The BA-HJ performed better than 

the standard BA in most of the benchmark functions and mechanical design problems. 

Comparable performance was also achieved between the proposed algorithm and other 
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algorithms found in the literature. The addition of a pattern move element in the BA-

HJ helped to increase the directional search in the algorithm thus improving its success 

rate, convergence speed and accuracy. This conclusion addresses objective (i). 

ii. The second improvement was a method to replace the random generation of the 

recruited bee’s deployment with chaotic sequences. A well-known logistic map was 

used in this approach to produce chaotic sequences in the proposed algorithm called 

Bees Algorithm with Chaos (ChaosBA). The ChaosBA began with the whole 

population used as the scout bees for initialisation to get as many points as possible to 

cover the search space. The ChaosBA continued with the similar procedures of standard 

BA until the elite and best sites had been selected. At this stage, the points of the current 

elite and best sites were utilised as the initial points for the chaotic sequences to generate 

new points for the local and global search procedures to complete the cycle of the 

algorithm. The ChaosBA was tested on a set of benchmark functions and compared 

with the standard BA, SPSO2011, and qABC. The ChaosBA performed better in most 

of the functions and produced a performance in the mechanical design problems 

comparable with that by other algorithms in the literature. The chaotic process of 

generating new candidate solutions showed some improvements to the performance of 

the Bees Algorithm. This conclusion addresses objective (ii). 

iii. Finally, the Bees Algorithm with Estimation Distribution (BAED) was introduced by 

applying the probabilistic method in EDA using the information of the current best 

solutions to guide the next search. In BAED, after the population is evaluated and 

ranked, the best sites are used to generate new candidate solutions by sampling the 

distribution induced by the Gaussian probabilistic model. The candidate solutions are 

then evaluated and merged back into the old population to be ranked once again. 

Finally, the ranked population is truncated according to the parameter of BAED. The 
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newly truncated population now has new best sites to be used in the remaining search 

procedures of the algorithm. This approach showed tremendous improvement in the 

simulation test using the same benchmark functions and mechanical design problems 

as in Chapter 3 when compared to the standard BA. Furthermore, the performance of 

BAED was also found to be comparable to other well-known algorithms found in the 

literature in the engineering mechanical design problems. Therefore, it was evident that 

utilising the information of the best solutions to guide the search had a good impact on 

the performance of the Bees Algorithm. This conclusion addresses objective (iii). 

 

6.2 Contributions 

 

This research introduced new enhancements to the Bees Algorithm to advance the ability of 

the algorithm in solving global continuous optimisation problems. The main contributions are 

as follows: 

i. The development of BA-HJ enables the intensification of the local search procedure by 

incorporating a direct search method to strengthen the exploitation policy of the 

algorithm. The proposed BA-HJ demonstrated strong competitive results in terms of its 

success at locating the optimum solution, convergence speed, and accuracy when 

compared with the standard BA, SPSO2011 and qABC. The BA-HJ outperformed the 

standard BA in thirteen out of fifteen benchmark functions and is more effective in 

eleven out of fifteen benchmark functions when compared to SPSO2011 and qABC. 

Furthermore, BA-HJ have shown the best solution in all five constrained mechanical 

design problems compared to that of the standard BA in terms of the performance 

against other algorithms from the literature.   
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ii. The development of ChaosBA provides the recruited bee’s deployment to follow the 

unique traits of chaotic sequences in order to enhance the exploitation and exploration 

capabilities of the algorithm to reach the global optimum. The ChaosBA performed 

effectively in the unconstrained benchmark functions compared to the standard BA. 

The experimental results revealed that the proposed algorithm is an efficient and 

effective algorithm than that of the standard BA including the difficult multimodal 

functions, such as Rosenbrock, Powell, Ackley, and Rastrigin. Altogether, ChaosBA 

outperformed the standard BA in twelve out of fifteen benchmark functions. The results 

obtained with another two state-of-the-art algorithms have also shown evidence that the 

ChaosBA performance is significantly better in eleven out of fifteen test functions. 

Also, ChaosBA is able to determine the best solution in all the constrained design 

problems and performs effectively for any engineering applications, for instance the 

speed reducer problem, when compared to the standard BA.  

iii. The development of BAED enables the algorithm to take advantage of available 

information from the current population to produce new candidate solutions using a 

probabilistic method combined with existing strategies of the algorithm to improve its 

convergence speed and accuracy. BAED discovered the optimal solution with the least 

number of evaluations in fourteen out of fifteen cases compared to the standard BA, 

and eleven out of fifteen functions compared to SPSO2011 and qABC. In addition, 

BAED produced the best solution in all the five constrained mechanical design 

problems compared to the standard BA, which is comparable in terms of performance 

against other algorithms from the literature. 
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6.3 Future work 

 

This section suggests promising new directions for further research with the aim in enhancing 

the algorithms. The future works are given as follow: 

i. The proposed BA-HJ which has focussed on intensifying the local search via the direct 

search method has shown tremendous improvement. However, the incorporation of the 

direct search was carried out only in the local search phase of the algorithm. In the 

future, different phase of the algorithm can be targeted to be incorporated with the direct 

search. Combination with other types of direct search could also be an area to explore. 

ii. Changing the way, the Bees algorithm works in terms of the deployment method from 

random to chaotic sequences enables the proposed algorithm to show some excellent 

results in this study. However, the proposed ChaosBA only utilises one type of chaotic 

map in the process. Hence, it is worth investigating different types of chaotic map on 

the performance of the algorithm. Amalgamation of various chaotic map in different 

phases of the algorithm would be a good concept to delve.   

iii. This study found that capitalising the current information of the population enables the 

algorithm to produce better candidate solutions during the search. The proposed BAED 

has shown outstanding performance compared to the standard BA. Since only one type 

of distribution is used in the probabilistic model of this algorithm, future work on other 

distribution such as the mixed Gaussian would be an interesting idea to be explored. 

iv. Based on the results from this study, the proposed algorithms through BA-HJ and 

BAED exhibit excellent convergence speed and accuracy. Thus, combining these two 

concepts in a new approach would be an interesting attempt to further improve the 

capability of the algorithm in handling complex optimisation problems in the future. 
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APPENDICES 

 

APPENDIX A - BENCHMARK TEST FUNCTIONS FOR GLOBAL OPTIMISATION 

 

Function Dim Equation Domain Optimum 
f1 Martin & 
Gaddy 

2 
 

 0 

f2 Booth 2   0 
f3 Goldstein 
& Price 

2 

 

 3 

f4 Schaffer 2 
 

 0 

f5 Six Hump 
Camel 

2 

 

 -1.0316 

f6 
Michalewicz 

5 
 

 -4.687 

f7 
Hypersphere 

10 
 

 0 

f8 
Rosenbrock 

10 
 

 0 

f9 Powell 10  0 

f10 Axis 10 
 

 0 

f11 Ackley 10 

 

 0 

f12 Griewank 10 

 

 0 

f13 Rastrigin 10 
 

 0 

f14 Zakharov 10 
 

 0 

f15 
Styblinski-
Tang 

10 
 

 -391.6599 
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APPENDIX B - BENCHMARK MECHANICAL DESIGN PROBLEM FOR 
OPTIMISATION 

B.1. Three-bar truss problem 

 

subject to: 

 

 

 

 

 

 

B.2. Pressure vessel design problem 

 

subject to: 

 

 

 

 

 

 

 

B.3. Tension/compression spring design problem 

 

subject to: 
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B.4. Welded beam problem 

 

subject to: 

 

 

 

 

 

 

 

where, 

 

       

 

 

 

 

B.5. Speed reducer problem 

 

subject to: 
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