2,822 research outputs found

    Computing quantum phase transitions

    Get PDF
    This article first gives a concise introduction to quantum phase transitions, emphasizing similarities with and differences to classical thermal transitions. After pointing out the computational challenges posed by quantum phase transitions, a number of successful computational approaches is discussed. The focus is on classical and quantum Monte Carlo methods, with the former being based on the quantum-to classical mapping while the latter directly attack the quantum problem. These methods are illustrated by several examples of quantum phase transitions in clean and disordered systems.Comment: 99 pages, 15 figures, submitted to Reviews in Computational Chemistr

    Rare region effects at classical, quantum, and non-equilibrium phase transitions

    Full text link
    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.Comment: Topical review, 68 pages, 14 figures, final version as publishe

    Criticality and entanglement in random quantum systems

    Full text link
    We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ("pure") quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.Comment: Review article for the special issue "Entanglement entropy in extended systems" in J. Phys.

    Strong disorder RG approach of random systems

    Full text link
    There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant r\^ole over quantum, thermal, or stochastic fluctuations : these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations.Comment: review article, 195 pages, 36 figures; final version to be published in Physics Report

    Phenomenological Renormalization Group Methods

    Full text link
    Some renormalization group approaches have been proposed during the last few years which are close in spirit to the Nightingale phenomenological procedure. In essence, by exploiting the finite size scaling hypothesis, the approximate critical behavior of the model on infinite lattice is obtained through the exact computation of some thermal quantities of the model on finite clusters. In this work some of these methods are reviewed, namely the mean field renormalization group, the effective field renormalization group and the finite size scaling renormalization group procedures. Although special emphasis is given to the mean field renormalization group (since it has been, up to now, much more applied an extended to study a wide variety of different systems) a discussion of their potentialities and interrelations to other methods is also addressed.Comment: Review Articl

    Magnetic Cluster Excitations

    Full text link
    Magnetic clusters, i.e., assemblies of a finite number (between two or three and several hundred) of interacting spin centers which are magnetically decoupled from their environment, can be found in many materials ranging from inorganic compounds, magnetic molecules, artificial metal structures formed on surfaces to metalloproteins. The magnetic excitation spectra in them are determined by the nature of the spin centers, the nature of the magnetic interactions, and the particular arrangement of the mutual interaction paths between the spin centers. Small clusters of up to four magnetic ions are ideal model systems to examine the fundamental magnetic interactions which are usually dominated by Heisenberg exchange, but often complemented by anisotropic and/or higher-order interactions. In large magnetic clusters which may potentially deal with a dozen or more spin centers, the possibility of novel many-body quantum states and quantum phenomena are in focus. In this review the necessary theoretical concepts and experimental techniques to study the magnetic cluster excitations and the resulting characteristic magnetic properties are introduced, followed by examples of small clusters demonstrating the enormous amount of detailed physical information which can be retrieved. The current understanding of the excitations and their physical interpretation in the molecular nanomagnets which represent large magnetic clusters is then presented, with an own section devoted to the subclass of the single-molecule magnets which are distinguished by displaying quantum tunneling of the magnetization. Finally, some quantum many-body states are summarized which evolve in magnetic insulators characterized by built-in or field-induced magnetic clusters. The review concludes addressing future perspectives in the field of magnetic cluster excitations.Comment: 59 pages, 64 figures, to appear in Rev. Mod. Phy

    Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4

    Get PDF
    We analyze the effect of quenched disorder on spin-1/2 quantum magnets in which magnetic frustration promotes the formation of local singlets. Our results include a theory for 2d valence-bond solids subject to weak bond randomness, as well as extensions to stronger disorder regimes where we make connections with quantum spin liquids. We find, on various lattices, that the destruction of a valence-bond solid phase by weak quenched disorder leads inevitably to the nucleation of topological defects carrying spin-1/2 moments. This renormalizes the lattice into a strongly random spin network with interesting low-energy excitations. Similarly when short-ranged valence bonds would be pinned by stronger disorder, we find that this putative glass is unstable to defects that carry spin-1/2 magnetic moments, and whose residual interactions decide the ultimate low energy fate. Motivated by these results we conjecture Lieb-Schultz-Mattis-like restrictions on ground states for disordered magnets with spin-1/2 per statistical unit cell. These conjectures are supported by an argument for 1d spin chains. We apply insights from this study to the phenomenology of YbMgGaO4_4, a recently discovered triangular lattice spin-1/2 insulator which was proposed to be a quantum spin liquid. We instead explore a description based on the present theory. Experimental signatures, including unusual specific heat, thermal conductivity, and dynamical structure factor, and their behavior in a magnetic field, are predicted from the theory, and compare favorably with existing measurements on YbMgGaO4_4 and related materials.Comment: v2: Stylistic revisions to improve clarity. 22 pages, 8 figures, 2 tables main text; 13 pages, 3 figures appendice

    Symmetry and Asymmetry in Quasicrystals or Amorphous Materials

    Get PDF
    About forty years after its discovery, it is still common to read in the literature that quasicrystals (QCs) occupy an intermediate position between amorphous materials and periodic crystals. However, QCs exhibit high-quality diffraction patterns containing a collection of discrete Bragg reflections at variance with amorphous phases. Accordingly, these materials must be properly regarded as long-range ordered materials with a symmetry incompatible with translation invariance. This misleading conceptual status can probably arise from the use of notions borrowed from the amorphous solids framework (such us tunneling states, weak interference effects, variable range hopping, or spin glass) in order to explain certain physical properties observed in QCs. On the other hand, the absence of a general, full-fledged theory of quasiperiodic systems certainly makes it difficult to clearly distinguish the features related to short-range order atomic arrangements from those stemming from long-range order correlations. The contributions collected in this book aim at gaining a deeper understanding on the relationship between the underlying structural order and the resulting physical properties in several illustrative aperiodic systems, including the border line between QCs and related complex metallic alloys, hierarchical superlattices, electrical transmission lines, nucleic acid sequences, photonic quasicrystals, and optical devices based on aperiodic order designs

    Renormalized field theory for the static crossover in dipolar ferromagnets

    Get PDF
    A field theoretical description for the static crossover in dipolar ferromagnets is presented. New non leading critical exponents for the longitudinal static susceptibility are identified and the existence and magnitude of the dip in the effective critical exponent of the transverse susceptibility found by matching techniques is scrutinized
    • …
    corecore