1,660 research outputs found

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure

    Preface: Swarm Intelligence, Focus on Ant and Particle Swarm Optimization

    Get PDF
    In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state. The escalating complexity has demanded researchers to find the possible ways of easing the solution of the problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to be efficient in handling the computationally complex problems with competence such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of the biologically inspired algorithms the present book on ""Swarm Intelligence: Focus on Ant and Particle Swarm Optimization"" aims to present recent developments and applications concerning optimization with swarm intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm intelligence, this book also presented some selected representative case studies covering power plant maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems; manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems; wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these topics

    Testing of parallel metaheuristics for graph partitioning problems

    Full text link
    corecore