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Abstract: Quasicrystals (QCs) are long-range ordered materials with a symmetry incompatible
with translation invariance. Accordingly, QCs exhibit high-quality diffraction patterns containing a
collection of discrete Bragg reflections. Notwithstanding this, it is still common to read in the recent
literature that these materials occupy an intermediate position between amorphous materials and
periodic crystals. This misleading terminology can be understood as probably arising from the use of
models and notions borrowed from the amorphous solid’s conceptual framework (such us tunneling
states, weak interference effects, variable range hopping, or spin glass) in order to explain certain
physical properties observed in QCs. On the other hand, the absence of a general, full-fledged theory
of quasiperiodic systems certainly makes it difficult to clearly distinguish the features related to
short-range order atomic arrangements from those stemming from long-range order correlations.

The Special Issue on “Symmetry and Asymmetry in Quasicrystals or Amorphous Materials”
aims to discuss both experimental and fundamental aspects related to the relationship between the
underlying structural order and the resulting physical properties of QCs and their related approximant
phases [1], focusing on the analogies and differences between these properties and those reported for
amorphous materials of similar composition.

It is currently agreed that the presence of non-crystallographic axes is not a necessary condition
for a solid to be regarded as a QC, and that the key feature to this end is just to exhibit scale invariance
symmetry [2,3]. Indeed, several examples of QCs exhibiting 2-, 3-, and 4-fold symmetry axes along
with scale invariance symmetry characterized by irrational scale factors have been reported, being
referred to as “cubic QCs” [4]. These findings support the view that QC definition should not include
the requirement that they must display a classically forbidden axis of symmetry, as it is stated in the
Online Dictionary of Crystallography of the International Union of Crystallography, where one reads:
“Often, quasicrystals have crystallographically ‘forbidden’ symmetries [...]. However, the presence of such a
forbidden symmetry is not required for a quasicrystal” [5].

The contribution by Jianhang Yue, Yun Feng, Hao Wu, Guorong Zhou, Min Zuo, Jinfeng Leng
and Xinying Teng, entitled The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys, nicely fits
within this scenario. In this paper, the morphology and properties of Mg-Zn-Gd alloys prepared by a
conventional casting method are studied by systematically varying their Mg and Gd content. In this
way, a rod phase with atomic composition Mg66Zn30Gd4 is reported to exhibit diffraction spots patterns
indicating this phase belongs to a new kind of complex metallic alloy phase whose composition is
close to that of Mg60Zn30Gd10 QCs. Upon annealing, this rod phase evolved gradually over time from
a lamellar eutectic structure, the melting temperature of the rod phase being 453◦C. Quite interestingly
from the viewpoint of possible applications, microhardness tests showed that its tribological properties
are better than those corresponding to QCs of similar composition.

During the last decades we have realized that the electronic structure and vibrational spectrum of
many quasiperiodic systems can be understood in terms of resonance effects involving a relatively small
number of atomic clusters of progressively increasing size. In earlier works this scenario was discussed
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in terms of real-space based renormalization group approaches describing the mathematically simpler,
but chemically unrealistic, diagonal (different types of atoms connected by the same type of bond)
or off-diagonal (the same type of atom but different types of bonds between them) models. Later on,
an increasing number of works have been devoted to the mathematically more complex general case,
in which both diagonal and off-diagonal terms are present in the system. In fact, since the properties of
chemical bonds linking two different atoms generally depend on their chemical nature, any realistic
treatment must explicitly consider that the aperiodic sequence of atoms along the chain naturally
induces an aperiodic sequence of bonds in the considered solid. Indeed, a growing number of both
experimental measurements and numerical simulation results highlight the important role of chemical
bonding in the emergence of some specific physical properties of QCs. This sort of more realistic
treatments are discussed in three contribution focusing on appealing representatives of different kinds
of aperiodic systems. In the contribution by Vicenta Sánchez and Chumin Wang, entitled Real Space
Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization, the unavoidable presence
of structural defects are inherent in both periodic solids and QCs at a finite temperature is addressed
by means of a real-space renormalization method, which uses an iterative procedure with a small
number of effective sites in each step, and exponentially lessens the degrees of freedom, but keeps their
participation in the final results. In this way, different aperiodic atomic arrangements with hierarchical
symmetry are investigated, along with their consequences in measurable physical properties, such as
electrical and thermal conductivities, in line with previous works of this research group [6,7].

In the contribution by Edmundo Lazo, entitled Localization Properties of Non-Periodic Electrical
Transmission Lines, the properties of localization of the I(ω) electric current function in non-periodic
electrical transmission lines are studied in detail. The electric components have been distributed
in several forms: (a) Aperiodic, including self-similar sequences (Fibonacci and Thue–Morse),
(b) incommensurate sequences (Aubry–André and Soukoulis–Economou), (c) long-range correlated
sequences, and (d) uncorrelated random sequences. The localization properties of the transmission
lines were measured by means of typical diagnostic tools of extended use quantum mechanics
like normalized localization length, transmission coefficient, or average overlap amplitude, thereby
exploiting the analogies between classic electric transmission lines and one-dimensional tight-binding
quantum models.

In recent years thrust has been given to understand the spectral properties and the complexity
of low dimensional systems, ranging from typical condensed matter systems in the mesoscopic
or nano scales of length to biological systems. A common approach in most of these studies has
been a kind of unified description involving quantum lattice models to explore diverse physical
systems like DNA molecules, graphene nano-ribbons, fractals, hierarchical lattices, QCs or tribological
systems. Long range topological order and chemical diversity in one dimensional, or quasi-one
dimensional models and hierarchical lattices have shown to result into unusual spectral features like
coexistence of extended (conducting) and localized electronic states, or even metal-insulator transitions
in quasi-one dimensional ladder networks. The latter has also been successfully utilized to bring out
the essential electronic structure and transport properties of DNA with periodic or aperiodic ordering
of its constituents. Accordingly, some properties that are understood or claimed as specific properties
of the systems considered may turn out to be quite general consequences of the adopted model instead.
This subtle point requires a thorough inspection of various quantum lattice models addressing different
physical systems.

This issue is fully addressed by Konstantinos Lambropoulos and Constantinos Simserides in the
contribution entitled Tight-Binding Modeling of Nucleic Acid Sequences: Interplay between Various Types of
Order or Disorder and Charge Transport. In their review tight-binding modeling of nucleic acid sequences
like DNA and RNA is addressed by considering how various types of order (periodic, quasiperiodic,
fractal) or disorder (diagonal, non-diagonal, random, methylation effects) affect charge transport.
Several DNA models widely considered in the recent literature (wire, ladder, extended ladder, fishbone
(wire), fishbone ladder) are considered within the framework of renormalization techniques. In doing
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so, the energy structure of nucleic acid wires, the coupling to the leads, the transmission coefficients
and the current–voltage curves are numerically derived and the obtained results are discussed in order
to examine the potentiality to utilize the charge transport characteristics of nucleic acids as a tool to
probe several diseases.

Certainly, the very notion of photonic crystal can be extended to describe the properties of
quasiperiodic photonic structures as well. To this end, one simply considers that the optical
properties of the medium are given by a QP refraction index function, instead of a periodic one.
The resulting structure can then be properly referred to as a photonic quasicrystal (PQC). Long-range
quasiperiodic order, by its own, endows PQCs with certain characteristic properties which are not
exhibited by their periodic counterparts. This feature stems from the richer structural complexity of
aperiodic sequences, which arises from the presence of quasiperiodic and self-similar order related
fingerprints, and naturally leads to the presence of a lot of resonant frequencies due to multiple
interference effects throughout the structure. For instance, due to their highly fragmented frequency
spectrum, aperiodic multilayers offer more full transmission peaks (alternatively, absorption dips)
than periodic ones in a given frequency range for a given system length, and the inflation symmetry
gives rise to a denser Fourier spectrum structure in reciprocal space. Thus, aperiodic photonic
micro/nanostructures usually support optical multimodes. In the contribution by Hao Jing, Jie He,
Ru-Wen Peng, and Mu Wang, entitled Aperiodic-Order-Induced Multimode Effects and Their Applications in
Optoelectronic Devices, the authors review some developments of aperiodic-order-induced multimode
effects and their applications in optoelectronic devices. It is shown that self-similarity or mirror
symmetry in aperiodic micro/nanostructures can lead to optical or plasmonic multimodes in a series of
one-dimensional/two-dimensional photonic or plasmonic systems. These multimode effects have been
employed to achieve optical filters for the wavelength division multiplex, open cavities for light–matter
strong coupling, multiband waveguides for trapping “rainbow”, high-efficiency plasmonic solar cells,
and transmission-enhanced plasmonic arrays. By all indications, these investigations will be beneficial
to the development of integrated photonic and plasmonic devices for optical communication, energy
harvesting, nanoantennas, and photonic chips.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Quasicrystal alloys have a wide application prospect because of excellent performances
and characteristics; meanwhile, magnesium alloys are known as green engineering materials because
of their high specific strength and light weight. Therefore, the study of Mg-Zn-Gd quasicrystal alloys
is of great significance for the development of new materials. In this paper, Mg(70-x)Zn30Gdx(x=3,4,5)

alloys were prepared by a conventional casting method and the morphologies and properties of
these alloys were studied. There was a new symmetrical rod phase found in the Mg66Zn30Gd4 alloy
and the symmetrical rod phase was identified as a ternary phase by mapping scanning and energy
dispersive spectroscopy (EDS) analysis. The Zn/Gd ratio of the symmetrical rod phase was found
to be 4.8 and the TEM images obtained were different from the typical diffraction spots patterns
of quasicrystalline, which means it is unlikely to be quasicrystalline. With different melt holding
time, the symmetrical rod phase evolved gradually over time from a lamellar eutectic structure;
differential scanning calorimetry (DSC), heat treatment, and microhardness tests showed that the
melting temperature of the rod phase was 453 ◦C and that its thermal stability and microhardness are
better than quasicrystalline. Hence, the symmetrical rod phase is a new kind of complex metallic alloy
phase whose composition and properties are close to those of quasicrystals but is not quasicrystalline.

Keywords: Mg-Zn-Gd alloys; symmetrical rod phase; quasicrystal; morphologies and properties

1. Introduction

As the lightest green engineering structural material, magnesium alloy has many advantages,
including high specific strength and stiffness, good shock and noise reduction performance,
electromagnetic shielding, and easy processing and forming, etc. It has broad application prospects in
transportation, aerospace, and military industries [1]. Shechtman et al. [2] first found the quasicrystalline
phase in an Al-Mn quench alloy system in 1984. Unlike traditional crystals, quasicrystals have special
symmetry of five or more times [3–6]. This structural particularity also makes them have high hardness
and strength, as well as low friction coefficients, strong thermal stability, and corrosion resistance [7–9].
Therefore, introducing quasicrystals as a dispersion strengthening phase into magnesium alloys can
theoretically compensate for the shortcomings of traditional magnesium alloys [10].

Quasicrystalline alloys have received more and more attention and recognition in recent
decades [11,12]. In addition, studying the factors that affect the formation of quasicrystals for
the synthesis and application of quasicrystals is significant. There are many factors affecting the
formation of quasicrystals according to former studies, including cooling rate, composition, electronic
structure, and melt treatment [13].

The quasicrystalline alloys of Mg-Zn-Re (where Re = rear earth element) have been extensively
researched. It has been confirmed that the Zn/Y ratios of I-phase (Mg3Zn6Y1) and W-phase (Mg3Zn3Y2)
are 6 and 1.5, respectively [14]. These ratios are in accordance with those for Mg-Zn-Gd alloys. In
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addition, W’-phase, H-phase, and other phases, which have different structures, exist in quasicrystalline
alloys. Therefore, making a profound study of the structures and relationships between different phases
will aid in obtaining a good understanding of the interlink among phases, which is of great significance
to the study of the atomic structure of strengthened phases in high-performance magnesium alloys.

For Mg-Zn-Gd alloys, the icosahedral quasicrystal phase (I-phase) has been confirmed as being
able to be made as an equilibrium phase during solidification or crystallization in a certain range of
elemental components and holding time [15,16]. When the components or holding time change, the
composition, structure, and symmetry of phases may change. In this paper, we prepared different
Mg(70-x)Zn30-Gdx(x=3,4,5) (at. %) alloys and investigated the composition, structure, and symmetry of
phases. This work focuses on the metastable phases in the Mg-Zn-Gd system; the formation mechanism
of the symmetrical rod phase is also discussed.

2. Materials and Methods

The experimental ternary alloys with nominal component Mg(70-x)Zn30Gdx(x=3,4,5) (at. %) were
prepared by melting high-purity Mg (99.98 wt %), Zn (99.96 wt %), and master alloy Mg-Gd (30.21 wt %)
in an electric resistance furnace. Firstly, Mg and Mg-30.21 wt % Gd alloys were placed into a graphite-clay
crucible. When the temperature reached 720 ◦C and the alloys previously added had melted, Zn was
added into the molten metal. After all the alloys had become molten, the melt was kept at 720 ◦C
for minutes. The melt was then poured into a 200 ◦C preheated steel mold and cooled slowly in the
atmosphere. Protective gas composed of CO2 and SF6 was always in the process of smelting to prevent
evaporation and oxidation of components during smelting.

X-ray diffraction (Bruker D8 Advance) employing Cu Kα radiation was used to determine the
constitution of phases with a scanning rate of ~5◦ min−1. The microstructure and morphology were
characterized by SEM (FEI-QUANTA FEG250) equipped with EDS (X-MAX50) for analyzing the
local chemical compositions of different phases and TEM (JEM-2100). The thermal stability and
microhardness of phases was researched by DSC (HCT-1) and a Rockwell hardness tester. Sample
preparations for TEM observations were made up of mechanical polishing and ion-beam thinning
(GATAN-691).

3. Results

3.1. Microstructure and Composition

SEM images of Mg-Zn-Gd alloys with different content of Gd after holding for 40 min are displayed
in Figure 1. The content of Gd in the Mg-Zn-Gd alloys seen in Figure 1a–c is 3 at. %, 4 at. %, and 5 at. %,
respectively. It can be clearly seen that the phase morphologies of the alloys changed significantly.
When the content of Gd is 3 at. % in the Mg(70-x)Zn30-Gdx alloy (Figure 1a), three main phases are
included in the alloy: a light grey pentapetaloid phase, a black punctate phase, and a dark grey
matrix phase. According to the XRD patterns shown in Figure 2, these phases may be judged to be
I-phase, α-Mg phase, Mg7Zn3 phase, respectively. This is consistent with the report in the literature
by Gröbner et al. [17]. The TEM images of the light grey pentapetaloid phase (shown in Figure 5a,b)
also appear to be a typical quasicrystal diffraction spot, which can also prove that the light grey
pentapetaloid phase is an icosahedral quasicrystal (I-phase).
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Figure 1. Mg-Zn-Gd alloys with different Gd content after holding for 40 min: (a) Mg67Zn30Gd3; (b)
Mg66Zn30Gd4; (c) Mg65Zn30Gd5; (d) locally enlarged image of (b).

Figure 1b is an SEM image of the Mg66Zn30Gd4 alloy and Figure 1d is a local enlargement of
Figure 1b. When the content of Gd reaches 4 at. %, the major phases except the black phase α-Mg and
dark grey phase Mg7Zn3 are the light grey symmetrical rod phase and white punctate phase, which
can be clearly seen from Figure 1d. The distribution of the symmetrical rod phase is disorderly and its
length is 20 μm to 50 μm. The white punctate phase is dispersed in the alloy with a small volume. In
the Mg65Zn30Gd5 alloy (Figure 1c), the other three phases do not change a lot but the light grey phase
appears irregularly shaped, which is quite different from the symmetrical rod phase.

As shown in the XRD patterns (Figure 2), when the content of Gd is 3 at. %, the peaks of the
I-phase appear in the pattern of Figure 2a. However, the I-phase peaks are not detected in patterns of
alloys with 4 at. % and 5 at. % Gd. On the contrary, in Figure 2b,c, phase Gd-Zn is found and there are
obvious peaks in the places where 2θ is 23, 24.2, 36, 38, and 40.5, and these peaks are not the diffraction
peaks of the other three phases. Thus, it can be inferred that these peaks may be the diffraction peaks
of the symmetrical rod phase. Hence, deducing from Figures 1 and 2, the symmetrical rod phase is
unlikely to be the icosahedral phase of quasicrystals.
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Figure 2. XRD patterns of different Mg-Zn-Gd alloys: (a) Mg67Zn30Gd3; (b) Mg66Zn30Gd4; (c)
Mg65Zn30Gd5.

Figure 3 is a mapping scanning analysis of the main morphologies of the Mg66Zn30Gd4 alloy. It
is obvious that the white punctate phase appears black in Mg and bright in the Zn and Gd graphs.
This means that the white punctate phase contains almost no Mg element but embodies Zn and Gd,
which is a kind of Gd-Zn alloy. By analyzing Figures 2 and 3, it can be approximately determined that
the white punctate phase is the Gd-Zn phase. The white punctate phase Gd-Zn is mostly distributed
over the symmetrical rod phase. Hence, the formation of this phase maybe due to the increase of Gd
content, which means that the excess Gd element precipitates during the solidification of the alloy
and reacts with Zn to form the Gd-Zn phase. In addition, the light grey symmetrical rod phase has
bright colors in all three scanning images, meaning that the phase can be ascertained as a ternary phase
containing Mg, Zn, and Gd elements.

To further research the phase composition, EDS analysis of the pentapetaloid I-phase and
symmetrical rod phase was carried out. As shown in Figure 4, points 1 and 2 are the constituents of
the pentapetaloid I-phase and the symmetrical rod phase, respectively. The atomic composition of
the pentapetaloid I-phase is 65.82 at. % Mg, 29.22 at. % Zn, and 4.96 at. % Gd. Thus, it can be seen
that the ratio of Zn/Gd in the pentapetaloid I-phase is 5.89, which is very close to the theoretical value
Mg3Zn6Gd1 [18] of the quasicrystalline phase in the Mg-Zn-Re system. The existence of the quintic
rotational symmetry axis in Figure 5b and the EDS energy spectrum analysis further prove that the
determination of the quintic petal phase as a quasicrystal phase is correct. The atomic composition of
the symmetrical rod phase is 77.52 at. % Mg, 18.59 at. % Zn, and 3.89 at. % Gd, and the ratio of Zn/Gd
is approximately 4.8. This is much less than the theoretical value of quasicrystalline.

Moreover, the TEM images of the symmetrical rod phase are shown in Figure 5c,d. It is obvious that
the selected-area electron diffraction spots are very complex and different from the typical diffraction
spots pattern (Figure 5b) of quasicrystalline; it may include various phases judging by the signed
rectangles of different colors, but it does not include the quasicrystal phase. Jiang et al. [19] have
reported that the ratio of Zn/Gd in the W-phase, which is common in Mg-Zn-Re alloys and is similar to
the quasicrystalline phase, is about 1.5. As per the previous analysis, the Zn/Gd ratio of the symmetrical
rod phase is 4.8, which is not only far from 1.5 ( the ratio of W-phase ), but also different from 6 ( the
ratio of I-phase ). Therefore, by analyzing the SEM, XRD, EDS, and TEM graphics of the symmetrical
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rod phase, the composition of this phase is similar to that of quasicrystals, but its structure does not
seem to have the characteristics of typical quasicrystals.

 

Figure 3. Mapping scanning analysis of the Mg66Zn30Gd4 alloy.

 
Figure 4. EDS analysis of different phases: (1) pentapetaloid phase; (2) symmetrical rod phase.
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Figure 5. TEM images of different phases: (a,b) pentapetaloid phase; (c,d) symmetrical rod phase.

3.2. Morphological Evolution

In order to investigate the formation and stability of the symmetrical rod phase, samples of the
Mg66Zn30Gd4 alloy with different holding time at 720 ◦C were selected for research. As shown in
Figure 6a, when the holding time is 5 min, most of the phases in the alloy are strip-like lamellar eutectic
phases with a longitudinal midline running through the structure; meanwhile, there are some black
α-Mg phases and white dotted Gd-Zn phases, which show that the GdZn phase is easy to form in
the solidification of the alloy. After being held for 10 min (Figure 6b), the strip-like lamellar eutectic
phases were less than before, and the white dotted phases did not increase significantly; however,
the symmetrical rod phases had preliminarily formed. In the blue area of Figure 6c, the symmetrical
rod phases had basically formed, and in the red area, it was half rod phase and half lamellar eutectic
structure. Hence, it can be inferred that the symmetrical rod phase evolved gradually over time from
the lamellar eutectic structure with the longitudinal midline as the demarcation line. When the holding
time was 15 min, the evolution of the symmetrical rod phases had finished, and there was no lamellar
eutectic structure which remained (Figure 6d). In Figure 6e, the size of the symmetrical rod phase
increased to 40–70 μm but the morphologies essentially remained unchanged, which reflected the good
stability of the symmetrical rod phase.

From Figure 7, it can be seen that the XRD diffraction patterns of the alloys after holding for 5, 10,
and 15 min are basically the same and they all contain three identical known phases: Mg7Zn3, Gd-Zn
and α-Mg. At the same time, peaks appear at positions 23, 24.2, 36, and 40.5 2θ, which is consistent
with Figure 2b. Based on the analysis of Figures 6 and 7, it can be inferred that the symmetrical rod
phase appeared early in the alloy, and gradually evolved from the lamellar network structure to the
symmetrical rod phase structure.
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Figure 6. SEM images of the Mg66Zn30Gd4 alloy after different holding times at 720 ◦C: (a) 5 min; (b)
10 min; (c) magnification of (b); (d) 15 min; (e) 80 min.
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Figure 7. XRD patterns of the Mg66Zn30Gd4 alloy after different holding times at 720 ◦C: (a) 5 min; (b)
10 min; (c) 15 min.

3.3. Thermal Stability

In addition, thermodynamic and microhardness tests of the petaloid quasicrystal phase (I-phase)
and the symmetrical rod phase were carried out. Figure 8a shows the DSC analysis curves of the

11
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Mg67Zn30Gd3 and Mg66Zn30Gd4 alloys. It can be seen that when the temperature reaches 345 ◦C, both
lines have endothermic peaks, which is due to the melting of Mg7Zn3. Another endothermic peak of
the Mg67Zn30Gd3 alloy appears at 417 ◦C, and according to the reports of Zhang et al. [16], this is the
melting peak of the petal-like quasicrystal phase; meanwhile, the melting peak of the symmetrical
rod phase in the Mg66Zn30Gd4 alloy appears at 453 ◦C, which means that the symmetrical rod phase
may have a better thermal stability than the petal-like quasicrystalline phase. In order to verify the
above hypothesis, samples of the Mg67Zn30Gd3 and Mg66Zn30Gd4 alloys were heat-treated at 430 ◦C
for study. The results shown in Figure 8b,c indicate that the morphology of the quasicrystalline phase
changed dramatically as a result of melting and that the petal-like morphology became a lamellar
network structure; however, the morphology of the symmetrical rod phase remained stable in the
main and only a few lamellar eutectic structures occurred in the interior. The microhardness of the
quasicrystalline and symmetrical rod phases before and after heat treatment were studied; the results
show that the microhardness of the symmetrical rod phase did not decrease obviously but that that
of the quasicrystalline phase decreased a lot. All the above analyses prove that the symmetrical rod
phase has a better thermal stability than the petal-like quasicrystalline phase.

 

Figure 8. (a) Differential scanning calorimetry (DSC) analysis curves of the different Mg-Zn-Gd alloys:
1-Mg67Zn30Gd3, 2-Mg66Zn30Gd4; (b,c) SEM images of Mg67Zn30Gd3 and Mg66Zn30Gd4 after heat
treatment at 430 ◦C, respectively; (d) microhardness of the quasicrystalline and symmetrical rod phases
before and after heat treatment.
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4. Discussion

In this study, the symmetrical rod phase was found in the Mg66Zn30Gg4 alloy but not in the other
two alloys considered, which indicates that the formation of the phase is related to the content of
Gd, i.e., the ratio of Zn to Gd. The diffraction pattern of the symmetrical rod phase was found to
be very complex, probably because it evolved from a lamellar eutectic structure, and its Zn/Gd ratio
was observed to be close to the quasicrystal ratio, thus forming a more complex internal structure.
Moreover, the increase of thermal stability and microhardness of the phase may also be due to the
complex structure of the phase. Because the composition, Zn/Gd ratio, phase transition temperature,
and microhardness of the symmetrical rod phase are similar to those of a quasicrystal phase, but its
electron diffraction spot does not show the characteristics of a typical quasicrystal phase, we consider
it to be a new kind of complex metallic alloy phase whose composition and properties are close to
those of quasicrystals but is not quasicrystalline. The specific spatial structure and related parameters
of the phase need to be further studied in the future.

5. Conclusions

In this work, the Mg(70-x)Zn30Gdx(x=3,4,5) alloys with different content of Gd were prepared and
the morphologies and properties of these alloys were studied: (1) the main phases were found to be a
pentapetaloid phase for the Mg67Zn30Gd3, a symmetrical rod phase for the Mg66Zn30Gd4 alloy, and
an irregularly shaped phase for the Mg65Zn30Gd5 alloy; (2) the symmetrical rod phase was found to
consists of three elements (Mg, Zn, and Gd), its Zn/Gd ratio was obtained as 4.8 (which is close to
but not in conformity with the requirements of quasicrystals) and its electron diffraction spots were
complex and had no obvious quasicrystal phase characteristics; (3) this phase was found to evolve
gradually over time from the lamellar eutectic structure and to be able to exist in alloy melt for a long
time. The melting temperature of the symmetrical rod phase was 453 ◦C, and its thermal stability and
microhardness were found to be better than those of quasicrystal phase; (4) the composition and phase
transition temperature of the symmetrical rod phase were found to be close to those of a quasicrystal
phase, but its electron diffraction pattern was seen to have no characteristics of a quasicrystal phase, so
it may be a new kind of complex metal alloy phase, and needs further study.
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Abstract: Structural defects are inherent in solids at a finite temperature, because they diminish
free energies by growing entropy. The arrangement of these defects may display long-range orders,
as occurring in quasicrystals, whose hidden structural symmetry could greatly modify the transport of
excitations. Moreover, the presence of such defects breaks the translational symmetry and collapses the
reciprocal lattice, which has been a standard technique in solid-state physics. An alternative to address
such a structural disorder is the real space theory. Nonetheless, solving 1023 coupled Schrödinger
equations requires unavailable yottabytes (YB) of memory just for recording the atomic positions.
In contrast, the real-space renormalization method (RSRM) uses an iterative procedure with a small
number of effective sites in each step, and exponentially lessens the degrees of freedom, but keeps
their participation in the final results. In this article, we review aperiodic atomic arrangements with
hierarchical symmetry investigated by means of RSRM, as well as their consequences in measurable
physical properties, such as electrical and thermal conductivities.

Keywords: quasiperiodicity; localization; tight-binding model; Kubo formula;
low-dimensional systems

1. Introduction

Nowadays, impurities and defects in solids play a central role in microelectronics and modern
materials science, because they deeply alter the propagation and interference of electronic wave
functions [1]. In general, structural disorder obstructs the transport of excitations. However, this
obstruction to both electronic and phononic transport could become beneficial, such as for the
thermoelectricity, whose figure of merit is a function of the ratio between electrical and thermal
conductivities [2].

Since the formulation of quantum mechanics at the beginning of the last century, the study of
crystalline solids is carried out through the reciprocal lattice and local imperfections are addressed as
perturbations [3]. For extended random disorders, the coherent potential approximation (CPA) is used
in their analysis [4]. The discovery of quasicrystals by D. Shechtman et al. in 1984 [5] has stimulated
the development of new techniques to investigate the long range and hierarchically located impurities
or defects. During many years, the quasiperiodic systems have been studied using approximants [6],
whose artificial periodic boundary condition has deep effects on the entire band structure of a truly
quasiperiodic lattice, as illustrated in Figure 1.

To address macroscopic aperiodic lattices, the traditional reciprocal space [7] approach becomes
inappropriate or useless, as the aperiodicity collapses the first Brillouin zone. An alternative way
could be the real-space renormalization method (RSRM) firstly proposed by Leo P. Kadanoff [8] for
condensed matter physics in 1966, to realize a scaling analysis of magnetization in terms of spin

Symmetry 2020, 12, 430; doi:10.3390/sym12030430 www.mdpi.com/journal/symmetry15
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blocks, which exponentially reduces the degrees of freedom, keeping only the lower energy states.
In 1971, Kenneth G. Wilson [9,10] reformulated the RSRM to introduce the universality classes of
scale-independent critical points in phase transitions and was awarded by the Nobel Prize in Physics
for this work in 1982.

Figure 1. (color online) (a,b) Density of states (DOS) and (c,d) zero-temperature direct current (DC)
conductivity (σ) versus the chemical potential (μ) for two bond-disordered Fibonacci chains (b,d)
of n = 57 and (a,c) with a unit cell of n = 15. Insets (a’–d’) are the respective magnifications of
(a–d) spectra.

In this article, we first introduce the tight-binding model and the Kubo–Greenwood formula [11] to
describe the electronic transport in Fibonacci chains, as well as RSRM developed to reach macroscopic
length. Other aperiodic chains, beyond the quasiperiodic ones, are further presented with a special
emphasis on their electronic wave-function localization and the ballistic transport states. Studies on
multidimensional aperiodic lattices are subsequently summarized, where the combination of RSRM
with convolution theorem is shown. In Section 5, we discuss vibrational excitations or phonons in
aperiodic lattices, as well as the thermoelectric transport in segmented heterostructures. Final remarks
will be given in the conclusion section.

2. Fibonacci Chains

Let us first consider a single electron in a periodic lattice of atoms, which is usually addressed by
means of Bloch’s theorem [3]. This theorem establishes a general solution of the Schrödinger equation
for a periodic potential, and then the electronic wave functions are commonly written as a linear
combination of plane waves. Alternatively, such wave functions can also be expressed in terms of
atomic orbitals, because they constitute another base for solutions of the Schrödinger equation. In fact,
the orthonormalized orbitals of all atoms, known as Wannier functions, are the Fourier transformed
Bloch functions [3].

For aperiodic lattices, the Wannier functions localized at each atom remain as a useful base.
The single-band electronic Hamiltonian within the tight-binding formalism can be written as

H =
∑

j

ε j
∣∣∣ j〉〈 j∣∣∣+∑

〈 j,l〉
tj,l
∣∣∣ j〉〈l| (1)
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where ε j is the self-energy of atom j with Wannier function
∣∣∣ j〉 and tj,l is the hopping integral between

the nearest-neighbor atoms j and l denoted by
〈

j, l
〉
. The density of states (DOS) can be calculated

using the single-electron Green’s function (G) [12]:

DOS(E) = − 1
π

lim
η→0+

ImTr[G(E + iη)] (2)

where η is the imaginary part of energy E and the Green’s function is determined by the Dyson equation
given by (E−H)G = 1.

Within the linear response theory, the electrical conductivity (σ) can be determined by means of
the Kubo–Greenwood formula [11,12]:

σxx(μ,ω, T) =
2e2�

Ωπm2

∞∫
−∞

dE
f (E) − f (E + �ω)

�ω
Tr
[
pxImG+(E + �ω)pxImG+(E)

]
(3)

where Ω is the system volume, px = (im/�)[H, x] = (ima/�)
∑

j

{
tj, j+1

∣∣∣ j〉〈 j + 1
∣∣∣− tj, j−1

∣∣∣ j〉〈 j− 1
∣∣∣} is

the projection of the momentum operator along the applied electrical field with x =
∑

j ja
∣∣∣ j〉〈 j∣∣∣,

G+(E) = G(E + iη) is the retarded Green’s function, and f (E) =
{
1 + exp[(E− μ)/kBT]

}−1 is the
Fermi–Dirac distribution with the chemical potential μ and temperature T. The electrical conductivity
of direct current (DC) at zero temperature of a periodic linear chain (tj,l = t) of N atoms with null
self-energies is as follows [13]:

σP = σ(μ, 0, 0) =
(N − 1)ae2

π�
(4)

when the chemical potential is found in the allowed energy band, that is,
∣∣∣μ∣∣∣≤ 2

∣∣∣t∣∣∣. It would be worth
mentioning that the non-uniformity of atomic locations can be introduced through replacing the
hopping integrals tj,l by t̃ j,l =

∣∣∣xj − xl
∣∣∣tj,l /a in the momentum operator expression.

The most studied quasiperiodic system is the Fibonacci chain, shown in Figure 2a, which can be
built using two sorts of bonds (bond problem), two kinds of atoms (site problem), or a combination of
both (mixing problem) [14]. For example, in the bond problem, the nature of atoms is assumed to be the
same (ε j = 0) and two bond strengths tA and tB are ordered following the Fibonacci sequence [15,16],
whose atomic chain of generation n can be obtained using the concatenation of two previous generations,
Fn = Fn−1 ⊕ Fn−2, with the initial conditions of F1 = A and F2 = AB.

In Figure 1, we present (a,b) the density of states (DOS) and (c,d) the DC electrical conductivity at
zero temperature (σ) as functions of the chemical potential (μ) for (a,c) a Fibonacci chain with bond
disorder of tA = 1

2 (
√

5− 1)t and tB = t made of a unit cell of generation n = 15 (987 bonds) repeated
by 229 = 536, 870, 912 times, resulting a chain of N = 529, 891, 590, 145 atoms connected to two leads
built by repeating 2100 times the mentioned unit cell, and (b,d) a Fibonacci chain of generation n = 57
with N = 591, 286, 729, 880 atoms having the same bond disorder strength as in (a,c). Both DOS and σ

results were calculated by means of the renormalization method developed in [17] with grids of (a–d)
800, 000 and (a’–d’) 300, 000 data. The imaginary parts of energy used in these figures are η = 10−6

∣∣∣t∣∣∣
for DOS and η = 10−14

∣∣∣t∣∣∣ for σ spectra.
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Figure 2. (color online) Schematic representations of one-dimensional (a) Fibonacci, (b) Thue-Morse,
(c) branched, and (d) molecular chains, as well as two-dimensional (e) Penrose, (f) Fibonacci, (g) labyrinth,
and (h) Poly(G)-Poly(C) lattices.

Observe the close similarity between DOS spectra shown in Figure 1a,b in contrast to the
conductivity spectra of Figure 1c,d, as well as the remarkable differences between Figure 1a’, b’, where
the continuum energy bands in Figure 1a’ are originated from the periodic repetition of a unit cell.
These differences can significantly modify the calculation of many physical quantities weighted by
DOS spectra, such as the specific heat, optical absorption, and low-temperature DC and alternating
current (AC) conductivities. Hence, the accurate determination of DOS and σ spectra constitutes a
crucial starting point for the study of quasiperiodic systems.

The RSRM has been applied to quasiperiodic systems described by tight-binding Hamiltonian (1)
since the discovery of quasicrystals. For example, from 1984 to 1987, M. Kohmoto and collaborators
carried out renormalization group studies of Cantor-set electronic band spectra [18,19], the diffusion
coefficient [20], localization properties [21,22], and the resistance power–law growth with sample
length [23]. Q. Niu and F. Nori developed, in 1986, a decimation procedure to calculate energy
spectra of Fibonacci chains based on the weak bond approximation [24], which was also applied to a
scaling analysis of sub-band widths [25]. In 1988, H. E. Roman derived a RSRM to calculate on-site
energies and hopping integrals of each generation [26], P. Villaseñor-González, F. Mejía-Lira, and
J. L. Morán-López calculated the electronic density of states in off-diagonal Fibonacci chains [27], while
C. Wang and R. A. Barrio obtained [28] the Raman spectrum measured in GaAs-AlAs quasiperiodic
superlattices [29]. Moreover, the RSRM has also been used for the local electronic density of states [30],
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Ising model [31,32], and alternating current (AC) conductivity [33] through the resistance network
model of Miller and Abrahams [34].

In the 1990s, more attempts were registered to develop and use the renormalization technique.
For example, J. C. López, G. G. Naumis, and J. L. Aragón determined [35] the electronic band structure
of disordered Fibonacci chains following the renormalization procedure of Barrio and Wang [36]; while
R. B. Capaz, B. Koiller, and S. L. A. de Queiroz studied the power–law localization behavior [37]; Y. Liu
and W. Sritrakool found energy spectrum branching rules [38]; A. Chakrabarti et al. analyzed the
nature of eigenstates [39]; and J. X. Zhong et al. calculated the local [40] and average [41] density of
states. Besides, AC conductivity was examined [42,43] within the Miller and Abrahams approach.
During the second half of the decade, F. Piéchon, M. Benakli, and A. Jagannathan established analytical
scaling properties of energy spectra [44]; E. Maciá and F. Domínguez-Adame proved the existence of
transparent states [45]; while A. Ghosh and S. N. Karmakar explored the second-neighbor hopping
problem [46].

From the twenty-first century, the electronic transport in Fibonacci chains was deeply studied via
renormalization. For instance, V. Sánchez et al. developed, in 2001, a sophisticated and exact RSRM
for the Kubo–Greenwood formula (3) applied to the mixing Fibonacci problem [47], and then its AC
conductivity spectra were carefully analyzed [48,49] beyond those obtained from approximants [50].
The renormalization technique was also used for the study of localization [51–53], electronic spectra of
GaAs/GaxAl1−xAs superlattices [54], and arrays of quantum dot [55], as well as for a unified transport
theory of phonon [56], photon [57], and fermionic atom [58] based on the tight-binding model. On the
other hand, by means of RSRM, the fine structure of energy spectra [59] and electronic transport
in Hubbard Fibonacci chains [60,61] were investigated, and a new universality class was found in
spin-one-half Heisenberg quasiperiodic chains [62].

3. Aperiodic Chains besides Fibonacci

Among aperiodic sequences, the generalized Fibonacci (GF) order was one of the most studied,
which can be obtained by the substitutional rule:

A→ AuBv?and B→ A (5)

or using the substitution matrix (M):

(
A
B

)
→M

(
A
B

)
=

(
u v
1 0

)(
A
B

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
AA · · ·A︸���︷︷���︸

u

BB · · ·B︸��︷︷��︸
v

A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

where u and v are positive integer numbers. Matrix M has the following eigenvalues (λ±):∣∣∣∣∣∣ u− λ v
1 −λ

∣∣∣∣∣∣ = 0 ⇒ λ2 − uλ− v = 0 ⇒ λ± =
u± √u2 + 4v

2
(7)

For v = 1, Equation (7) leads to λ+ > 1 and |λ−| < 1, which fulfill the Pisot conjecture [14,63].
Moreover, the determinant of M,

det(M) =

∣∣∣∣∣∣ u v
1 0

∣∣∣∣∣∣ = −v (8)

is unimodular if v = 1. Hence, the corresponding sequences are called quasiperiodic and possess
Bragg-peak diffraction spectra, because both the Pisot eigenvalue condition and the unit-determinant
requirement of M are satisfied [64]. On the contrary, the GF sequences with v � 1 do not satisfy the
unit-determinant requirement and thus they are not quasiperiodic. When u = v = 1, the sequence is
called golden mean or the standard Fibonacci one, while the cases u = 2 and u = 3 are named silver
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and bronze means, respectively, when v = 1, which are also known as the precious means. In addition,
the metallic means stand for the sequences with u = 1 and v > 1 [65].

Since 1988, the electronic properties of GF chains have been investigated [66] and the RSRM
was applied for calculating the average Green’s function [67,68], local [69–73], and integrated [74,75]
density of states, as well as for analyzing the localization of eigenstates [76]. Nonequilibrium phase
transitions were analyzed by means of RSRM and Monte Carlo approaches [77]. Recently, the ballistic
transport was found at the center of energy spectra in macroscopic GF chains with bond disorder
every six generations when v = 1 or all generations when u and v are both even numbers [78], whose
wave-function localization and electrical conductivities (DC and AC) were investigated through a
system length scaling analysis [79].

On the other hand, the Thue–Morse (TM) sequence constitutes another widely studied aperiodic
order, whose nth generation chain, denoted by TMn, can be constructed using the substitution rule
A→ AB and B→ BA , or the addition rule TMn = TMn−1 ⊕ TMn−1, where the symbol ⊕ stands the
string concatenation and TMn is the complement of TMn, obtained by exchanging A and B in TM chains.
The initial condition is TM0 = A, and thus TM3 = ABBABAAB has 23 atoms, being the eight most left
atoms in Figure 2b. The TM sequence accomplishes the Pisot conjecture, but it has a null substitution
matrix determinant, det(M) = 0, as periodic lattices [80]. In consequence, it is not a quasiperiodic
system, but exhibits an essentially discrete diffraction pattern, and then TM heterostructures can be
regarded as an aperiodic crystal according to the definition of crystals given by the International Union
of Crystallography [81]. The RSRM has been applied to the study of electronic properties in TM chains
since 1990 [82], where the density of states [83], trace map problem [84,85], and localization [86,87],
as well as excitonic states [88], were analyzed.

Another example of aperiodic sequence studied by RSRM was period doubling (PD), whose
sequence can be generated by substitutions A→ AB and B→ AA , or the addition rule PDn =

PDn−1 ⊕ PDn−2 ⊕ PDn−2, where PDn is the PD chain of generation n and the initial conditions are
PD0 = A and PD1 = AB. For example, PD2 = ABAA and PD3 = ABAAABAB. The local [89] and
global [90] electronic properties of pristine and random PD chains, as well as critical behavior of the
Gaussian model [91], were studied via RSRM. Moreover, three-component Fibonacci chains, defined by
the inflation rules A→ B , B→ C , and C→ CA , were addressed by the RSRM, where branching rules
of their electronic energy spectra were analytically obtained [92] and compared with the numerical
local density of states [93]. A summary on the nature of electronic wave functions in one-dimensional
(1D) aperiodic lattices can be found in [94].

4. Multidimensional Aperiodic Lattices

Beyond one-dimensional systems, let us first consider a linear chain with branches of atoms, known
as Fano-Anderson defects [95], which is illustrated in Figure 2c and has an average coordination number
of larger than two, but without loops. The appearance of such branches may significantly modify the
transport of excitations along the linear chain owing to the wave interference. In fact, quasiperiodically
placed branches could inhibit the transport of long-wavelength excitations, which are usually unaltered
by local impurities or defects [96]. Electronic transport in a quantum wire with an attached quantum-dot
array was studied by P. A. Orellana et al. in 2003 [97], while engineering Fano resonances in discrete
arrays were proposed by A. E. Miroshnichenko and Y. S. Kivshar in 2005 [98]. During the next decade,
more detailed studies using RSRM were carried out for the transmission coefficient [99–105], Landauer
resistance [106], Lyapunov exponent [100], local DOS [101–103], and Kubo conductivity [107]. Moreover,
the ballistic AC conductivity of periodic lattices has been surpassed through quasiperiodicity [108] or
Fano resonances [109].

Linear chains built by ring molecules, illustrated in Figure 2d, constitute another example of
systems with an effective dimensionality bigger than one, whose atomic loops produce a rich quantum
interference of the conducting wavefunction. This interference enables high-performance molecular
switching with large on/off ratios essential for the next generation of molecular electronics [110,111],
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where the RSRM has been used for the study of Fibonacci arrays of Aharonov–Bohm rings [112],
metal–insulator transition in the quasiperiodic Aubry model [113], electronic transmission in bent
quantum wires [114], and in ladders with a single side-attached impurity [115]. Recently, the electronic
density of states, localization, transmittance, and persistent current in molecular chains and ladders
have been widely investigated via RSRM [116–122], while the spin-selective electronic transport was
also analyzed [123,124]. A review of these studies is presented in [125].

Self-assembled deoxyribonucleic acid (DNA) molecular wires, built by cytosine-guanine (CG) or
adenine-thymine (AT) stacked pairs attached to the double-helix structure through sugar-phosphate
backbones, may behave as a low-dimensional conductor, semiconductors, or insulators, depending on
the system length and base-pair sequences [126,127]. Ab-initio [128,129] and semi-empirical [130,131]
studies of DNA molecules were carried out and, among them, the latter has the advantage of being
simple and suitable for the analysis of electronic transport in aperiodic double chains with macroscopic
length. The DNA molecules can be modelled as a double-strand ladder of coarse grains, which has
been transformed into a single string of base pairs with dangling backbones, known as the fishbone
model, and in turn, it was reduced to a single chain after a two-step renormalization at each base
pair [132]. This chain has been used for the study of electronic transport in Fibonacci [133,134] and
asymmetric [135] DNA molecules, helical structures [136–138], thermoelectric devices [139], diluted
random base-pair segments [140], and Hubbard systems [141]. An additional renormalization process
can be carried out along organic molecular wires to calculate the density of states [142,143], Lyapunov
coefficient [144,145], transmittance [142–145], and magnetoconductance [146]. In fact, the double-strand
ladder model is still used for the analysis of charge transport in quasiperiodic Poly (CG) systems [147]
and a comparison between ladder and fishbone models was also performed [148]. Moreover, a possible
test of the Efimov states in three-strand DNA systems was proposed [149,150]. Several review articles
about DNA-based nanostructures have recently been published [151,152].

A two-dimensional (2D) square Fibonacci lattice can be constructed by superimposing two
1D Fibonacci chains along the x and y axis, as shown in Figure 2f, whose Hamiltonian could be
defined as H2D = H1D

x ⊗ I1D
y + I1D

x ⊗H1D
y with H1D

ν (I1D
ν ) the 1D Hamiltonian (identity matrix) along

the ν = x or y axis. Hence, for the bond problem, this construction procedure is straightforward [153],
while three kinds of sites are generated in the site or mixing problems [154]. A special case of
Fibonacci superlattices is obtained when one of these chains is quasiperiodic and another is periodic,
in which the 2D problem can be addressed by applying the reciprocal space technique along the
periodic direction and the renormalization method along the quasiperiodic one [155]. For the
three-dimensional (3D) case, a Fibonacci superlattice is generally obtained from a 2D periodic lattice
and a 1D quasiperiodic one, as occurring in the quasiperiodic GaAs-AlAs heterostructure constructed
by R. Merlin et al. [156], whose vibrational spectrum was calculated by a combined method of real and
reciprocal spaces [28]. In the last three decades, the splitting rules of electronic energy spectra [157–159],
density of states [160,161], and DC [162–164] and AC [165,166] electrical conductance in 2D Fibonacci
lattices have been extensively studied.

For 3D aperiodic systems with a small cross section, that is, non-periodic nanowires, the electrical
conductance [167,168] and impurity effects [169,170] were investigated by means of the renormalization
plus convolution technique of [17], whose computational efficiency is shown in Figure 3 and compared
to the direct calculation through the matrix inversion process. The computing times shown in Figure 3
correspond to the calculations of zero-temperature DC conductivity given by Equation (3) at μ = 0 for
a quasiperiodic nanowire with a cross section of 5×5 atoms, where the Fortran’s quadruple precision
and a Supermicro workstation with two central processing unit (CPU) processors of Intel Xeon 4108
and 64 GB of DDR4-2666 RAM memory were used. Observe the cubic computing-time increase for the
direct calculation case, in contrast to the logarithmic growth when the renormalization plus convolution
method is used, which permits the study of electronic transport in truly macroscopic 3D lattices with
multiple aperiodically located interfaces. Note also that, for short-length nanowires of 50 atoms,
for example, the direct calculation represents a more efficient option than the renormalization one.
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Figure 3. (color online) A log–log plot of single-energy Kubo conductivity computing time versus the
total number of atoms in a quasiperiodic nanowire with a cross section of 5×5 atoms schematically
illustrated in the inset, where the calculations were performed using a Fortran inversion subroutine
(blue squares) and the renormalization plus convolution method of [17] (red circles).

Another widely studied 2D quasiperiodic lattice is the Penrose tiling, shown in Figure 2e,
whose integrated density of states (IDOS) presents a central peak with about 10% of the total
number of states separated from two symmetric bands by two finite gaps [171,172]. The presence
of these gaps in macroscopic Penrose lattices has been confirmed by a real-space renormalization
study [173] and analyzed by means of a square of the Hamiltonian (H2) obtained from renormalizing
one of the alternating sublattices, because the Penrose tiling is bipartite. The band center of the
original Hamiltonian is mapped to the minimum eigenvalue of H2, whose eigenfunction has
antibonding symmetry and is frustrated by triangular cells in H2 [174,175]. At the same time,
the local [176] and total [177] electronic density of states in Penrose lattices were also studied by a
renormalization method, neglecting the small hopping integrals corresponding to the long diagonal
of kites. Similar renormalization procedures have been applied to the study of the bond percolation
problem [178], phason elasticity [179], Potts spin interaction [180], critical eigenstates [181], and Hubbard
model within the real-space dynamical mean-field theory [182,183].

In general, an exact RSRM for 2D Penrose lattices requires the explicit consideration of all boundary
sites in each generation to calculate the next-generation Green’s function, because it counts all possible
paths between two arbitrary sites. This fact inhibits a suitable application of RSRM to truly macroscopic
Penrose lattices, in contrast to 1D systems, where the number of boundary sites is always two. Hence,
hypercubic aperiodic lattices are commonly addressed by using a renormalization plus convolution
method [17].

Labyrinth lattices, shown in Figure 2g, constitute an example of non-cubically structured 2D
aperiodic tiling, where a novel convolution plus renormalization method has been successfully
applied [184], being the first aperiodic multidimensional lattice beyond hypercubic structures
investigated by means of RSRM. This lattice was first introduced by C. Sire in 1989 obtained from a
Euclidean product of two 1D aperiodic chains [185,186]. The energy spectrum of the Labyrinth tiling
has been proven to be an interval if parameters λx and λy of the x and y direction chains, defined
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by λ ≡
∣∣∣t2

A − t2
B

∣∣∣/tAtB, are sufficiently close to zero, and it is a Cantor set of zero Lebesgue measure if
λx and λy are large enough [187,188]. The wave packet dynamics [189] and quantum diffusion [190]
in the Labyrinth tiling were also analyzed using RSRM. Labyrinth lattices based on silver-means
quasiperiodic chains have been observed in a surface-wave experiment [191].

5. Vibrational Excitations

A solid of N atoms has 3N degrees of freedom and it can translate or rotate as a whole, hence
it may have 3N − 6 normal modes of vibration, in which all atoms move sinusoidally with the same
frequency and a fixed phase relation [3,192]. The quantum of these normal vibrational modes is called
phonon, who has crucial participation in the Raman scattering [193], infrared (IR) spectroscopy [194],
and inelastic neutron scattering [195], as well as in thermal transport [196]. These phonons, as other
elementary excitations in solids, are scattered by impurities, defects, and structural interfaces, and their
transport in quasiperiodic lattices has been studied since the discovery of quasicrystals. For example,
the first quasiperiodic GaAs-AlAs superlattice was built in 1985 [156] and its acoustic Raman spectrum
measured from the backscattering [29] was theoretically reproduced in 1988 [28]. Using RSRM,
the phonon frequencies [197,198], local DOS [199,200], transmission coefficient [201], and lattice
specific heat [202] in Fibonacci chains, as well as vibrational properties in Thue–Morse [202,203],
period-doubling [204], Rudin–Shapiro [204], and three-component Fibonacci [205] systems, were
studied. Experimental determination of phonon behavior was carried out in 1D aperiodic lattices
through the third sound on a superfluid helium film [206], while in 2D Penrose tiling using quasiperiodic
arrays of Josephson junctions [207], tuning forks [208], and LC electric oscillators [209], in which
anharmonic effects were also analyzed.

The lattice thermal conductance (K) given by Equation (5) of [210] is calculated using the RSRM
and comparatively presented in Figure 4 for periodic (165,580,142 atoms), Fibonacci (165,580,142 atoms),
Thue–Morse (134,217,729 atoms), and period doubling (134,217,729 atoms) chains with a uniform
mass M and restoring force constants αA = 1

2 (
√

5− 1)α and αB = α connected to two periodic leads
at their ends, where K0 = πkBω0/6 is the quantum of thermal conductance [211], ω0 =

√
α/M,

and T0 = �ω0/kB. In general, the thermal conductance of aperiodic chains diminishes with the
structural disorder strength and the system length, whose temperature variation K(T) is consistent with
those reported in [212]. The corresponding phonon transmittance spectra are shown in Figure 4a for
Fibonacci, Figure 4b for period doubling, and Figure 4c for Thue–Morse chains in comparison with that
of the periodic one illustrated by the dark-yellow solid lines in each of them, while a low-temperature
magnification of K(T) − T is exposed in Figure 4d for the mentioned chains. Observe in Figure 4d the
nearly linear behavior of K(T) for the periodic case whose small deviation is caused by the finite length
of system, and the presence of a crossing between K(T) curves of Fibonacci and Thue–Morse chains,
where the higher K(T) of Thue–Morse chains at low temperature is originated from its almost one
transmittance around the zero vibrational frequency, as shown in Figure 4c.
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Figure 4. Lattice thermal conductance (K) as a function of temperature (T) for periodic (circles),
Fibonacci (squares), period doubling (up triangles), and Thue–Morse (down triangles) chains. Insets:
the corresponding phononic transmittance spectra of (a) Fibonacci, (b) period doubling, and (c)
Thue–Morse chains, as well as (d) an amplification of K(T)/K0 −T at the low-temperature zone.

For 3D systems, the real-space renormalization plus convolution method has been applied to the
study of lattice thermal conductivity by phonons in quasiperiodic nanowires (NW), whose power–law
temperature dependence as a function of the NW cross-section area has a good agreement with
the experimental results [211]. The direct conversion between thermal and electrical energies can
be achieved by means of thermoelectric devices, whose performance can be measured using the
dimensionless figure-of-merit defined as

ZT = σS2T/(κel + κph) (9)

where S is the Seebeck coefficient; σ is the electrical conductivity; and κel and κph are the electronic
and phononic thermal conductivities, respectively [2]. The inherent correlation between these
thermoelectric quantities makes difficult to improve the value of ZT. Recently, nanowire heterostructures,
such as M2O3/ZnO(M = In,Ga,Fe) with compositional segmentation, have demonstrated a
significant improvement of ZT, mainly owing to the phonon scattering at composite interfaces [213].
Thermoelectricity in periodic and quasiperiodically segmented nanobelts and nanowires were
comparatively studied within the Kubo–Greenwood formalism [214], and the results reveal the
importance of segmentation in ZT as well as its further improvement when the quasiperiodicity is
introduced, because it significantly diminishes the thermal conduction of long wavelength acoustic
phonons, which are responsible for the thermal conductivity by phonons at low a temperature and
do not feel local defects nor impurities [215]. Furthermore, branches of atoms attached to a nanowire
may significantly modify the transport of excitations along it owing to wave interference, whose
resonance produces zones of a very high value of ZT in the Hamiltonian parameter space [216].
Poly(G)-poly(C) DNA-like double chains, shown in Figure 2h, constitute another interesting example
of branched low-dimensional systems, where the fishbone model and the two-site coarse grain
model based on the Born potential including central and non-central interactions are used for the
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calculation of electrical and lattice thermal conductivities, respectively, through the Kubo–Greenwood
formula [217]. The results show the appearance of gaps in phononic transmittance spectra and a
remarkable enhancement of ZT when periodic interfaces between poly(G) and poly(C) segments
are introduced. Such ZT can be further improved by introducing a long-range quasiperiodic order,
which avoids the thermal transport of numerous low-frequency phonons responsible of the lattice
thermal conduction at a low temperature. Finally, the reservoirs have an important participation on
the ZT, as they constitute the boundary conditions of the quantum system and may cause resonant
interferences favoring the thermoelectric transport [210].

6. Conclusions

An aperiodic solid could be thermodynamically stable by the growth of entropy, the appearance
of electronic energy gap around of the Fermi energy as occurred in the Peierls instability [218],
or mechanisms described by the Hume–Rothery rules [219]. Such structural asymmetry represents a
singular opportunity to achieve many unique physical properties. For example, the union of positively
and negatively doped semiconductors constitutes the base of current microelectronics and modern
illumination. Nevertheless, the presence of these structural interfaces requires new approaches for its
study and design.

From the theoretical point of view, the tight-binding or Hubbard Hamiltonian based on the
Wannier functions provides an atomic scale modelling of measurable physical quantities, where the
huge degrees of freedom should be efficient and accurately addressed by taking the advantage of
all visible and hidden symmetries. For instance, the exciton diffusion in organic solar cells has been
recently analyzed by means of an attractive Hubbard Hamiltonian and the real-space renormalization
method (RSRM) [220]. For aperiodic lattices with hierarchically structured inhomogeneities, the RSRM
seems to be an ideal candidate because the structural scaling rule of these aperiodic lattices can be
used as the starting point of RSRM. However, this procedure is truly useful only in 1D systems
because they have a constant number of boundary atoms, in contrast to multidimensional systems
whose boundary-atom number grows with the system size. These boundary atoms are extremely
important for the Green’s function determination, that is, a precise counting of all possible paths
between two arbitrary atoms. For separable Hamiltonians, such as nearest-neighbor tight-binding
Hamiltonian in cubically structured aperiodic lattices, a combination of the convolution theorem and
RSRM has demonstrated its effectiveness [17]. Beyond cubically structured systems, the labyrinth
lattice has been the first non-hypercubic aperiodic network recently addressed by the renormalization
plus convolution scheme, where a new convolution theorem for a product of Hamiltonians instead
of summation in the traditional convolution theorem was developed [184]. This fact opens a new
horizon for the applicability of RSRM to more complex multidimensional aperiodic structures. On the
other hand, the design of electronic and optical devices based on quantum mechanical calculations
has been one of the biggest dreams of physicists and engineers, and the recent advances in RSRM
bring it closer because these electronic and optical devices usually contain multiple aperiodic located
structural interfaces. For example, first-principle calculations have been used in the multiscale design
of omnidirectional dielectric reflectors [221] and Fabry–Perot resonators [222], whose results were
experimentally confirmed.

Finally, despite the proven efficiency of RSRM in the study of systems with huge degrees of
freedom, there are still many challenges in the development and application of new RSRM and they
might be summarized as follows: (1) extend the applicability of RSRM to multidimensional lattices
with complex structural symmetry; (2) combine the RSRM with the density functional theory to
address multielectron systems; and (3) apply the RSRM to strong correlated phenomena, such as
the superconductivity.
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Abbreviations

The following abbreviations are used in this manuscript:

YB Yottabytes
RSRM Real-space renormalization method
CPA Coherent potential approximation
CPU Central processing unit
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
DC Direct current
AC Alternating current
DOS Density of states
IDOS Integrated density of states
GF Generalized Fibonacci
TM Thue–Morse
PD Period doubling
NW Nanowires
IR Infrared
DNA Deoxyribonucleic acid
A Adenine
C Cytosine
G Guanine
T Thymine
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Abstract: The properties of localization of the I(ω) electric current function in non-periodic
electrical transmission lines have been intensively studied in the last decade. The electric
components have been distributed in several forms: (a) aperiodic, including self-similar sequences
(Fibonacci and m-tuplingtupling Thue–Morse), (b) incommensurate sequences (Aubry–André and
Soukoulis–Economou), and (c) long-range correlated sequences (binary discrete and continuous).
The localization properties of the transmission lines were measured using typical diagnostic tools of
quantum mechanics like normalized localization length, transmission coefficient, average overlap
amplitude, etc. As a result, it has been shown that the localization properties of the classic electric
transmission lines are similar to the one-dimensional tight-binding quantum model, but also features
some differences. Hence, it is worthwhile to continue investigating disordered transmission lines. To
explore new localization behaviors, we are now studying two different problems, namely the model
of interacting hanging cells (consisting of a finite number of dual or direct cells hanging in random
positions in the transmission line), and the parity-time symmetry problem (PT -symmetry), where
resistances Rn are distributed according to gain-loss sequence (R2n = +R, R2n−1 = −R). This review
presents some of the most important results on the localization behavior of the I(ω) electric current
function, in dual, direct, and mixed classic transmission lines, when the electrical components are
distributed non-periodically.

Keywords: non-periodic systems; localization properties; electrical transmission lines

1. Introduction

Disordered one-dimensional quantum systems have been studied intensively since the pioneering
work of Anderson [1]. It has been discovered that for one-dimensional uncorrelated disordered
(random) systems, all states become localized states at the thermodynamic limit. Conversely, in
periodic systems, all states are extended states, but for short-range or long-range correlated disorder, it
is possible to find discrete sets or bands of extended states, respectively [2–29]. Also, these results have
been verified experimentally [30–35]. In addition to correlated disordered systems, the fundamental
properties of aperiodic systems have been extensively studied [36–74]. Aperiodic systems are formed
by incommensurate systems and self-similar systems, and aperiodic incommensurate systems are
generated by two superimposed periodic structures with incommensurate periods. The origin
of incommensurability may be structural or dynamical. In the first case, there are two or more
superimposed periodic structures whose periods are incommensurate, and in the second case one
periodicity is related to the crystalline structure and the other to the behavior of elementary excitations
that propagate through the crystal. On the other hand, self-similar systems are generated by specific
substitutional rules.

After systematic studies of their properties, aperiodic systems can be classified based on two
aspects: the spectral measures of their lattice Fourier transform and their Hamiltonian energy spectrum.
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According to the Lebesgue’s decomposition theorem, the energy spectrum of any measure in Rn can
be uniquely decomposed into three types of spectral measures, namely (a) purely point spectra (μp),
(b) absolutely continuous spectra (μac) and (c) singularly continuous spectra (μsc). In addition, a
combination of these measures is possible. Using spectral measures, Maciá [71,73] introduced a
classification chart which includes periodic, amorphous and aperiodic systems. In this chart the
abscissa is represented by the lattice Fourier transform and the ordinate is represented by the energy
spectrum. In particular, we can see that the Fibonacci and the Thue–Morse systems share the same
kind of singular continuous energy spectrum, known as a critical state. In this state, the wave function
amplitude presents strong spatial fluctuations; however, the decaying envelope of the local maxima
cannot be fitted to an exponential function, like the exponentially localized functions. On the other side,
the spectral measure of the Fourier transform is different for these two self-similar systems, namely
purely point spectra (μp) for Fibonacci systems, but singularly continuous spectra (μsc) for Thue–Morse
systems. This way, the Fibonacci systems can be classified as quasi-periodic and the Thue–Morse
systems are classified as aperiodic but not quasi-periodic. Despite this fundamental difference, most
self-similar systems present an infinite number of gaps and consequently, the integrated density of
states shows a fractal behavior. Also, the total bandwidth goes to zero in the thermodynamic limit
N → ∞.

This review presents recent results about the influence of the disordered distribution of electric
components (capacitances and inductances) in the localization properties of dual, direct and mixed
classical transmission lines (TL) [75–89]. To study the localization behavior of these non-periodic
systems, the electric components have been distributed in a variety of forms: (a) aperiodic, including
self-similar sequences (Fibonacci and m−tupling Thue–Morse), (b) incommensurate sequences
(Aubry–André and Soukoulis–Economou), and (c) long-range correlated sequences (binary discrete
and continuous). Although we are studying classical systems, the localization properties of the
transmission lines are measured using the typical tools used in quantum mechanics to characterize the
localization behavior of disordered systems. Specifically, we use the normalized localization length
Λ (ω), the inverse participation ratio IPR (ω), the transmission coefficient T (ω), the global density
of states DOS (ω) , the average overlap amplitude Cω, etc. Our studies indicate that the localization
behavior of the classical electric transmission lines is similar to the one-dimensional tight-binding
quantum model, but also displays some significant differences. Therefore it is important to keep
investigating this type of classical disordered systems.

This review proceeds as follows. Section 2 describes the three ways to build classic electric
transmission lines: dual, direct and mixed. Also, the allowed frequency spectrum for each kind of
transmission line is calculated and, at the same time, the methods used to obtain the localization
properties of these systems are described. Section 3 presents the localization behavior of transmission
lines with different kinds of disorder, like aperiodic disorder and long-range correlated disorder.
Section 4 shows the main results obtained so far in relation to the localization behavior of non-periodic
electrical transmission lines. Also, a possible application to the study of electrical communication
between neurons in included. Finally, two new lines of research to study the effect of the disorder on
the localization properties of the electric current function are indicated.

2. Electric Transmission Lines

2.1. Direct and Dual Transmission Lines

We analyze ideal classical electric transmission lines considering three possible configurations, i.e.,
dual, direct, and mixed. We introduce the non-periodic disorder through the values of the inductances
and capacitances of each cell of disordered TL [75–89].

Figure 1 shows a segment of a transmission line (dual or direct), with horizontal impedances
denoted by Zn and vertical impedances labeled γn. For direct TL the impedances are Zn = (iωLn) and
γn = (iωCn)

−1 , but for dual TL we have Zn = (iωCn)
−1 and γn = (iωLn) . Here, Cn and Ln denote

the capacitance and inductance values in cell n, respectively. To study the localization properties of the
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electric transmission lines, capacitances Cn, inductances Ln, or both are distributed using aperiodic
sequences. Applying Kirchhoff’s Loop Rule to three successive unit cells of the ideal TL shown in
Figure 1, we obtain a linear relationship between the electric currents circulating in the (n − 1)th, nth
and (n + 1)th cells.

Figure 1. A partial view of an ideal transmission line. Zn (γn) represent horizontal (vertical)
impedances, respectively. For direct TL, Zn is associated with inductances and γn with capacitances.
Conversely, for dual TL, Zn is associated with capacitances and γn with inductances. The arrows
indicate the direction of the electric current in each cell. We arbitrarily consider the initial flow from the
left, because we are using open boundary conditions

Specifically, for the direct transmission line, we find

(
C−1

n−1 + C−1
n − ω2Ln

)
In − C−1

n−1 In−1 − C−1
n In+1 = 0 (1)

The corresponding equation for the dual TL, can be obtained using the following substitutions
ω → (ω)−1 , Cn → (Ln)

−1 , Ln → (Cn)
−1, namely(

Ln−1 + Ln −
(

ω2Cn

)−1
)

In − Ln−1 In−1 − Ln In+1 = 0 (2)

In both cases, Equations (1) and (2) can be put in a simple generic form

Dn In − Bn−1 In−1 − Bn In+1 = 0 (3)

where
Dn = (Bn−1 + Bn − An) (4)

Notice that An always depends on frequency ω and the values of capacitances Cn or inductances
Ln, while Bn only depends on Cn or Ln. To be specific, for direct TL we have An = ω2Ln and Bn = C−1

n ,
but for dual TL we have An =

(
ω2Cn

)−1 and Bn = Ln. Please note that when we introduce disorder
in the off-diagonal terms, this disorder simultaneously appears in the diagonal term Dn.

2.2. Mixed Transmission Lines

The spectrum of allowed frequencies of periodic dual and direct transmission lines contains a
single band. To obtain a frequency spectrum with more bands, namely a frequency selector, recently a
combination of dual and direct cells, called mixed transmission line, has been studied. [87,88]. These
electric systems are formed by a basic unit of d = (p + q) cells consisting of a set of p successive direct
cells followed by q successive dual cells. The N total number of cells in the mixed TL is given by
N = d Ns, where Ns is the number of times we repeat the basic unit. Figure 2 shows a segment of a
mixed TL with p = 2, q = 3 and d = 5. Applying Kirchhoff’s Loop Rule to this system, we find a set of
equations similar to Equations (1) and (2). Consequently, equations describing mixed transmission
lines can also be written in the same form as the generic Equation (3), but now both coefficients Dn and
Bn usually depend on the frequency ω, the parameters p, q and capacitances Cn,x, Cn,y, and inductances
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Ln,x, Ln,y, corresponding to direct and dual cells, respectively. Consequently, mixed TL contain a richer
parameter space to study the localization properties of the I (ω) electric current function. This allows
obtaining exactly d = (p + q) bands separated by gaps, containing extended and localized states and
even gaps. In this way, the mixed transmission line becomes a frequency selector.

Figure 2. A segment of a mixed transmission line formed by p = 2 direct cells and q = 3 dual cells. The
full system is formed by the repetition of the basic unit formed by d = (p + q) cells. Inductances are
represented by rectangles and capacitances by circles. In addition, dual cells are marked with orange
color-filled symbols. The arrows indicate the direction of the electric current in each cell.

2.3. Relation with the Tight-Binding Model

The generic Equation (3) describing the relationship between three consecutive electric current
amplitudes In−1 (ω), In (ω) and In+1 (ω) in the classical electrical transmission lines, has the same
form that the equation describing the relationship between three consecutive amplitudes φn−1 (E),
φn (E) and φn+1 (E) of the wave function of the one-dimensional tight-binding quantum model.
This correspondence has allowed to test the effects of the disorder in one-dimensional quantum
systems using classical electrical circuits with random distribution of capacitances and inductances.
Consequently, Equation (3) can be mapped to the quantum one-dimensional tight-binding model

(E − εn) φn − Vn−1φn−1 − Vnφn+1 = 0 (5)

where εn is the site energy, Vn the hopping between neighboring sites, E the eigenenergy, and φn

is the eigenfunction. In this quantum model, it is always possible to study separately the diagonal
disordered case and the off-diagonal disordered case. However, in classical electrical TL, indicated by
relations (1) and (2), the introduction of disorder in the off-diagonal terms necessarily implies that the
disorder appears in both the diagonal and off-diagonal terms. Nonetheless, a correspondence between
the tight-binding Equation (5) and Equations (1) and (2) exists. Applying the following transformation
in the tight-binding Equation (5) we obtain the direct TL (1),

E = −ω2, εn = −L−1
n

(
C−1

n−1 + C−1
n

)
, φn = In (Ln)

− 1
2 (6)

Vn−1 = C−1
n−1 (Ln−1Ln)

− 1
2 , Vn = C−1

n (LnLn+1)
− 1

2 (7)

To obtain the dual TL (2) from the tight-binding equation, it suffices to do the following changes
in transformations (6) and (7), that is ω → (ω)−1 , Cn → (Ln)

−1 , Ln → (Cn)
−1 . This correspondence

between the tight-binding quantum model and the classical transmission lines allows checking the
localization behavior of quantum disordered one-dimensional systems using disordered TL.

2.4. Spectrum of Allowed Frequencies

To obtain the spectrum of allowed frequencies of dual and direct TL, the generic Equation (3),
Dn In − Bn−1 In−1 − Bn In+1 = 0, can be written in the following form:
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In+1 =
Dn

Bn
In −

Bn−1

Bn
In−1 (8)

Considering the trivial relation In = In, we obtain a map in the plane (In, In+1)(
In+1

In

)
= Mn

(
In

In−1

)
(9)

where matrix Mn is given by

Mn =

(
Dn
Bn

− Bn−1
Bn

1 0

)
(10)

The trajectories of the map (9) can be used to determine the extended or localized character of the
electric current function In (ω), i.e., for extended states the trajectories are bounded, but unbounded
for localized states. Also, the λn eigenvalues of the Mn matrix can be written in the following
complex form:

λn =
Dn

2Bn
± i

√
Bn−1

Bn
−
(

Dn

2Bn

)2
(11)

For a given frequency ω, the map (9) is stable if the eigenvalues λn of the matrix Mn are complex
numbers, which also implies that the trajectories of the map are bounded, which in turn means that the

electric current In (ω) is an extended function. λn is a complex number if condition
(

Bn−1
Bn

)
>
(

Dn
2Bn

)2

is met. For
(

Bn−1
Bn

)
=
(

Dn
2Bn

)2
we find the separatrix between localized states

((
Bn−1

Bn

)
<
(

Dn
2Bn

)2
)

and

extended states. Consequently, the spectrum of allowed frequencies for direct and dual TL is given by
general condition

(√
Bn −

√
Bn−1

)
<
√

An <
(√

Bn +
√

Bn−1

)
(12)

The coefficients An and Bn depend on the type of transmission line considered, direct or dual. For
direct TL we have Bn = C−1

n and An = ω2Ln and the allowed frequencies are given by

(
(LnCn)

− 1
2 − (LnCn−1)

− 1
2
)
< ω <

(
(LnCn)

− 1
2 + (LnCn−1)

− 1
2
)

(13)

For pure direct TL with Ln = L0, Cn = C0, ∀n, we find the typical band of frequencies, i.e.,
0 < ω < 2√

L0C0
. Conversely, for dual TL we have Bn = Ln and An =

(
ω2Cn

)−1 and the allowed
frequencies are

(√
CnLn +

√
CnLn−1

)−1
< ω <

(√
CnLn −

√
CnLn−1

)−1
(14)

For pure dual TL with Ln = L0, Cn = C0, ∀n, we also find the typical band of frequencies, i.e.,
1

2
√

L0C0
< ω < ∞.

Next, we determined the frequency spectrum allowed for mixed transmission lines with p direct
cells and q dual cells in the basic unit. The frequency spectrum shows a set of d = (p + q) allowed
bands separated by gaps in a bounded region of frequencies. The size and position of these d bands
depends on the set of parameters that define the mixed TL, namely p, q, and the values of capacitances
Cn,x, Cn,y, and inductances Ln,x, Ln,y in direct or dual cell, respectively. Using the generic Equation (3)
we write the relationship between three consecutive cells of the mixed TL. Starting from the first
site with index n belonging to the direct type cell, we write p equations. After that we write q
equations corresponding to dual cells. We repeat this process until we generate the complete mixed
TL. Using a matrix decimation process [90,91] we can eliminate equations with sites between (n + 1)
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and (n + d − 1) , and between (n + d + 1) and (n + 2d − 1) and so on. This process allows us to write
a new generic equation with renormalized coefficients DR

n+jd and BR
n+jd, which connects sites that are

separated by a distance d, namely

DR
n+jd In+jd − BR

n+(j−1)d In+(j−1)d − BR
n+jd In+(j+1)d = 0 (15)

where j = 0, 1, 2, 3, ... Studying bounded trajectories of the new renormalized map, we obtain the
spectrum of allowed frequencies for mixed TL, i.e.,

∣∣∣DR
n+jd

∣∣∣ < 2
√

BR
n+(j−1)dBR

n+jd (16)

From this relationship, two algebraic inequations of degree d in the variable ω2 are found. Solving
both inequations, exactly d = (p + q) bands are obtained, within which we can observe extended
and localized states, and even gaps. The size and position of these d = (p + q) bands depends on the
number of direct cells p and the number of dual cells q that form the mixed TL, as well as on the values
of capacitances Cn,x, Cn,y and inductances Ln,x, Ln,y of direct and dual cells, respectively.

2.5. Methods to Obtain the In (ω) Electric Current Function

The In (ω) amplitudes of the electric current function, are obtained solving the generic Equation (3).
In this paper we only consider two methods to solve this equation: (a) the recurrence method and (b)
The Hamiltonian map method.

2.5.1. Recurrence Method

The In (ω) electric current amplitude in each cell, can be calculated using the following method.
First, the generic Equation (3) is divided by In and then γn is defined as follows

γn =

(
Bn

In+1

In

)
(17)

Then, Equation (3) is transformed into a recurrence equation for γn,

γn = Dn −
1

γn−1
(Bn−1)

2 (18)

where 2 ≤ n ≤ N. Iterating this equation, and starting with γ1 = D1 = (B1 − A1) , the full set of γn

values, with n = 1, 2, 3, ..., N is obtained. With these γn values, and using an arbitrary initial amplitude
value I1 = 1, the full set of amplitudes {In} of the electric current function, can be calculated, i.e.,

In+1 =

(
γn

Bn

)
In (19)

with 1 ≤ n ≤ (N − 1) . After that, the electric current function is normalized, i.e.,
N
∑

n=1
|In|2 = 1.

Exactly the same procedure can be applied to calculate {In} for mixed transmission lines, because
the coefficients γn are always defined from the generic Equation (3), so it is not necessary to use the
renormalized generic Equation (15). Also, the same is valid for the Hamiltonian map method.

2.5.2. Hamiltonian Map Method

Starting from the generic Equation (3), Dn In − Bn−1 In−1 − Bn In+1 = 0, we are building a
two-dimensional map (the Hamiltonian map) [28,81,83,87,88]. From the study of this map we will
obtain (a) the full set of electric current amplitudes {In} (from which we will obtain the localization
properties) and (b) the T (ω) transmission coefficient of the disordered TL (a crucial localization tool).
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Using electric current amplitudes In, we define the coordinate xn at cell n, and the momentum pn

(Hamiltonian description) in the following form:

xn = In (20)

pn = Bn−1 (In − In−1)

The generic Equation (3) can also be written using the coordinate xn,

Dnxn − Bn−1xn−1 − Bnxn+1 = 0 (21)

with Dn = (Bn−1 + Bn − An) . After some algebra, we obtain the Hamiltonian map as a function of the
coefficient An, αn and βn

xn+1 = αnxn + βn pn (22)

pn+1 = −Anxn + pn

where for simplicity we have defined βn =
(

1
Bn

)
and αn = (1 − Anβn). This map can be written as

Zn+1 = Mn Zn, where Zn+1 =
(

xn+1 pn+1

)τ
and Mn is given by

Mn =

(
αn βn

−An 1

)
(23)

The trajectories of this map in the phase space (x, p) determine the localization properties of the
In (ω) electric current amplitudes, namely for bounded trajectories In (ω) is an extended function,
but for unbounded trajectories In (ω) is a localized function. Importantly, the study of the map’s
evolution (22) at “time” n, is similar to the transfer matrix method [5,28] used to study the localization
behavior of disordered systems. On the other hand, starting from this map, the spectrum of allowed
frequencies we can be calculated studying the complex eigenvalues of the Hamiltonian matrix Mn (see
Section 2.4).

Next, variables (x, p) of the map (22) are changed by the canonical variables (r, θ) in the
following way

x = r sin θ (24)

p = r cos θ (25)

Using (24) and (25) the map (22) becomes

rn+1 sin θn+1 = αnrn sin θn + βnrn cos θn (26)

rn+1 cos θn+1 = −Anrn sin θn + rn cos θn (27)

Dividing Equation (26) by Equation (27) we obtain a recurrence equation from which we can
calculate θn+1 as a function of θn, namely

tan θn+1 =
βn + αn tan θn

1 − An tan θn
(28)

Now, squaring Equations (26) and (27) and adding them together, we have

(
rn+1

rn

)2
=
(

α2
n + A2

n

)
sin2 θn +

(
β2

n + 1
)

cos2 θn + (αnβn − An) sin 2θn (29)

43



Symmetry 2019, 11, 1257

Defining Γn as

Γn =
rn+1

rn
(30)

the recurrence equation to calculate rn+1 as a function of rn, is as follows

rn+1 = rnΓn (31)

In this way, for a fixed frequency ω, and starting with an initial condition (r0, θ0), the full set of
values of θn and rn. can be obtained. Then, using In = xn and xn = rn sin θn, we can calculate the
following relationship

In+1

In
=

xn+1

xn
=

rn+1 sin θn+1

rn sin θn
= Γn

(
sin θn+1

sin θn

)
(32)

from which we obtain the recurrence relation to calculate all electric current amplitudes In, as a function
of Γn and θn, namely

In+1 = Γn

(
sin θn+1

sin θn

)
In (33)

where 1 ≤ n ≤ (N − 1) .

2.6. Diagnostic Tools

Diagnostic tools have been introduced in the literature to study disordered quantum systems,
because the Bloch theorem cannot be applied in the non-periodic case. To accurately estimate the
degree of localization of the quantum wave function, it is generally necessary to simultaneously apply
two or more different diagnostic tools. It is important to note that these diagnostic tools also allow
us to determine the localization properties of classical systems, such as harmonic chains and electric
transmission lines.

2.6.1. Usual Diagnostic Tools

To study the localization behavior of the disordered electric TL as a function of the frequency
ω and as a function of the kind and degree of disorder, we deploy tools used in the study of the
localization behavior of quantum systems: the Lyapunov exponent λ (ω), the normalized localization
length Λ (ω), the participation number D (ω), the inverse participation ratio IPR (ω), the global
density of states DOS (ω) and the transmission coefficient T (ω) . In addition, to characterize the
localization behavior of disordered TL, we study the Rq (ω) Rényi entropies [92] and the moments
μq (ω). All localization tools are defined as a function of the normalized electric current amplitude
In (ω) , namely ∑N

n=1 |In (ω)|2 = 1. In the quantum case, the localization properties are measured
using the φn (E) amplitude of the normalized quantum wave function.

The λ (ω) Lyapunov exponent is defined as

λ (ω) = lim
N→∞

1
N

N

∑
n=1

ln
∣∣∣∣ In+1

In

∣∣∣∣ (34)

For extended states the following condition is met: λ (ω) ≤ 1
N . From (34) we define the Loc (ω)

localization length as Loc (ω) = λ−1 (ω) . Then, the Λ (ω) normalized localization length is defined as

Λ (ω) =
Loc (ω)

N
= (Nλ (ω))−1 (35)

For extended states we have Λ (ω) ≥ 1 and for localized states we obtain Λ (ω) < 1.

44



Symmetry 2019, 11, 1257

Next, we considered the μq (ω) moments of the In (ω) electric current function. Given that we

are working with normalized electric current
N
∑

n=1
|In|2 = 1, we can define the moments μq (ω) in the

following form

μq (ω) =
N

∑
n=1

|In|2q (36)

For homogeneous distribution of In (ω), i.e., for In (ω) = 1√
N

, ∀n, we find μq (ω) = N−(q−1).
This case corresponds to the most extended case. Conversely, for fully localized states in which In (ω) =

δn,m, we obtain μq (ω) = 1. The participation number D (ω) can be defined using μ2 (ω) namely

D (ω) =
1

μ2
=

(
N

∑
n=1

|In|4
)−1

(37)

with 1 ≤ D (ω) ≤ N. For extended states, D (ω) scales proportional to the N system size, which
implies that ln (D (ω)) versus ln (N) is a straight line with slope m approximate to m = 1. Also,
we can define the ξ (ω) normalized participation number as ξ (ω) = D(ω)

N , with 1
N ≤ ξ (ω) ≤ 1.

Consequently, for extended states, ξ (ω) tends to a constant value as a function of N. In particular, for
periodic systems ξ (ω) =

( 2
3
)

. Conversely, for localized states ξ (ω) → 0. In addition, the moment μ2

is known as the inverse participation ratio IPR (ω) = μ2 = D−1 (ω) . Consequently, 1
N < IPR (ω) ≤ 1.

Sometimes it is useful to calculate (N × IPR) . In this case, for localized states (N × IPR) → N and for
extended states (N × IPR) ≈ 1. In particular, for the most extended case (N × IPR) =

( 3
2
)
. Notice

that ξ (ω) = (N × IPR)−1 .
Also, some of these magnitudes can be obtained as a special case of the Rq (ω) Rényi entropies [92]

defined as

Rq (ω) =
1

1 − q
ln

N

∑
n=1

|In|2q , q 	= 1 (38)

In the limit q → 1 we obtain the Shannon entropy (S (ω) = limq→1 Rq (ω) = R1)

S (ω) = −
N

∑
n=1

|In|2 ln |In|2 (39)

For q = 2 we find R2 (ω) = ln D = − ln IPR. Moreover, the Rényi entropies Rq (ω) can be
defined using the μq (ω) moments in the following form

Rq (ω) =
1

1 − q
ln μq (ω) , q 	= 1 (40)

2.6.2. The Average Overlap Amplitude Cω

Another tool recently introduced in the literature is the Cω
ij overlap amplitude [84,86–88]. For fixed

frequency ω, this quantity measures the overlap between electric current amplitudes Ii (ω) and Ij (ω) ,
corresponding to two cells i and j of the TL and is defined as Cω

ij = 2
∣∣Ii (ω) Ij (ω)

∣∣. For homogeneous

distribution of Ij (ω) , i.e., for Ij (ω) = 1√
N

, ∀j, we find Cω
ij = 2

N . This case corresponds to the most
extended case. On the contrary, for fully localized states such as Ij (ω) = δi,j, we obtain Cω

ij = 0. Given

that Cω
ij depends on each pair of sites i and j, we define the average overlap amplitude Cω =

〈
Cω

ij

〉
considering all cells of the TL, namely

Cω =
〈

Cω
ij

〉
=

1
d ∑

i<j
Cω

ij (41)
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where d = 1
2 N (N − 1) . The overlap amplitude is based on the definition of quantum entanglements

between a pair of qubits, i and j, called pairwise entanglement (pairwise concurrence) [93,94].
Next, we considered the power of 2q of the overlap amplitude, Cω

ij , i.e.,

(
Cω

ij

)2q
= 22q ∣∣Ii (ω) Ij (ω)

∣∣2q (42)

The average of this quantity over all cells of the TL, is given by

〈(
Cω

ij

)2q
〉

=
22q

d ∑
i<j

|Ii (ω)|2q ∣∣Ij (ω)
∣∣2q (43)

After some algebra [84], this expression can be written as a function of the μq moments (36) of the
electric current function, namely

〈(
Cω

ij

)2q
〉

=
22q−1

d

((
μq
)2 − μ2q

)
(44)

This relationship indicates that
〈(

Cω
ij

)2q
〉

can determine the localization degree for any

disordered system. For the case q = 1
2 , we obtain a simple expression to calculate the average

overlap amplitude Cω, i.e.,

Cω =
〈

Cω
ij

〉
=

1
d

⎧⎨
⎩
(

N

∑
n=1

|In|
)2

− 1

⎫⎬
⎭ (45)

Also, for q = 1,
〈(

Cω
ij

)2
〉

can be calculated as a function of the ξ (ω) normalized participation

number [84,95], 〈(
Cω

ij

)2
〉

=
2
d

{
1 − 1

Nξ (ω)

}
(46)

For localized states ξ (ω) → 1
N , which implies that

〈(
Cω

ij

)2
〉

→ 0. Conversely, for extended

states ξ (ω) → 1, then
〈(

Cω
ij

)2
〉

=
( 2

N
)2

.

In general, for any value of q, for homogeneous extended states, the following scaling relationship
is obtained

〈(
Cω

ij

)2q
〉

=

(
2
N

)2q
(47)

but for fully localized states, we find
〈(

Cω
ij

)2q
〉

= 0. In particular, for q = 1
2 , we find that

(
N
〈

Cω
ij

〉)
scales like (NCω) → 2, which means that for extended states, (NCω) is independent of system size N.

In this way, the average overlap amplitude and its powers
〈(

Cω
ij

)2q
〉

can adequately determine

the degree of localization of the disordered TL. Finally,
〈(

Cω
ij

)2q
〉

can also be expressed as a function

of the Rényi entropies [84,95]

〈(
Cω

ij

)2q
〉

=
22q−1

d

{(
eRq
)2(1−q)

−
(

eR2q
)(1−2q)

}
(48)

The results shown in this subsubsection are valid even for the quantum case, considering that
Cω

ij represents the quantum entanglements between a pair of qubits CE
ij , i and j, called pairwise
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entanglement (pairwise concurrence) [93,94], i.e., CE
ij = 2

∣∣φi (E) φj (E)
∣∣, where φj (E) represents the

amplitude of the quantum wave function for the eigenstate with eigenenergy E.

2.6.3. The Transmission Coefficient Tω

To study the transmission properties of disordered TL using the Hamiltonian map (22), the
disordered segment must be embedded in two semi-infinite ordered TL, in a similar way to the transfer
matrix method [5,28]. From the Hamiltonian map formalism discussed above, the transmission
coefficient T (ω) can be calculated from the expression [5,28,81,83]

T (ω) =
2

1 + ZN
(49)

For bounded trajectories of the Hamiltonian map (22), we have ZN → 1 and T (ω) → 1. This
behavior indicates that the electric current function I (ω) is an extended function. On the contrary, for
unbounded trajectories we have ZN → ∞ and T (ω) → 0. In this case, I (ω) is a localized function. ZN
is defined as

ZN =
1
2

((
r(1)N

)2
+
(

r(2)N

)2
)

(50)

where r(1,2)
N are the radii of two trajectories at “time” n = N that start from two perpendicular initial

points, i.e.,

(
r(1)0 , θ

(1)
0

)
= (1, 0) (51)(

r(2)0 , θ
(2)
0

)
=
(

1,
π

2

)

The radii r(1,2)
N can be calculated using the relationship (31), i.e., rn+1 = rnΓn, then

(
r(j)

N

)2
is

given by

(
r(j)

N

)2
=

N

∏
n=1

(
Γ(j)

n

)2
, j = 1, 2 (52)

Or in another form

(
r(j)

N

)2
= exp

(
2

N

∑
n=1

ln
(

Γ(j)
n

))
, j = 1, 2 (53)

Therefore, ZN is given by

ZN =
1
2

[
exp

(
2

N

∑
n=1

ln
(

Γ(1)
n

))
+ exp

(
2

N

∑
n=1

ln
(

Γ(2)
n

))]
(54)

In this way we have a procedure to calculate the transmission coefficient T (ω) .

3. Disordered Transmission Lines

In this section, we study the localization behavior of the I (ω) electric current function when
we distribute capacitances and inductances in a non-periodic way in dual, direct and mixed
transmission lines. Here we will consider (a) aperiodic systems formed by self-similar sequences and
incommensurate sequences, and (b) long-range correlated sequences. The general results indicate that
the band structure of non-periodic systems is determined by the type of transmission line (dual, direct
or mixed) in which the disorder is introduced, and that the existence of discrete sets or extended state
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bands in the thermodynamic limit, it depends on the type of aperiodic disorder used to distribute the
electrical components.

3.1. Aperiodic Transmission Lines

3.1.1. Generalized Fibonacci Sequence

The generalized Fibonacci quasi-periodic sequence is given by substitution rule A → AmBn,
B → A. The corresponding substitution matrix M is given by

M =

[
m n
1 0

]
(55)

where the elements of the substitution matrix indicate the number of times a given letter, A or B,
appears in the substitution rule, without considering the order in which these letters occur. The number
of letters that appear after applying the substitution rule j times, is given by the generalized Fibonacci
numbers Fj, namely Fj = mFj−1 + nFj−2, j ≥ 2, with F0 = F1 = 1. When the number of iterations j
goes to infinity, the ratio between two consecutive Fibonacci numbers Fj and Fj−1 tends to a constant
number σm,n called the mean of incommensurability, i.e.,

σm,n = lim
j→∞

(
Fj

Fj−1

)
=

1
2

(
m +
√

m2 + 4n
)

(56)

In addition, the relative frequency of both types of letters nA = NA
N and nB = NB

N in the limit
j → ∞ is given by nA = σm,n

σm,n+n and nB = n
σm,n+n . Please note that the mean of incommensurability σm,n

can also be obtained as the maximal eigenvalue λ = σm,n of the substitution matrix M (55). For the
case m = 1 and n = 1, we obtain the golden mean σ1,1 = 1

2

(
1 +

√
5
)

, and the corresponding Fibonacci
sequence is the following:

A → AB → ABA → ABAAB → ABAABABA → · · ·

Some of the other Fibonacci means [71,73,74] which have been studied are: the Silver mean
σ2,1 =

(
1 +

√
2
)

, the Copper mean σ1,2 = 2, the Bronze mean σ3,1 = 1
2

(
3 +

√
13
)

, the Nickel mean

σ1,3 = 1
2

(
1 +

√
13
)

, etc. See Maciá [73] for a spectral classification of one-dimensional binary aperiodic
crystals, studying the eigenvalues λ± and the determinant |M| of the substitution matrix M.

The Fibonacci tight-binding quantum disordered systems have been studied exhaustively
by [37,38,40–46,59,60,63,71]. For the diagonal disordered case, the global number of sub-bands is
exactly four. However, in the off-diagonal disordered case, the global number of sub-bands is exactly
three. In both cases, each sub-band is divided into three sub-bands until it is resolvable. This
self-replication behavior is characteristic of quasi-periodic systems. On the other hand, in classical
electric systems, dual and mixed transmission lines have been studied [78,87] using a Fibonacci
distribution of two different values of inductances LA and LB, namely

LALBLALALBLALBLALALBLALALB... (57)

Notice that when we introduce disorder in the inductances of the dual or mixed TL, the generic
Equation (3) shows that the disorder appears simultaneously in the diagonal and non-diagonal part.

In dual transmission lines, the localization behavior of the Fibonacci quasi-periodic distribution
of inductances Ln, keeping constant the capacitances Cn = C0 ∀n, has been studied [78] analyzing
the spectrum of the generalized Rényi entropies Rq (ω) versus ω and the spectrum of the inverse
participation ratio N × IPR (ω) versus ω. For each q value, Rq (ω) and N × IPR (ω) show more than
four global sub-bands. This happens because the allowed frequency band of the dual transmission
lines is unbounded from above, namely every frequency of the spectrum is greater than a critical
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frequency ωc, i.e., ω > ωc. At the same time, the spectrum of Rq (ω) and N × IPR (ω) clearly shows
the self-replication behavior, where each sub-band is divided into three sub-bands until it is resolvable
(see Figures 2 and 3 of Ref. [78]). This localization behavior is characteristic of quasi-periodic Fibonacci
systems. Inside each sub-band, we find extended and localized states and gaps. When system size
N grows, the number of gaps and localized states increases in such a way that the integrated density
of states IDOS (ω) behaves in a fractal way. As a consequence, the total bandwidth goes to zero
in the thermodynamic limit N → ∞. In Figure 3a) we show the Shannon entropy S (ω) (39), which
corresponds to the R1 (ω) Rényi entropy discussed in Ref. [78]. Notice that the number of global
sub-bands is greater than four. Figure 3b) shows the three sub-bands existing in the global sub-band
indicated by the vertical arrow in Figure 3a). These previous results about the number of global
sub-bands of the dual TL shown in Ref. [78] change when the Fibonacci disorder is introduced in the
mixed transmission line [87]. However, the self-replication of the spectrum is maintained for all kinds
of mixed TL formed by p direct cells and q dual cells.

Figure 3. (a) Global sub-band structure of the Shannon entropy S (ω) = R1 (ω) versus ω, for the
Fibonacci quasi-periodic distribution of inductances Ln discussed in Ref. [78]. (b) Self-replication
structure of the sub-band indicated by the vertical arrow in (a).

Remember that mixed TL are generated by a repetition pattern formed by a group of successive
p direct cells, followed by a group of successive q dual cells. This topology generates a spectrum of
allowed frequencies formed by exactly d = (p + q) bands, as indicated in Section 2.4. In Ref. [87], only
the q inductances of the dual cells of mixed TL were distributed according to the Fibonacci sequence,
keeping constant the values of the other capacitances and inductances. The localization behavior of the
average overlap amplitude (NCω) versus ω for the case p = 2 and q = 1, shows three (d = 3) allowed
bands (see Figure 10 of Ref. [87]). These d bands exist regardless of the type of disorder and the
degree of correlation; however, the position of these d bands depends on the values of all capacitances
(Cn,x, Cn,y) and inductances (Ln,x, Ln,y) of direct cells (labeled x) and dual cells (labeled y), and the
values of p and q. The average overlap amplitude (NCω) versus ω shows four global sub-bands, where
each sub-band is divided into three sub-bands until it is resolvable (see Figure 11 of Ref. [87]). This
result coincides with the one obtained from the quantum tight-binding model with diagonal Fibonacci
disorder. This coincidence occurs because both models (mixed TL and tight-binding model) have
bounded spectra and because in both models the Fibonacci disorder appears in the diagonal part of
the corresponding dynamic equations (Equations (3) and (5)). Conversely, this result is different from
the case of the dual transmission line shown in Figures 2 and 3 of Ref. [78], where the number of
global sub-bands is greater than four, because the frequency spectrum of the dual TL is unbounded
from the above. Interestingly, when p and q change, each of the d = (p + q) bands of the mixed TL
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can accommodate a different number of global sub-bands. However, the self-replication is always
present. To observe this behavior, let us consider the case with fixed p = 2, and two different values of
q, namely q = {2, 3} . Figure 4 shows the average overlap amplitude (NCω) versus ω, for (a) q = 2
(d = 4 bands) and (b) q = 3 (d = 5 bands). There we can see that the full spectrum of frequencies of
mixed TL is contained only within the d bands.

Figure 4. (NCω) versus ω for the Fibonacci distribution of inductances Ln, for mixed TL with fixed
p = 2, considering two values of q. (a) q = 2 (d = 4 bands) and (b) q = 3 (d = 5 bands). Vertical arrows
indicate the bands to be studied in Figure 5.

Figure 5 shows (NCω) versus ω for the third band and fourth bands shown in Figure 4b. In
addition, Figure 5b,d show the self-replication behavior of each sub-band indicated with a vertical
arrow in Figure 5a,c, respectively. In this figure we can see that the number of localized states and gaps
increases after each self-replication.

Figure 5. (NCω) versus ω for the Fibonacci distribution of inductances Ln for mixed TL, for p = 2, q = 3.
A detail of Figure 4. (a) Third sub-band, (c) fourth sub-band. Figures (b,d) show the self-replication of
the sub-bands indicated by vertical arrows in (a,c), respectively.

In summary, for arbitrary values of p and q forming the mixed TL, the set of d = (p + q)
bands accommodates the full spectrum generated by the Fibonacci distribution of inductances Ln.
Inside each of the d bands, the number of global sub-bands is always greater than or equal to four,
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and the self-replication behavior corresponding to quasi-periodic systems is always present. In the
self-replication process, new localized states and gaps appear repeatedly. Consequently, the integrated
density of states has a fractal behavior and IDOS (ω) → 0 in the thermodynamic limit.

3.1.2. Generalized Thue–Morse Sequence

The generalized Thue–Morse (TM) aperiodic sequence can be generated by means of the
substitution rule A → AmBn, B → Bn Am. The corresponding substitution M matrix is given by

M =

[
m n
m n

]

The λ maximal eigenvalue of M is λ = (m + n) . For the case m = 1 and n = 1, we obtain the
usual Thue–Morse sequence: A → AB, B → BA, namely

A → AB → ABBA → ABBABAAB → · · ·

The maximal eigenvalue λ = (m + n) = 2 is thus the length of the substitution, which means
that N = λk is the number of the A and B letters in the kth iteration. For the generalized Thue–Morse
sequence, the relative frequency of both types of letters, nA and nB, is the following nA = m

(m+n) and
nB = n

(m+n) . Another generalization of the Thue–Morse sequence is the m−tupling sequence generated

by the substitution rule A → ABm−1, B → BAm−1, with m ≥ 2. In this case, the maximal eigenvalue
of the corresponding substitution M matrix is λ = m, and the number of letters N in this sequence
also increases geometrically, i.e., N = mk, where k is the iteration order. Here nA = nB = 1

2 . For m = 2
we return to the usual Thue–Morse sequence. A spectral classification of one-dimensional binary
aperiodic crystals as a function of the substitution matrix M is shown in Ref. [73].

For the tight-binding quantum model, the aperiodic properties of the generalized Thue–Morse
systems have been studied in great detail by [47–58,60,62,71]. Additionally, in classical dual and direct
transmission lines the Thue–Morse and the m−tupling distribution of capacitances and inductances
have been studied by [83–85]. For direct TL, two values of inductances LA and LB, where distributed
according to the m−tupling substitution rule LA → LALm−1

B , LB → LBLm−1
A , m ≥ 2, keeping constant

the capacitances [83,84]. For m = 2 we obtain the usual Thue–Morse substitution rule LA → LALB,
LB → LBLA. One of the principal findings of these studies was that the localization properties of the
usual Thue–Morse case, namely m = 2, is markedly different to the m = 3 case. In general, although
in the m−tupling sequence the number of letters A and B in each iteration is the same (nA = nB) for
any value of m, the number of extended states in the m−tupling inductance distribution depends
on the specific value of m. This was demonstrated numerically using different localization tools,
like normalized localization length Λ (ω) , participation number D (ω) , normalized participation
number ξ (ω) , global density of states DOS (ω) , transmission coefficient T (ω) and the average
overlap amplitude (NCω) . In addition, it was shown that inside the m−tupling family, starting with
m = 3, the number of extended states increases as the value of m increases, so that for m >> 3, the
allowed spectrum is similar to the spectrum of the case m = 2 (Thue–Morse). This can be seen in
Figure 6 where we show the normalized participation number ξ (ω) for three values of m, namely
m = {2, 3, 13} (a) to (c). Also, in Figure 6d we indicate with a short vertical bar the spectrum of the
extended states, namely the frequencies for which the Λ (ω) normalized localization length meets
the condition Λ (ω) ≥ 1. The image shows that the number of extended states for m = 3 is small
compared to the case m = 2. However, for the case m >> 3, namely m = 8 and m = 13, the number of
extended states becomes comparable with case m = 2.
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Figure 6. ξ (ω) versus ω for the m−tupling distribution of inductances Ln in the direct TL, for three
values of m, namely m = {2, 3, 13} (a–c). (d) Λ (ω) versus ω. A short vertical bar indicates the existence
of an extended state (Λ (ω) ≥ 1). The number of extended states for m = 3 is very small compared to
the case m = 2. Conversely, for m >> 3 (m = 8 and m = 13), the number of extended states increases
and becomes comparable to the m = 2 case.

When comparing the spectrum for cases m = 2 and m = 13, in a restricted region of frequencies
(see Figure 7), it can be observed that the number of extended states which fulfills the condition
ξ ≈ 0.667, corresponding to the periodic case, is reasonably similar in both cases. Also, we can see that
the sub-band of extended states of the Thue–Morse case with m = 2 (Figure 7a) is much wider than
the sub-bands of extended states of the m−tupling case with m = 13 (Figure 7b).

Figure 7. ξ (ω) versus ω for m−tupling distribution of inductances Ln in direct TL in a restricted region
of frequencies of the Figure 6. (a) m = 2, (b) m = 13. We can see that the sub-bands of extended states
(ξ ≈ 0.667) for m = 2 is much wider than the sub-bands of extended states of case m = 13.

In sum, for direct transmission lines with m−tupling distribution of inductances, the frequency
spectrum of the Thue–Morse sequence (m = 2) can be considered the limit of the m−tupling sequence’s
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frequency spectrum when m 
 3. On the other hand, the number of extended states for the case m = 2
decreases dramatically when m changes to m = 3, as shown in Refs. [83,84] and Figure 6.

As an extension of these ideas, the localization behavior of dual transmission lines with non-linear
capacitances has been studied [85]. The non-linear behavior of capacitances is introduced through the
VC,n potential difference across each capacitance, i.e.,

VC,n = qn

(
1

Cn
− εn |qn|2

)
(58)

Cn is the linear part of the capacitance VC,n and εn is the amplitude of the non-linear term. The equation
corresponding to this dual case is given by(

Ln−1 + Ln −
1

ω2Cn
+

εn |In|2
ω4

)
In − Ln−1 In−1 − Ln In+1 = 0 (59)

When the non-linear amplitudes εn go to zero (εn → 0), we return to the dual linear Equation (2).
The localization behavior of this non-linear dual TL has been studied using two values of the non-linear
amplitude εn, namely εA and εB, distributed according to the m−tupling Thue–Morse sequence [85],
i.e., εA → εA εm−1

B , εB → εB εm−1
A , m ≥ 2, but keeping constant the capacitances Cn and inductances

Ln, namely Cn = C0, and Ln = L0 ∀n. In this case, the aperiodic disorder appears only in the diagonal
term of the dynamic Equation (59).

The same fundamental result about the localization degree of the m = 2 case in comparison with
the m ≥ 3 case reappears in this non-linear case, that is, for fixed values of εA and εB, the m ≥ 3 family
does not belong to the family corresponding to m = 2, and in addition, for m >> 3 the frequency
spectrum begins to resemble the spectrum of the case m = 2. To be specific, for m = 2 we can see a
large number of extended states across the entire frequency spectrum, mixed with localized states
and gaps. On the contrary, for m = 3, almost the entire frequency spectrum is formed with localized
states and gaps, accordingly showing a huge decrease in the number of extended states. This behavior
can be seen in Figure 6 of Ref. [85] that shows ξ (ω) versus ω for m = {2, 3, 5, 9}. To compare the
cases for m = 2 and m = 3 in more detail, in Figure 8 we show the average overlap amplitude (NCω),
for m = {2, 3} with εA = 0.1 and εA = 0.03, keeping constant the values of capacitances Cn and
inductances Ln. When m changes from m = 2 to m = 3, the number of extended states decreases
markedly, almost tending to zero. The horizontal dashed line corresponds to the periodic linear case,
εA = εB = 0, for which (NCω) fulfills the condition (NCω) ≈ 1.62. Moreover, at the top of each figure,
we indicate with a short vertical bar the presence of an extended state, namely Λ (ω) ≥ 1. Both results
about the number and position of the extended states in each case match each other. This localization
behavior coincides with the results shown in Figure 6 of Ref. [85], when studying the localization
behavior of the normalized participation number ξ (ω) and Λ (ω) . This way, we have demonstrated
that the m = 2 (Thue–Morse) case is different than the m = 3 case (m−tupling).
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Figure 8. (NCω) versus ω for the m−tupling distribution of amplitudes εn of non-linear capacitances
of the dual TL with εA = 0.1 and εB = 0.03. (a) Case m = 2 and (b) case m = 3. The horizontal dashed
lines indicate the value (NCω) ≈ 1.62, for the periodic linear case, i.e., εA = εB = 0.0. In addition,
at the top of each figure, we indicate with a vertical bar the presence of extended states which meet
condition Λ (ω) ≥ 1.

Consider now the localization behavior of the integrated density of states IDOS (ω) for the
non-linear case, with εA = 0.1 and εA = 0.03. In Figure 9a we show the IDOS (ω) for four values of m,
namely m = {2, 3, 8, 13}. For each m we use a constant size Nm = mk, namely Nm =

{
221, 313, 87, 136} .

There we can see that for the case m = 2, the IDOS (ω) is always greater than the IDOS (ω) of any
other value of m ≥ 3. However, when m grows (m = 8 and m = 13), the IDOS (ω) grows, approaching
the values for the case m = 2. This behavior confirms the conjecture that the Thue–Morse sequence
(m = 2) can be considered to be a limit case of the m−tupling sequence when m 
 3. We now turn
to the behavior of the IDOS (ω) for fixed m = 3, as a function of the N = 3k system size, with
k = {10, 12, 13} (see Figure 9b). For the minimum value k = 10, the IDOS (ω) is the greatest of
all, but when N increases (the value of k increases), the number of extended states decreases (the
IDOS (ω) decreases), and new localized states and gaps appear that barely contribute to the integrated
density of states. As a consequence, the IDOS (ω) tends to zero. This behavior is characteristic of
aperiodic systems.

On the other hand, for fixed value of m, when the difference |εA − εB| between the values of the
amplitudes of the non-linear term increases, so does the disorder degree of the transmission line, which
tends to localize the electric current function I (ω) , and as a result, the integrated density of states
IDOS (ω) go to zero. This behavior can be observed in Figure 5 of Ref. [85], for m = 2 (Thue–Morse
case), considering a fixed value εA = 0.0 (the periodic linear case) and three different values of εB,
namely εB = {0.01, 0.03, 0.07} .
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Figure 9. The integrated density of states IDOS (ω) versus ω for the m−tupling distribution of
amplitudes εn of the non-linear capacitances of the dual TL for εA = 0.1 and εB = 0.03. (a) IDOS for
four m values, i.e., m = {2, 3, 8, 13}. For each m, we used a fixed Nm, i.e., Nm =

{
221, 313, 87, 136} . The

IDOS for m = 2 is the greatest of all, and the IDOS for m = 3 is the smallest of all. For increasing
values of m (m = 8 y m = 13), the IDOS tends to the value corresponding to m = 2. (b) Fixed m = 3,
as a function of the N = mk, with k = {10, 12, 13}. The IDOS corresponding to N = 310 is the largest
of all. When N increases, the IDOS tends to zero, IDOS → 0.

3.1.3. Incommensurate Sequences

The aperiodic incommensurate systems are generated by two superimposed periodic structures
with incommensurate periods. The origin of incommensurability may be structural or dynamic. In the
first case, two or more superimposed periodic structures with incommensurate periods exist, and in
the second case one periodicity is related to the crystalline structure and the other to the behavior of
elementary excitations that propagate through the crystal. Two of the most studied incommensurate
models are the Aubry–André model and the Soukoulis–Economou model.

In the one-dimensional tight-binding quantum model, the site energies εn have been distributed
according to the Aubry–André model that is

εn = ε0 + b cos (2πβn) (60)

where ε0 is the single-site energy of the unperturbed periodic lattice, b is the amplitude and β is an
irrational number, usually β = 0.5

(√
5 − 1

)
(the inverse of the Fibonacci golden mean). For b = 2.0, a

phase transition from extended to localized states appears [36,69,70,72].
In classical electric transmission lines, the Aubry–André model has been used to distribute the

inductances Ln in two different cases: (a) direct TL with constant capacitances Cn = C0 ∀n (diagonal
disorder) [86] and (b) mixed transmission lines with disorder only in the q inductances of the dual cells,
keeping constant the value of all the other electrical components of the direct and dual cells [87]. In
this case, the disorder appears in the diagonal and the off-diagonal terms of the generic Equation (3).
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In case a), the inductances Ln of the direct transmission line are distributed according to the
Aubry–André sequence:

Ln = L0 + b cos (2πβn) (61a)

where L0 = const. and b < L0. In this case, the aperiodic incommensurate disorder only appears in
the diagonal term of the generic Equation (3). The localization behavior of this classic electric model
can be visualized in Figure 10 where the map (b, ω) is shown for L0 = 4.0 and N = 7 × 105. Each dot
on the map indicates the existence of an extended state, because the normalized localization length
fulfills condition Λ (ω) ≥ 1.0. For b → 0, the frequency spectrum shows a single band of extended
states that corresponds to the periodic case. For increasing values of b, i.e., for b ≤ 1.9, the map (b, ω)

shows three global sub-bands of extended states (with localized states and gaps) separated by two
large gaps. After that, for b > 1.9, only two global sub-bands of extended states survive, which also
contain localized states and gaps. Finally, for b close to b = L0, there is only a small sub-band where
almost all states are extended states, namely 0 ≤ ω ≤ 0.45.

Figure 10. Map (b, ω) for the Aubry–André distribution of inductances with L0 = 4.0. Each point of
the map indicates an extended state, because Λ (ω) ≥ 1.0. For increasing values of the amplitude b,
the number of sub-bands of extended states diminishes, and for b close to b = L0, there is only a small
sub-band where almost all states are extended states, namely 0 ≤ ω ≤ 0.45.

Figure 11 shows (a) the λ (ω) Lyapunov exponent versus ω for two values of the b amplitude
b = {1.5, 3.99} and b the spectrum of the extended states, Λ (ω) ≥ 1 versus ω for fixed b = 1.5.
Figure 11a shows that for b = 3.99 ≈ L0 (thick red line), only one band of extended states (λ (ω) → 0)
can be observed for ω ≤ 0.45. Conversely, for ω > 0.45, only gaps and localized states can be found for
this value of b. This result coincides with the result indicated by the map shown in Figure 10. On the
other hand, in the same Figure 11a we draw λ (ω) versus ω for a smaller value of b, namely b = 1.5
(thin black line). There we can see several sub-bands of extended states (λ (ω) → 0) separated by gaps.
Within these sub-bands, we can find more localized states and gaps, which are not perceived in this
picture. On the contrary, these gaps can be seen in Figure 11b, where a detail of the map Figure 10 is
shown for b = 1.5, for fixed N = 106. In this figure, each short vertical bar indicates an extended state,
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because Λ (ω) ≥ 1.0. The vertical dashed arrows that cross both figures (for the case b = 1.5) indicate
the edge of the gaps, i.e., the frequencies for which phase transitions occur.

Figure 11. (a) Lyapunov exponent λ (ω) versus ω for two values of the b amplitude b = {1.5, 3.99}.
For b = 3.99 ≈ L0 (thick red line), only one band of extended states (λ (ω) → 0) can be observed for
ω ≤ 0.45. Conversely, for b = 1.5 (thin black line), we can see several sub-bands of extended states
(λ (ω) → 0) separated by gaps. Within these sub-bands, we can find more localized states and gaps. (b)
The spectrum of the extended states, Λ (ω) ≥ 1 versus ω for fixed b = 1.5 and N = 106. The vertical
dashed arrows that cross both images indicate the edge of the gaps, in which phase transitions occur.

To see in more detail the phase transition from extended to localized states, in Figure 12a we
show the Lyapunov exponent λ (ω) versus ω for the cases b = 2.0 and N = 2 × 105. The vertical
arrows indicate the frequencies ω1 = 0.5006231, ω2 = 0.6336884, and ω3 = 0.7577136, to be studied in
Figure 12b–d, respectively. In these last three images, we show the scaling behavior of the average
overlap amplitude (NCω) for three values of N, namely N = {8, 12, 16} × 104. For each frequency
ω1, ω2 and ω3, we find a phase transition from extended states to localized states at the critical value
bc = 2.0. To the left of the critical point bc for almost every amplitude b, all (NCω) values coalesce into
a single one, i.e., (NCω) → const > 0, indicating an extended behavior. On the contrary, to the right of
the critical point (b > bc), (NCω) grows as system size N grows, indicating a localized behavior.
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Figure 12. (a) Lyapunov exponent λ (ω) versus ω for the case b = 2.0 and N = 2 × 105. The vertical
arrows indicate the frequencies ω1 = 0.5006231, ω2 = 0.6336884, and ω3 = 0.7577136, to be studied in
(b–d). In these last three images, we show the scaling behavior of (NCω) for three values of N, namely
N = {8, 12, 16} × 104. For each frequency ω1, ω2 and ω3, we can see a phase transition from extended
states to localized states at the critical value bc = 2.0. For b ≤ bc we find only extended states, because
for almost every amplitude b, all (NCω) values coalesce into a single one, i.e., (NCω) → const. > 0.
On the contrary, for b > bc, (NCω) grows as system size N grows, indicating a localized behavior.

These results coincide with those in Figures 4–6 of Ref. [86], where this same problem was studied.
In [86], a phase transition from the extended to the localized state is found depending on amplitude
parameter b. This result was found for different frequency values, by studying transmission coefficient
T (ω) and the scaling behavior of the average overlap amplitude (NCω).

In case (b), for mixed transmission lines (with p direct cells and q dual cells), the inductances
Ln of the q dual cells were distributed according to the Aubry–André sequence [87], namely Ln,y =

L0,y + b cos cos (2πβn) with b < L0,y. All other electric components are kept constant, i.e., for direct
cells Ln,x = L0,x, Cn,x = C0,x and for dual cells Cn,y = C0,y. In Ref. [87], three different cases were
studied: (a) p = 2, q = 1, (b) p = 1, q = 4 and (c) p = 4, q = 1. In all cases, the frequency spectrum is
completely contained within the d = (p + q) bands generated by the mixed TL. For fixed b, in each of
the d bands, it is always possible to find sub-bands of extended states in addition to localized states and
gaps. These results were obtained by studying the transmission coefficient T (ω) and the scaling of the
average overlap amplitude (NCω) (see Figures 7–9 of Ref. [87]). To see the influence of the b amplitude
in the localization behavior, in Figure 13 we show the transmission coefficient T (ω) for four values
of b, namely b = {0.3, 0.7, 1.1, 1.5} for the case p = 2, q = 1. We use the same values of the electric
components used in Ref. [87]. In particular, L0,y = 1.6. For b = 0.3 we find d = 3 bands containing
extended states, localized states and gaps (similar to Figure 7a of Ref. [87]). However, for increasing
values of b, the number of extended states within each band decreases, and as a consequence both
lateral bands begin to disappear. In this way, for b = 1.1, the leftmost band has already disappeared,
and for b = 1.5, the rightmost band is about to disappear.
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Figure 13. Transmission coefficient T (ω) versus ω, for mixed transmission line with p = 2, q = 1,
for (a) b = 0.3, (b) b = 0.7, (c) b = 1.1 and (d) b = 1.5. For (a) b = 0.3 we find d = (p + q) = 3
bands containing extended states, localized states and gaps. For increasing values of b, the number of
extended states within each band decreases. Therefore, for (c) b = 1.1, the leftmost band has already
disappeared, and for (d) b = 1.5, the rightmost band is about to disappear.

3.2. Long-Range Correlated Disorder

For one-dimensional disordered systems without any correlation in the disorder (white noise),
all states are localized states in the thermodynamic limit. However, the introduction of correlation in
the disorder can trigger the appearance of a discrete set of extended states (short-range correlation)
or bands of extended states (long-range correlation). The correlated disorder has been introduced in
quantum tight-binding systems [2–29] and in classical systems such as harmonic chains [96–99], and
electrical transmission lines [76,77,79,80,88].

The quantum tight-binding Equation (5) and the generic Equation (3) describing transmission lines
are similar. Transformations (6) and (7) permit the correspondence between both models. However,
unlike the quantum case, in transmission lines it is impossible to study the pure off-diagonal case,
because the disorder contained in the vertical impedances (the coupling between neighboring electric
cells) appears in the off-diagonal coefficients Bn−1 and Bn of the generic Equation (3) and in the
diagonal coefficient Dn = (Bn−1 + Bn − An) too.

To analyze the main differences in the localization behavior with the one-dimensional quantum
case, the dual, direct and mixed disordered transmission lines have been studied recently. These studies
include long-range correlated disorder and diluted disordered TL. In addition to continuous sequences,
the long-range correlation has been used to generate discrete sequences (binary and ternary).

3.2.1. Discrete Sequences

To generate long-range correlated sequences {xn} we use the Fourier filtering method (FFM).
Let us consider initially a set of uncorrelated random numbers {un} with a Gaussian distribution.
Then we take the fast Fourier transform (FFT) of the random sequence {un} and we obtain a new
sequence {uk} . The long-range correlation is introduced in the sequence {uk} doing the following
transformation xk = ukk−

1
2 (2α−1). Calculating the inverse FFT of the new sequence {xk} , we obtain

the long-range correlated sequence {xn} which is spatially correlated with the S (k) spectral density
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S (k) ∝ k−(2α−1). Here the exponent α of the transformation is known as the correlation exponent and
fulfills the condition α ≥ 0.5. For α = 0.5, we regain the uncorrelated random sequence (white noise).
Correlation exponent α quantifies the degree of long-range correlation imposed in the original random
sequence {un}. Finally, we normalize the correlated sequence {xn} to obtain zero average, 〈xn〉 = 0,
and the variance is set to unity.

From the long-range correlated sequence {xn (α > 0.5)} , we can generate the asymmetric ternary
sequence {vn (b1, b2)} formed with three letters, A, B and C,

vn =

⎧⎪⎨
⎪⎩

A if xn < b1

C if b1 ≤ xn ≤ b2

B if xn > b2

(62)

with b2 ≥ b1. The symmetric ternary map is obtained when b2 = −b1 = b. If b1 = b2 = b we obtain the
asymmetric binary sequence {A, B}. For b → 0 we regain the symmetric binary sequence. Please note
that the long-range correlation of the ternary sequence {vn (b1, b2)} is not exactly quantified by the
correlation exponent α, because the map (62) changes the long-range correlation. In one-dimensional
tight-binding systems, the symmetric binary and ternary model has been studied [8,24,25,28]. In
these models, a metal-insulator transition has been reported as a function of the correlation degree α

and size b of the window. In addition, the asymmetric ternary map (62) was studied using electrical
dual transmission lines [76] considering three values of capacitances Cn = {CA, CB, CC} , maintaining
constant the inductances Ln = L0 ∀n. This case contains only diagonal disorder. The long-range
correlation in the distribution of capacitances was generated through the FFM. For TL with a finite
number of cells, it is possible to find bands of extended states whose size increases for increasing
values of correlation exponent α. For the asymmetrical model, the normalized localization length
Λ (ω, α, b1, b2, N) is a complicated function of the parameters ω, α, b1, b2, and N, but for fixed frequency
ω, for N → ∞, it is always possible to find a transition from localized electric current functions to
extended current functions for some specific values of the parameters. For the symmetrical ternary
map b2 = −b1 = b, a phase diagram (α, b) separating localized states from extended states has been
found for fixed frequency performing finite-size scaling of the normalized localization length Λ (ω) .
This result is similar to the phase diagram found in the tight-binding case.

Moreover, the same ternary dual TL was studied, but using the Ornstein–Uhlenbeck method to
generate the long-range correlation [77]. In this method, the degree of long-range correlation depends
on two independent parameters, i.e., the viscosity coefficient γ and the diffusion coefficient C. Studying
the scaling behavior of Λ (ω) , we obtain two-phase diagrams for the symmetrical map when C and γ

are independent parameters, namely (C, b) for fixed γ and (γ, b) for fixed C. In addition, we study the
phase diagrams when C and γ are dependent parameters, i.e., C = γ2. In all cases, we find a transition
from localized to extended states. Also, the harmonic symmetric ternary chain was studied in Ref. [99]
using the Ornstein–Uhlenbeck method for the case C = γ2. Instead of the transition from localized
to extended behavior, they found a disorder-order transition for b > 4, because the disorder degree
practically disappears at this limit.

This same kind of disorder-order transition has been found by studying localization properties
of direct TL with diluted and non-diluted asymmetric dichotomous noise (binary sequences of
inductances LA and LB with Cn = C0 ∀n) [82]. The asymmetric dichotomous sequence {ζ (t)} is
generated by a variable ζ (t) which switches in time in a random way between two given values a and
(−b) with transition rates μa and μb, respectively (dichotomous noise). Considering ζ (t) as a stationary
process, the dichotomous noise has zero mean and is exponentially correlated. The τ correlation time
of the dichotomous noise is defined as τ−1 = (μa + μb) . In addition, from the zero-average condition
〈ζ (t)〉 = 0, we obtain the following relationship between a, b, μa and μb, namely β = a

b = μa
μb

, where
parameter β measures the degree of asymmetry of the dichotomous noise. For μa > μb we have
β > 1 and for μa < μb we have β < 1. The symmetric sequence μa = μb is obtained for the case
β = 1. Consequently, the dichotomous noise is characterized by three independent parameters: τ,
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a and b. However, setting the value of one of the parameters, for example, b = 1, we can study
the localization behavior generated by this kind of exponentially correlated noise using only two
independent parameters, i.e., τ and β. In the diagonal disordered direct TL, the inductances LA and
LB are distributed according to the asymmetric dichotomous noise, keeping the capacitances constant
Cn = C0 ∀n [82]. For τ < τc and for β < βc (τc, βc are critical values) the electric current function I (ω)

shows a localized behavior, but for τ > τc and for β > βc, the D (ω, τ, β) participation number scales as
D (ω) ∝ Nm(ω,τ,β), where m (ω, τ, β) < 1 is the slope of the linear relationship between ln (D (ω, τ, β))

and ln (N) , for fixed ω, β, and τ. Only in the limit τ → ∞ (for fixed ω and β) and β → ∞ (for fixed ω

and τ), we obtain the exact linear behavior, i.e., limτ→∞ m (ω, τ, β) = 1.0 and limβ→∞ m (ω, τ, β) = 1.0.
However, in both limits, τ → ∞ or β → ∞, the asymmetric dichotomous sequence becomes a periodic
sequence. Thus, we only can observe a disorder-order transition, which in turn indicates that all states
are localized states in the thermodynamic limit for classical electric TL. This result coincides with the
one obtained for the one-dimensional tight-binding quantum model with symmetric dichotomous
noise, in which the metal-insulator transition is absent [56,100].

3.2.2. Continuous Sequences

In addition to discrete sequences, continuous long-range correlated sequences have been
used to study the localization behavior of direct, dual and even mixed electrical transmission
lines [79,80,88]. In general, in classical electric transmission lines, the long-range correlated disorder
in capacitances and inductances has been used in the following form:Cn (α) = C0 + b f (xn (α)) and
Ln (β) = L0 + b f (yn (β)) , where f (u) is an harmonic function. {xn (α)} and {yn (β)} are two
independent long-range correlated sequences generated by the FFM and α and β are the corresponding
correlation exponents that determine the correlation degree. b is the amplitude of the fluctuation of Cn

and Ln around C0 and L0, respectively. The diagonal and off-diagonal disordered dual transmission
line, considering only one type of correlated sequence {xn (α)} has been studied recently [79]. In this
case, Cn and Ln vary in phase, i.e.,

Cn = C0 + b sin (2πxn (α)) (63)

Ln = L0 + b sin (2πxn (α))

Here, b < min (C0, L0) to avoid negative values of the electrical components. For this kind
of disorder, it is always possible to find extended states for different frequencies, and for each
specific frequency a phase diagram (b, α), which separates extended states from localized states
in the thermodynamic limit can be found.

To obtain the critical correlation exponent αc separating localized states from extended states, we
analyze the scaling behavior of (a) the participation number D (ω) (37), (b) the relative fluctuation
ηD (ω, b, α, N) of the participation number D (ω) and (c) the Binder cumulant BD (ω, b, α, N) of the
participation number D (ω) . These quantities are defined as

ηD (ω, b, α, N) =

√√√√( 〈D2〉
〈D〉2 − 1

)
(64)

and

BD (ω, b, α, N) =

(
1 −

〈
D4〉

3 〈D2〉2

)
(65)

where 〈..〉 means an average over long-range correlated sequences.
For increasing system size N, the relative fluctuation ηD goes to zero for extended states and

grows converging to a finite value for localized states. Consequently, for N → ∞, ηD tends toward a
step function and a discontinuity appears that separates extended states from localized states. This
scaling behavior can be used to determine the critical correlation exponent αc for fixed values of ω
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and b, because the curves ηD (α) with different N values will cross in a single point (the critical point
αc). Also, the scaling behavior of the Binder cumulant BD (α) indicates that for N → ∞, BD (α) jumps
abruptly from a constant value (BD = 0.667) for extended states to zero (BD (α) = 0) for localized
states. Consequently, for fixed values of ω and b, the curves BD (α) with different N values will cross in
a single point (critical point αc). On the other hand, the critical value of the fluctuation amplitude bc can
be obtained studying the scaling behavior of the normalized localization length Λ (b) (35). For fixed
ω and α ≥ αc, in the transition point from localized to extended states, Λ (b) varies from Λ (b) > 1
to Λ (b) → 0. Finally, in the thermodynamic limit, for fixed frequency ω, the phase diagram (b, α) is
formed by two independent straight lines, so that extended states only appear when condition α ≥ αc

is met for any b ≤ bc. Specifically, in Ref. [79] the following values were used: C0 = 0.5, L0 = 1.0.
For the fixed frequency ω = 3.6, the critical values are bc = 0.43 and αc = 1.51 (see phase diagram
in Figure 9 of Ref. [79]). In Figure 14 we show, in a schematic way, the phase diagram for a fixed
frequency ω, when Cn and Ln vary in phase (63) in dual TL. This map is conceptually different to the
map in Figure 15b), when Cn and Ln vary out of phase (in the study of mixed TL).

Figure 14. Schematic phase diagram (b, α) , for a fixed frequency ω, when Cn and Ln vary in phase in
dual transmission lines. For this transmission line with long-range correlated distribution of Cn and Ln,
extended states can only be found for α ≥ αc and b ≤ bc.

In Ref. [88], this model was generalized in two ways: (a) studying mixed transmission lines
instead of dual TL, and (b) the capacitances Cn,y and inductances Ln,y of the dual cells of mixed TL
are distributed out of phase, using two independent long-range correlated sequences xn (α) 	= yn (β) .
Specifically,

Cn,y = C0,y + b cos (2πxn (α)) (66)

Ln,y = L0,y + b cos (2πyn (β))

where {xn (α)} and {yn (β)} are two independent long-range correlated sequences, even in the case
α = β, because each correlated sequence is initiated using two independent uncorrelated random
sequences according to the FFM. The localization behavior of this mixed TL was studied in Ref. [88] for
the case p = 2, q = 3. The frequency spectrum of this case shows d = (p + q) = 5 bands. Additionally,
in the thermodynamic limit, for fixed p, q and b, it is always possible to find an asymmetric phase
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diagram (α, β) for each frequency ω, corresponding to an extended state. In the case studied in Ref. [88],
for ω = 1.986591 and b = 0.1, the correlation exponents α and β fulfill the following condition: α ≥ αc

and β ≥ βc, with the asymmetric condition αc ≥ βc. This behavior can be observed in Figures 8
and 9 of Ref. [88]. There we can see the phase diagram (α, β) that separates localized states from
extended states, and the localization behavior of Λ (ω) versus α (for fixed β), and Λ (ω) versus β (for
fixed α). The asymmetric condition αc ≥ βc can be explained through the following arguments. In
relationships (66), the fluctuation ΔCn,y of the capacitances around C0,y is the same as the fluctuation
of inductances ΔLn,y around L0,y, namely ΔCn,y = ΔLn,y = 2b. However, in every kind of transmission
line, capacitances only appear in the form C−1

n,y . Accordingly, the fluctuation of this term is given by

ΔC−1
n,y =

(
2b
g

)
, where g =

(
C2

0,y − b2
)

. For g < 1 we have ΔC−1
n,y > ΔLn,y, which means that the term

C−1
n,y introduces a greater disorder into the generic Equation (3) than the disorder introduced by Ln,y.

This fact can induce a decrease in the degree of correlation of the sequence {Cn (α)} . To compensate
this decrease, correlation exponent α must be greater than correlation exponent β of Ln,y (β) to generate
extended states. Consequently, the critical correlation exponents fulfill the condition αc ≥ βc, as long
as condition

(
C2

0,y − b2
)
< 1 is valid. Also, for fixed ω, and for given correlation exponents α and β, it

is possible to find a critical value of amplitude b of the fluctuation, in such a way that for b ≥ bc all
states are localized states (see Figures 10 and 11 of Ref. [88]).

Figure 15. (a) Λ (ω) versus ω, for mixed TL with p = 1 and q = 3, for b = 0.1. We consider two
fixed values of the correlation exponents, α = 2.3 and β = 2.5. Only three bands are visible, because
Λ (ω) → 0 for the leftmost band (localized states). (b) Phase diagram (α, β) for ω = 1.462121 (indicated
by the vertical arrow in (a)). Only for α ≥ αc = 1.81 and β ≥ βc = 1.68, with αc > βc is it possible to
find extended states.

The localization behavior of mixed transmission lines with long-range correlated disorder given
by (66) can be summarized in Figures 15 and 16, where we studied mixed TL with p = 1 and q = 3.
This case has d = 4 bands. Figure 15a shows Λ (ω) versus ω for b = 0.1, for two fixed values of the
correlation exponents, namely α = 2.3 and β = 2.5. Only three bands are visible, because Λ (ω) → 0 for
the leftmost band (localized states). The vertical arrow indicates the specific frequency ω = 1.462121
studied in Figures 15b and 16. For this frequency, Figure 15b shows the phase diagram (α, β) . This
image indicates that only for α ≥ αc and β ≥ βc, with αc > βc it is possible to find extended states.
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Also, for ω = 1.462121, the critical correlation exponents are αc = 1.81 and βc = 1.68. Please note that
the asymmetric condition αc > βc is fulfilled. Figure 16 shows the scaling behavior of the average
overlap amplitude ln (Cω) versus ln (N) for the frequency ω = 1.462121 indicated by vertical arrows
in Figure 15a. For fixed β = 3.6 we obtain the critical value αc of the correlation exponent, namely
αc = 1.81 (see Figure 16a). For α < αc all states are localized states because we cannot obtain a linear
relationship between ln (Cω) and ln (N). However, for α ≥ αc we only find straight lines with the
same slope m = −1.0 (R = 1.0). This behavior indicates that (NCω) is constant for increasing values
of N. This is exactly the scaling behavior of the average overlap amplitude for extended states. For
fixed α = 2.0, Figure 16b shows the same kind of scaling behavior, obtaining βc = 1.68.

Figure 16. Scaling behavior of ln (Cω) versus ln (N) for mixed TL with p = 1, q = 3, ω = 1.462121,
and b = 0.1. (a) For fixed β = 3.6, only for α ≥ αc = 1.81, we find straight lines with the same
slope m = −1.0 (R = 1.0), which indicates an extended behavior. (b) For fixed α = 2.0, only for
β ≥ βc = 1.68, we can obtain linear relationships with m = −1.0.

3.3. Diluted Disordered Systems

Hilke [101] introduced the diluted Anderson model, which considers two interpenetrating lattices,
i.e., a pure lattice (ε j = ε0), while an Anderson lattice (ε jP is a random number) is periodically
distributed with period P ≥ 1. This means (P − 1) diluting elements exist between two Anderson
sites. For P = 1 we regain the usual Anderson model [1]. This model was generalized [11,12] so that
the (P − 1) diluting elements are distributed according to a function with certain specific symmetry
conditions (see Ref. [11]). The case ε j = ε0 is the most symmetrical of all, and coincides with the results
from previous works [101–103]. Depending on the type of symmetry, the dilution process can generate
a maximum of up to (P − 1) extended states, which are exactly located on some of the edges of the
gaps. For constant off-diagonal term, the position of these resonances depends only on the period P
and the values of ε j of the diluting elements. At the same time, resonances are independent of the type
of disorder, as well as the degree of correlation in the disordered lattice. In addition, in the resonance,
the extended wave function behaves like an intermediate extended function, because its amplitude is
zero at each disordered site. The localization behavior of the diluted systems have been studied in the
tight-binding quantum case, and in classic systems, like harmonic chains and electric transmission
lines [11,12,15,23,80–82,84,96,101–103].
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Let us consider the localization behavior of diluted direct transmission lines, with constant
capacitances, i.e., Cn = C0 ∀n. The inductances Ln, corresponding to disordered sites, have been
distributed in different forms. Between two disordered inductances, Ln and Ln+P, we put (P − 1)
identical inductances L0 = const., where Ln 	= L0. Consequently, the inductances are distributed in the
following schematic way ... Lx L0 L0 L0 Lx L0 L0 L0 Lx ..., where P = 4. Because of the full symmetry of
the diluting elements, we find exactly (P− 1) resonances and (P− 1) gaps [11]. For direct transmission
lines, resonance frequencies are obtained analytically [80–82]:

P = 2, ω =
√

2ω0

P = 3, ω =
√

2 ± 1ω0 (67)

P = 4, ω =

{√
2,
√

2 ±
√

2
}

ω0

where ω0 = (L0C0)
− 1

2 and L0 	= Ln.
In Ref. [80] the inductances Ln were distributed in (a) a random way, and (b) considering

long-range correlated disorder (Fourier Filtering method and Ornstein–Uhlenbeck process). In both
cases a continuous distribution of Ln values was used. In addition, in Ref. [81] the inductances Ln were
distributed by means of an aperiodic binary sequence of Galois [67], and in Ref. [82] the inductances Ln

were distributed considering an asymmetric dichotomous sequence. In all cases studied, the existence
of (P − 1) intermediate extended states has been demonstrated. Also, the position of the resonance
frequencies coincides with theoretical predictions.

On the other hand, the localization behavior of the diluted aperiodic m−tupling distribution
of inductances was studied in Ref. [84]. The case m = 3 was considered, with (P − 1) = 4 diluting
elements L0. For numerical calculation, the following data were used: Cn = C0 = 0.5 ∀n, LA = 1.6,
LB = 1.5 and L0 = 1.8. Figure 6 of Ref. [84] shows (a) the overlap amplitude (NCω) , and (b) the
normalized participation number ξ (ω). In that picture we can see four gaps and four resonances,
which are indicated by vertical dashed lines. Notice that resonances are placed at the left edge of
each gap. This result coincides with the theoretical predictions. In Figure 17, we show the average
overlap amplitude (NCω) for the same case studied in Figure 6 of Ref. [84], but now we study the
Thue–Morse sequence, i.e., m = 2. Here, we consider four values of P, namely P = {1, 2, 3, 4} . The
case P = 1 corresponds to the usual Thue–Morse sequence without dilution. According to (67), for
each P ≥ 2, the frequency of the resonances are: P = 2, ω = {1.491} ; P = 3, ω = {1.054, 1.826} , and
P = 4, ω = {0.807, 1.491, 1.948} . These theoretical values coincide with the numerical results shown
in Figure 17. The same localization behavior of this diluted aperiodic system can be seen in Figure 18
studying the density of states DOS (ω) versus ω. There we can see that to the left of each gap, the
density of states does not fluctuate, which is an indication of the extended nature of the resonance
located there. This does not happen on the right side of each gap.
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Figure 17. (NCω) versus ω, for the Thue–Morse distribution of inductances, with LA = 1.6, LB = 1.5.
Four values of the period P are considered, namely P = {1, 2, 3, 4} . The case P = 1 corresponds to the
usual Thue–Morse sequence without dilution. For P ≥ 2, the sequences are diluted with L0 = 1.8, with
fixed Cn = 0.5. The resonances coincide with the left edge of each of the (P − 1) gaps generated by the
dilution process.

Figure 18. Density of states DOS (ω) versus ω. To the left of each gap, the density of states does not
fluctuate, which is an indication of the extended nature of the resonance located there. The same does
not happen on the right side of each gap. In addition, we can see that the localization behavior of the
DOS (ω), is identical to the localization behavior shown by (NCω) in Figure 17.
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4. Summary and Conclusions

We have presented the results of the study of the localization properties of disordered electrical
transmission lines. This study considered three types of TL: dual, direct and mixed. The electrical
components of the (capacitances and inductances) were distributed in different non-periodic forms:
(a) aperiodic, which included self-similar sequences (Fibonacci and m−tupling Thue–Morse), (b)
incommensurate sequences (Aubry–André and Soukoulis–Economou), and (c) long-range correlated
sequences (binary discrete and continuous). The localization properties of these classical systems were
measured using the typical tools used in quantum mechanics to characterize the localization behavior
of disordered systems. Specifically, we used the normalized localization length Λ (ω), the inverse
participation ratio IPR (ω), the transmission coefficient T (ω), the global density of states DOS (ω) ,
the average overlap amplitude Cω, and others. Our studies indicate that the localization behavior
of classic electric transmission lines is quite similar to the one-dimensional tight-binding quantum
model, but at the same time it is possible to observe some significant differences; therefore, it is worth
continuing to investigate this type of classical disordered systems.

As a possible application of the study of the localization properties of disordered electric
transmission lines, we can consider the neuronal axons that connect two or more neurons through
electrical impulses. The axon, which usually is covered by a myelin sheath, can be considered to be a
transmission line formed by Schwann cells connected by nodes of Ranvier. It has been established that
there exist certain specific genes responsible for stabilizing the internal neuronal structure, which in turn
allows the proper transport of the electrical impulse within the axon. The electrical communication
between neurons fails if axons are damaged or broken. This can happen in the earliest stages of
neurodegenerative diseases or for other reasons. Based on the localization properties of electrical
transmission lines studied in this review, it is possible to conclude that electrical communication
between neurons prevails, if Schwann cells and Ranvier nodes are distributed in a periodic way or
in a very specific aperiodic way. On the contrary, any non-correlated disorder in the axon structure
will stop the electrical impulses and the neurons will remain without communication. Consequently,
to restore electrical communication between neurons, I can conjecture that the genes responsible for
stabilizing the internal neuronal structure have the specific mission of restoring periodicity in the
distribution of Schwann cells and Ranvier’s nodes.

Up to that point, we have only considered ideal transmission lines, i.e., transmission lines without
dissipation (resistance R = 0). When we introduced gain (Rn = −R, n odd) and loss (Rn = +R, n
even) balanced pairwise, a PT -symmetric resistive configuration is obtained. For this dissipative
system, we can find a critical resistance Rc such that for R < Rc the frequency spectrum is completely
real, but for R > Rc the frequency spectrum contains real and complex frequencies. This phenomenon
is called a PT -symmetric transition phase, because the TL goes from an unbroken (R < Rc) to a
broken PT -symmetric phase as a function of resistance R. In addition, we have demonstrated that
in the unbroken PT -symmetric phase, the electric current function In (ω) is a symmetric extended
function. Conversely, in the broken phase, In (ω) is an antisymmetric localized function. This phase
transition was recently found for TL with a very small number of cells considering fixed boundary
conditions [89].

In addition to this research, we are currently studying two different lines of research, (a) the
influence of non-linear inductances or capacitances in the stability and amplitude of the allowed
conducting bands of the unbroken PT -symmetric phase, and (b) the localization behavior of
some models of structured transmission lines, in the spirit of the structured systems proposed by
Chakrabarti [29]. Specifically, we analyzed TL with a finite number of hanging cells (direct or dual) in
random positions in TL. The electric components (capacitances or inductances) of each hanging cell,
can contain aperiodic disorder or long-range correlated disorder.
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Abstract: This review is devoted to tight-binding (TB) modeling of nucleic acid sequences
like DNA and RNA. It addresses how various types of order (periodic, quasiperiodic, fractal)
or disorder (diagonal, non-diagonal, random, methylation et cetera) affect charge transport.
We include an introduction to TB and a discussion of its various submodels [wire, ladder, extended
ladder, fishbone (wire), fishbone ladder] and of the process of renormalization. We proceed to a
discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences:
primitive substitutions, Perron–Frobenius eigenvalue, induced substitutions, and Pisot property.
We discuss the energy structure of nucleic acid wires, the coupling to the leads, the transmission
coefficients and the current–voltage curves. We also summarize efforts aiming to examine the
potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several
diseases or disorders.

Keywords: nucleic acids; aperiodic; quasiperiodic; fractal; order; disorder; energy structure;
charge transport

1. Introduction

Nucleic acids are polymeric macromolecules consisting of units that are called nucleotides.
The term nucleic acids is the overall name of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
DNA’s nucleotide sequence carries the genetic instructions for the development, function, growth and
reproduction of living organisms and several viruses. Although RNA’s primary role is to carry out the
instructions encoded in DNA for protein synthesis, it also acts like a catalyst of biochemical reactions,
while it is the genetic material of many viruses.

For more than sixty years now, the double-stranded structure of DNA has been known [1].
The nucleotides of each strand are composed of one of four planar, aromatic, nitrogenous bases,
i.e., guanine (G), cytosine (C), adenine (A) or thymine (T), a pentose sugar (deoxyribose), and a
phosphate group. Covalent, phosphodiester bonds between pentoses and phosphate groups of adjacent
nucleotides form an alternating sugar-phosphate backbone. The purines (G or A) of a nucleotide
belonging to a strand are joined together with the pyrimidines of the other strand (C or T, respectively)
via (three or two, respectively) hydrogen bonds, forming the double helix structure. This specificity in
the way bases match ensures that G is always bonded with C, and A is always bonded with T. Pairing
between non-complementary bases results in mutations that can be detrimental to the development of
an organism. In RNA, deoxyribose (whose 2-carbon is bonded with a hydrogen) is replaced by ribose
(whose 2-carbon is bonded with a hydroxyl group), and T is replaced by uracil (U). Furthermore, RNA
molecules are single-stranded; however, some viruses possess double-stranded RNA (other viruses
can contain even single-stranded DNA).
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Although the study of nucleic acids is mainly associated with molecular biology and genetics,
today, a broad interdisciplinary community is interested in biological systems, such as nucleic acids
and analogues. The base-pair stack of nucleic acids creates a nearly one-dimensional π-stack that
allows charge carrier movement, i.e., charge transfer and transport. Let us distinguish between these
two terms: transfer means that a carrier, created or injected at a specific nucleotide, moves to a more
favorable location, while transport implies the use of electrodes and the application of external voltage
between them. Charge transfer is the basis of many biological processes, e.g., in various proteins [2]
including metalloproteins [3], and enzymes [4], with medical and bioengineering applications [5,6],
while it plays a role in DNA damage and repair [7–9]. Charge transport might be an indicator to
distinguish pathogenic from non-pathogenic mutations at an early stage [10].

From a physicist’s point of view, the charge transfer and transport properties of nucleic acids
are studied in order to obtain a deeper understanding of their biological functions as well as for
potential applications, such as nanosensors, nanocircuits or molecular wires, due to their high yield
synthesis, near-unity purification, and nanoscale self-organization [11–13]. There are many external
(aqueousness, presence of counterions, extraction process, electrodes, contacts, purity, substrate),
and internal (such as the base-pair sequence and geometry) factors that affect carrier motion along
nucleic acids. Both ab initio calculations [14–22] and model Hamiltonians [23–34] have been used to
theoretically explore the variety of experimental results that predict electrical behavior ranging from
metallic to insulating, as well as the underlying mechanisms.

It has become evident that the influence of various types of order or disorder plays a central role
in the energy structure and the charge transport properties of nucleic acids. This interplay between
various types of order or disorder and charge transport is addressed in this brief review. This is done
in the context of one of the most widely applied theoretical methods, i.e., with Tight-Binding (TB),
because of its simplicity and low computational cost.

The rest of this review is organized as follows. In Section 2, we present the TB formulation and
explain some of its most common variations applied in the literature for the study of nucleic acids.
In Section 3, we overview several aperiodic substitutional sequences that highlight the influence of
disorder in the properties of nucleic acids. In Section 4, we discuss the energy spectra of ordered and
disordered nucleic acid sequences. In Section 5, we focus on electron transmission and on the influence
of coupling the examined systems with leads. Section 6 is dedicated to the influence of various types of
order or disorder on the current–voltage (I − V) curves of nucleic acids. Finally, in Section 7, we make
some concluding remarks.

2. Tight-Binding and Its Application in Nucleic Acids

TB is an approximate method widely used in condensed matter physics to determine the electronic
structure of a solid through the expansion of its wavefunction as a superposition of the wavefunctions
corresponding to the isolated moieties located at each lattice site [35]. As the name of the model
suggests, the main hypothesis in TB is that the system’s orbitals are tightly bound at the sites at which
they belong, so that the overlap with neighboring orbitals is small. Hence, the electronic wavefunction
of the moiety that occupies a lattice site is rather similar to the orbital of the free moiety. As a result,
the corresponding energy of the electron will be rather close to the (negative) ionization energy of
the free moiety due to the weak interaction with its neighbors. This picture is applicable at the
bands formed by the core electrons of metals, the valence and conduction bands of insulators and
semiconductors, as well as the valence and conduction bands arising from localized d or f states
(e.g., in transition metals and rare earths).

Today, several decades after its introduction [36], TB has evolved into a fast and efficient approach,
employable to numerous problems regarding the electronic structure and properties of matter,
requiring various degrees of accuracy [37,38]. Its main advantages include its intuitive simplicity,
the ability it gives to obtain analytic results in several cases, and its low computational cost [39].
The latter makes TB applicable to large systems, currently unreachable by the more sophisticated
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ab initio methods, such as Density Functional Theory (DFT). In contrast to those methods, TB is
semi-empirical, in the sense that an external set of parameters is needed in order to perform calculations.
These parameters are (a) the on-site energies that correspond to the energy of the electrons that belong
to each lattice site, and (b) the hopping (or transfer) integrals that correspond to the coupling of orbitals
which belong to neighboring sites.

Over the last few decades, TB has been widely used to describe, among others, polymers and
organic systems. One-dimensional TB models are commonly applied to study the energy structure
and thermal, magnetic as well as charge transfer and transport properties of π-conjugated organic
systems that are candidates for molecular wires, such as nucleic acids and analogues. Those models
have varying degrees of complexity, and each one of them requires a different number of parameters.
As far as nucleic acids are concerned, the models employed include, inter alia, the Wire Model
(WM), the Ladder Model (LM), the Extended Ladder Model (ELM), the Fishbone Model (FM) and the
Fishbone Ladder Model (FLM). Generally, the studied systems consist of N monomers extended at
L chains (L  N, since nucleic acids are approximately one-dimensional). The problem is reduced
to the solution of the so-called system of TB equations, which is a system of coupled stationary,
algebraic equations or differential equations of first order, equivalent to a discretized form of the
time-independent or time-dependent Schrödinger equation. As far as nucleic acids are concerned,
the stationary TB system of equations can be compactly written in the matrix form

E�Ψn = εεεn�Ψn + τττT
n−1

�Ψn−1 + τττn�Ψn+1, (1)

for n = 1, 2, . . . , N. �Ψn is a vector matrix containing the elements of the wavefunction that correspond
to monomer n, i.e., �Ψn = (ψ1

n ψ2
n . . . ψL

n)
T , εεεn is a symmetric L × L matrix containing the on-site

energies of each site, εl
n and the hopping integrals tll′

n between the sites of the monomer that belong to
different chains, and τττn is a generally non-symmetric L× L matrix containing the hopping integrals tll′

nn′

between each site of a monomer and the neighboring sites of the next monomer. Finally, E is the energy.
The situation is schematically presented in Figure 1. From Bloch’s theorem, it holds that �ΨN+n = z�Ψn,
where z generally lies in the unit circle (z = z∗ = 1, for cyclic boundaries, or z = z∗ = 0 for fixed
boundaries). Hence, the solution of the system of Equation (1) can be reduced to the diagonalization of
the Hamiltonian matrix, written in block form as

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

εεε1 τττ1 z∗τττT
0

τττT
1 εεε2 τττ2

τττT
2 εεε3 τττ3

. . . . . . . . .
zτττN τττT

N−1 εεεN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Equivalently, Equation (1) can be written in the form

(
�Ψn+1
�Ψn

)
=

(
τττ−1

n (E − εεεn) −τττ−1
n τττT

n−1
1 0

)(
�Ψn
�Ψn−1

)
= Qn(E)

(
�Ψn
�Ψn−1

)
, (3)

where Qn(E) is called the transfer matrix of monomer n, and 1, 0 are the unit and zero matrix of order
L. The product

MN(E) =
1

∏
n=N

Qn(E) (4)

defines the global transfer matrix of the system, which satisfies the relation,

MN(E)

(
�Ψ1
�Ψ0

)
=

(
�ΨN+1
�ΨN

)
= z

(
�Ψ1
�Ψ0

)
, (5)
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and contains all the information about its energetics. In fact, since z is an eigenvalue of the global

transfer matrix, with eigenvector
(
�Ψ1 �Ψ0

)T
, the whole eigenvector of the Hamiltonian matrix of

Equation (2) can be reconstructed via a successive application of Equation (3) [40,41]. Hence, when z
is an eigenvalue of MN(E), E is an eigenvalue of the system’s Hamiltonian. Thus, both methods can
be used to determine the energy structure of the system. The form of the matrices in Equation (1) for
various TB models is presented in Table 1. Some details on each of these TB models are discussed below.

ε

Figure 1. Schematic representation of a TB model consisting of N monomers, extended at L chains.
Within the model, we take into account (a) the on-site energies of each site, εl

n, and the inter-chain
hopping integrals, tll′

n , i.e., between the sites of the monomer (blue), as well as (b) the inter-monomer
hopping integrals, tll′

nn′ , i.e., between each site of a monomer and the neighboring sites of the previous
(red) and the next (green) monomers. The former are contained in the matrix εεεn, while the latter in the
matrices τττn−1 and τττn, respectively.

Table 1. Form of the matrices �Ψn, εεεn, τττn in the TB system of equations (Equation (1)) for several
models used to describe nucleic acids and analogues: the Wire Model (WM), the Ladder Model (LM),
the Extended Ladder Model (ELM), the Fishbone Model (FM) and the Fishbone Ladder Model (FLM).

Model L �Ψn εεεn τττn

WM 1 ψn εn tn,n+1

LM 2
(

ψ1
n

ψ2
n

) (
ε1

n t1,2
n

t2,1
n ε2

n

) (
t1,1
n,n+1 0

0 t2,2
n,n+1

)

ELM 2
(

ψ1
n

ψ2
n

) (
ε1

n t1,2
n

t2,1
n ε2

n

) (
t1,1
n,n+1 t1,2

n,n+1
t2,1
n,n+1 t2,2

n,n+1

)

FM 3

⎛
⎝ψ1

n
ψ2

n
ψ3

n

⎞
⎠

⎛
⎜⎝ ε1

n t1,2
n 0

t2,1
n ε2

n t2,3
n

0 t3,2
n ε3

n

⎞
⎟⎠

⎛
⎝0 0 0

0 t2,2
n,n+1 0

0 0 0

⎞
⎠

FLM 4

⎛
⎜⎜⎝

ψ1
n

ψ2
n

ψ3
n

ψ4
n

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

ε1
n t1,2

n 0 0
t2,1
n ε2

n t2,3
n 0

0 t3,2
n ε3

n t3,4
n

0 0 t4,3
n ε4

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 0 0
0 t2,2

n,n+1 0 0
0 0 t3,3

n,n+1 0
0 0 0 0

⎞
⎟⎟⎟⎠

2.1. Wire Model

WM is the simplest TB model to describe nucleic acids and analogues [42,43]. It can be applied to
mimic either single-stranded nucleic acids and hairpins at the single-base level [44] or double-stranded
ones [45] at the base-pair level. In other words, if the WM refers to a single-stranded nucleic acid,
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then the on-site energies are related to the energy levels of the four possible bases and the hopping
integrals to the interaction between bases, while, if it refers to a double-stranded nucleic acid, then
the on-site energies are related to the energy levels of the two possible base-pairs (incorporating the
hydrogen bonding) and the hopping integrals to the interaction between base-pairs. It consists of just
one chain (L = 1) and the parameters needed for its employment are the on-site energies of the bases
or base pairs, εn, and the hopping integrals between successive bases or base pairs, tn. A schematic
representation of the WM is shown in Figure 2a.

ε
ε ε

ε
ε

Figure 2. Schematic representation of the TB models listed in Table 1. (a) Wire Model (WM); (b) Ladder
Model (LM); (c) Extended Ladder Model (ELM); (d) Fishbone Model (FM); (e) Fishbone Ladder
Model (FLM).

2.2. Ladder Model

LM is the simplest model that can address the influence of base-pairing in the energetics of nucleic
acids [42,46]. It consists of two chains (L = 2) and the parameters needed for its employment are
the on-site energies of the bases, εl

n, the inter-strand hopping integrals between successive bases,
tll
n,n±1, and the intra-base-pair hopping integrals, tll′

n , due to the hydrogen bonds formed by the
complementary bases in a pair. A schematic representation of the LM is shown in Figure 2b.

2.3. Extended Ladder Model

ELM is a more detailed version of the LM, including the inter-strand hopping integrals, tll′
n,n±1,

between the bases of successive base pairs [46,47]. A schematic representation of the ELM is shown in
Figure 2c.

2.4. Fishbone Model

FM is the simplest model that can take into account the effect of the sugar-phosphate backbone [29,42].
It consists of three chains (L = 3). The central one corresponds to the base pairs, with each one being
interconnected with the top and bottom chains, which represent the backbone sites. The latter are
not connected with each other, since the insulating sugars are separating phosphate groups from
one another [11,48]. Hence, the parameters needed for its employment are the on-site energies, εl

n,
of the base pairs (l = 2) and the backbone sites (l = 1, 3), the intra-strand hopping integrals between
successive base pairs, t2,2

n,n±1, and the inter-strand hopping integrals, tll′
n , between the base pairs and

the backbone. A schematic representation of the FM is shown in Figure 2d.

2.5. Fishbone Ladder Model

FLM is a combination of the LM and the FM [29,42]. It thus includes both the effect of base-pairing
and the presence of the sugar-phosphate backbone. It consists of four chains (L = 4). The two central
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ones (l = 2, 3) correspond to the nitrogenous bases and the edge ones (l = 1, 4) to the backbone sites.
Hence, the parameters needed for its employment are the on-site energies, εl

n, of the base pairs (l = 2, 3)
and the backbone (l = 1, 4), the intra-strand hopping integrals between base pairs, tll

n,n±1 (l = 2, 3) and
the inter-strand hopping integrals between the bases of a base pair as well as between each base and
the backbone, tll′

n . A schematic representation of the FLM is shown in Figure 2e.

2.6. Additional Remarks

Apart from the models described above, one can introduce several other variants to describe
nucleic acids. For example, an obvious extension would be a fishbone extended ladder model.
Additionally, several other models have been proposed, including intra-backbone interactions [27,46,49],
single-stranded nucleic acids with a backbone [49] and explicit inclusion of helicity [50] strain [51],
and spin–orbit coupling [52] effects. We also mention that more complex models can be reduced
to simpler ones via a renormalization scheme, which reduces the degrees of freedom of the system.
Then, the on-site energies of the renormalized Hamiltonian are energy-dependent. This procedure is
important when environmentally induced effects are considered [29]. For example, the FLM can be
reduced into an LM via a one-step renormalization procedure [53], or to an even simpler WM via a
two-step renormalization procedure [54,55].

Several techniques can be applied to solve the models, depending on what is studied, such
as the numerical diagonalization of the Hamiltonian in Equation (2) [47,56,57], the transfer matrix
method [58–60] outlined above, and the Non-Equilibrium Green’s Function technique [61]. As it is
apparent from Equation (3), the transfer matrix method is not applicable if the matrices τττn are singular.
Generally, this is the case, e.g., for the FM and the FLM (cf. Table 1). Then, a renormalization scheme is
needed to apply the transfer matrix method.

Relevant parametrizations for nucleic acids have been proposed in many works and used within
various TB models. For example, for on-site energies and hopping integrals, cf. Refs. [16,17,20,62,63],
for on-site energies, cf. Refs. [64–70], and for hopping integrals, cf. Refs. [71–73]. Such parametrizations
allow researchers to go beyond the chemically unrealistic treatments, such as the assumptions that
all hopping integrals or on-site energies are equal, i.e., disorder in the Hamiltonian is either purely
diagonal or off-diagonal, respectively, and address in more detail the complexity of nucleic acid
energy structure.

3. Aperiodic One-Dimensional Wires

The dichotomy between the notions of order and disorder has expanded beyond a simple
distinction between periodicity and aperiodicity, since the first observation of icosahedral diffraction
patterns in the spectrum of an Al0.86Mn0.14 alloys [74] (2011 Nobel Prize in Chemistry for Prof.
Dan Shechtman). The discussion that opened in the scientific community following this and other
relevant discoveries led to a change in the very definition of the term crystal by the International Union
of Crystallography in 1992, expanding it from referring solely to periodically arranged structures
to “any solid having an essentially discrete diffraction diagram” [75]. This extended notion of
crystals encompasses a whole family of structures, called quasi-periodic crystals or quasicrystals.
Quasicrystals do not possess the translation symmetry that is inherent to classical (periodic) crystals;
however, they possess inflation/deflation symmetry which leads to long-range order as well.

The discovery of quasicrystals has turned scientific interest into the study of specific
one-dimensional aperiodic lattices, modeled with TB [76], i.e., described by Equation (1). The lattices
are typically created using substitutional sequences. Apart from the interest the study of such systems
has in itself, it is applicable, among other systems of physical relevance, in nucleic acids, as seen in
Section 2. The ability to produce synthetic, de novo, nucleic acid sequences of interest [77], using
mainly the phosphoramidite method [78] (although other promising methods have recently been
proposed [79]), provides a chance not only to examine theoretical predictions regarding aperiodic
structures, but also to create molecular wires with tailored properties. Below, we present some details
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about substitutional sequences as well as some of the most commonly used ones in the literature of
one-dimensional wires generally, and nucleic acids specifically.

3.1. Aperiodic Substitutional Sequences

Aperiodic substitutional sequences are based on an alphabet, e.g., A = {A, B, C, D, . . . } equipped
with substitution rules that apply to each of its letters, s(j), ∀j ∈ A. In the case of nucleic acids,
the alphabet letters correspond to nitrogenous bases, i.e., G, C, A, T, U (for double-stranded chains
the complementary strand is implied). The sequences start with a seed, i.e., a letter belonging to the
alphabet (0th generation of the sequence). The substitution rules replace each alphabet letter by finite
words consisting of alphabet letters, i.e., s(j) = j′1 j′2, . . . j′k, ∀j ∈ A. Iterating this procedure g times
constructs the gth generation of the sequence.

Substitutional sequences can, in most cases, be described by introducing the substitution matrix, S.
It is a square, non-negative matrix of order card(A) (the cardinality of a set is the number of elements
of the set), and its elements are Sij = ni[s(j)], where ni[s(j)] is the number of times the letter i is present
in the substitution rule s(j). Notice that, by definition, S does not contain information about the
ordering of letters in the sequence, hence more than one substitutions can have the same substitution
matrix. However, the substitution matrix reveals much information about the underlying order and
other properties of the corresponding sequence at the thermodynamic limit.

3.2. Primitive Substitutions and the Perron–Frobenius Eigenvalue

The matrix S (and, hence, the substitution) is called primitive if there exists a natural number k
such that Sk is a positive matrix. For primitive substitutions, the Perron–Frobenius theorem [80,81]
guarantees that S has a largest, unique, real, positive eigenvalue, λPF, and its corresponding (left
and right) eigenvectors can be chosen to have strictly positive entries. The components of the right
eigenvector associated with λPF, normalized such as their sum is unity, give the asymptotic relative
frequencies of the letters in A. Hence, using S, one can determine the occurrence percentage of each
nucleotide in a substitutional nucleic acid sequence.

3.3. Induced Substitutions

In addition to the previous discussion, it is also possible to determine the letter frequencies of
the legal words of length k in a substitutional sequence with primitive S (corresponding to nucleotide
k-plets). This can be done as follows [82]; let W = {w = j1 j2 . . . jk, ∀j ∈ A} be the set of the legal
k-letter words in the sequence and s(w) = s(j1)s(j2) . . . s(jk) = j′1 j′2 . . . j′n the word constructed from a
letter-by-letter substitution of the word w. Then, the induced substitution of a k-letter word, sk(w) =

(j′1 j′2 . . . j′k)(j′2 j′3 . . . j′k+1) . . . (j′l j
′
l+1 . . . j′l+k−1), where l is the number of letters in s(j1), is also primitive.

Hence, an induced primitive substitution matrix Sk can be defined, from which the asymptotic letter
frequencies of the legal k-letter words of the sequence can be determined using the Perron–Frobenius
theorem. For sequences in which S is defined via a helping alphabet [83], k-letter word frequencies can
be deduced in the same fashion from the legal 2k-letter words of the helping alphabet.

3.4. The Pisot Property

A real algebraic integer (i.e., a real solution of a monic integer polynomial) is said to be a
Pisot–Vijayaraghavan number if its modulus is larger than unity, and all its algebraic conjugates
(i.e., the other solutions of the polynomial) have modulus strictly less than unity [84]. A substitution
has the Pisot property if the matrix S has a largest, unique, real, positive eigenvalue which is a
Pisot–Vijayaraghavan number, and for all the other eigenvalues, λ, it holds that |λ| < 1. If the
characteristic polynomial of S is irreducible over the rationals, the Pisot substitution is called irreducible.
Irreducible Pisot substitutions are a subclass of primitive substitutions [85].

Let us remember some definitions. Given n linearly independent vectors bbb1, bbb2, . . . bbbn ∈ Rm,
the lattice generated by them is defined as L(bbb1, bbb2, . . . bbbn) = ∑i xibbbi, xi ∈ Z. We call the set bbb1, bbb2, . . . bbbn
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a basis of the lattice. We say that the rank of the lattice is n and its dimension is m. The Fourier transform
of the (direct) lattice is a lattice that is called the reciprocal lattice.

Furthermore, according to the Lebesgue’s decomposition theorem, any measure on R can
be decomposed into three parts: a pure point (or discrete) part, an absolutely continuous part,
and singularly continuous part. This theorem helps to categorize the energy or Fourier spectra
of aperiodic substitutional sequences.

The first connections between the irreducible Pisot property and the Fourier spectrum of
a substitutional sequence were reported in Refs. [86,87], where it was conjectured that if the
Perron–Frobenius eigenvalue of a substitutional system is a Pisot–Vijayaraghavan number, then
the system is quasiperiodic. Later studies have revealed more details, providing a more sophisticated
classification of substitutional systems with respect to the nature of their diffraction spectrum. In the
one-dimensional case, sequences produced from irreducible Pisot substitutions have pure point Fourier
spectra [88]. (I) The Pisot property, together with (II) the extra condition λ 	= 0, provide the means to
distinguish between:

(1) strictly quasiperiodic sequences, in which the rank of the reciprocal lattice nr is finite and larger
than the dimension of the physical space of the sequence m, and

(2) limit-quasiperiodic sequences, in which the rank of reciprocal lattice nr is countably infinite (in a
1–1 correspondence with the natural numbers or integers).

The distinction criterion between categories (1) and (2) is the value of the determinant of S:
unimodular S implies strict quasiperiodicity, otherwise the structure is limit-quasiperiodic [89–91].
Limit-quasiperiodic structures can be interpreted as a superposition of an infinite number of strictly
quasiperiodic structures. Examples of strictly quasiperiodic structures are the classical Fibonacci
sequence [92] as well as all the precious means sequences [93] and the Fibonacci-class sequences [94]
(cf. Table 2, where several substitutional sequences studied in the literature are listed, together with
their substitution rules and matrices). Limit-quasiperiodic structure representatives are the mixed means
sequences with n ≥ m [95].

For substitutions not satisfying the above-mentioned conditions (I) and (II), the situation is more
complex. In such cases, the Fourier spectrum can be:

(3) limit-periodic, i.e., a superposition of countably infinite periodic structures. Some examples are the
period doubling sequence and metallic means sequences with n = l(l + 1) [96],

(4) singular continuous, i.e., non-constant, non-decreasing, continuous and has zero derivative,
everywhere that the derivative exists. Examples are the Thue–Morse sequence [97–99] and
metallic means sequences with n 	= l(l + 1) [96], or even

(5) absolutely continuous, such as the Rudin–Shapiro sequence [100,101].

Apart from the above-mentioned sequences, there are others for which the substitution is not
primitive or the matrix S cannot even be defined at all. Examples of non-primitive substitutions
include the sequences inspired by the Cantor set [102], maybe the most well-known deterministic
fractal. A sequence for which a substitution matrix cannot be defined is the classical Kolakoski(1, 2)
sequence [103,104], and generally Kolakoski(p, q) sequences where p is odd and q even or
vice versa [105]. The situation is different when p and q are both even or odd; then, a primitive
S can be defined. In the former case, the sequences have been classified as limit-periodic [106]. In the
latter case, the irreducible Pisot property holds when 2(p + q) ≥ (p − q)2, and S is also unimodular
when p = q ± 2 [105].

80



Symmetry 2019, 11, 968

Table 2. Substitutional sequences studied in the literature, together with the alphabets through which
they are defined, the corresponding substitution rules, and the substitution matrices. In the last row,
the subscripts o and e in the substitution rules denote substitutions that are applied on odd and even
positions in the sequence, respectively.

Sequence A Substitution Rule S

Fibonacci {A, B} s(A) = AB s(B) = A
(

1 1
1 0

)

Precious means {A, B} s(A) = AnB s(B) = A
(

n 1
1 0

)

Fibonacci-class {A, B} s(A) = Bn−1AB s(B) = Bn−1A
(

1 1
n n − 1

)

Mixed means {A, B} s(A) = AnBm s(B) = A
(

n 1
m 0

)

Metallic means {A, B} s(A) = ABn s(B) = A
(

1 1
n 0

)

Period doubling {A, B} s(A) = AB s(B) = AA
(

1 2
1 0

)

Thue–Morse {A, B} s(A) = AB s(B) = BA
(

1 2
1 0

)

Rudin–Shapiro {A, B, C, D}

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎞
⎟⎟⎠s(A) = AB s(B) = AC

s(C) = DB s(D) = DC

Triadic Cantor set {A, B} s(A) = ABA s(B) = BBB
(

2 0
1 3

)

Asymmetric Cantor set {A, B} s(A) = ABAA s(B) = BBBB
(

3 0
1 4

)

Generalized Cantor set (t, d) {A, B} s(A) = A
t−d

2 BdA
t−d

2 s(B) = Bt
(

t − d 0
d t

)

Kolakoski (p = 2m, q = 2n) {A = pp, B = qq} s(A) = AmBm s(B) = AnBn
(

m n
m n

)

Kolakoski (p = 2m + 1, q = 2n + 1)

⎛
⎝m m n

1 1 1
m n n

⎞
⎠{A = pp, B = pq, s(A) = AmBCm s(B) = AmBCn

C = qq} s(C) = AnBCn

Kolakoski (p = 2m, q = 2m + 1) or {p, q} so(q) = pq so(p) = pp
undefinable(p = 2m + 1, q = 2m) se(q) = qq se(p) = qp

4. Energy Structure of Nucleic Acid Wires

The energy structure of a physical system is closely connected to many of its properties (electrical,
magnetic, thermal, optical, et cetera). A useful –and closely related to experimental data—quantity
that describes the energy structure of a given system is the density of states (DOS), which shows the
number of states that can be occupied by electrons at each energy. It can be formally defined as

g(E) = ∑
k

δ(E − Ek), (6)

where no spin degeneracies are included. The sum runs over all allowed states, each of which has an
eigenenergy Ek. A closely related quantity is the integrated density of states (IDOS), defined as

IDOS(E) =
∫ E

−∞
g(E′)dE′, (7)

i.e., it is the number of states that have energy smaller than E. Discontinuities in the IDOS indicate the
presence of energy gaps, and the height of an IDOS step gives information about the level population.
For periodic systems, the regions of allowed energies lead to smooth parts in DOS or IDOS curves,
separated by well defined gaps at specific energies, thus reflecting the continuous electronic band
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structure of a periodic crystal. On the contrary, the DOS and IDOS of random systems are rough,
indicative of the presence of a multitude of gaps between the allowed energy levels. As it has to do with
deterministic aperiodic sequences with a substitution rule, which reflects their self-similarity, it has been
conjectured (and proven, in several specific cases) that their energy spectrum is singular continuous,
i.e., in the thermodynamic limit, it exhibits an infinity of gaps and vanishing bandwidths [107].

Furthermore, for primitive substitutions described by a Hamiltonian corresponding to the WM,
the following gap-labeling theorem has been introduced by Bellissard et al. [108]:

Theorem 5.13 of Ref [108]. Let Ĥ be a Hamiltionian corresponding to the WM, where the
coefficients (i.e., parameters) are determined by a primitive substitution on a finite alphabet. Then,
the values of the IDOS of Ĥ on the spectral gaps in [0, 1] belong to the Z(λ−1

PF ) module generated by
the components of the eigenvectors�vPF and�vPF,2 of the substitution matrices S and S2, respectively.

From the above theorem, it follows that, in order to obtain the position of the gaps in the
(normalized) IDOS of a primitive substitutional sequence within the WM, it is sufficient to know the
substitution matrices of its legal 1- and 2-letter words (c.f. Section 3.3). Specifically, the gaps can be
labeled by the negative powers of λPF times integral linear combinations of the components of�vPF
and�vPF,2 that lie within the interval [0, 1] [108,109]. For example, in the case of Fibonacci sequences,
from the diagonalization of S (cf. Table 2), we get λPF = φ and�vPF = [φ−1 φ−2]T (where φ is the
golden ratio). Hence, the sequence consists of ≈61.8% A letters and ≈38.2% B letters. The legal
2-letter words in the Fibonacci sequence are BA, AB, and AA (i.e., BB is forbidden), thus the induced
2-substitution reads (cf. Section 3.3) s2(AA) = (AB)(BA), s2(AB) = (AB)(BA), s2(BA) = (AA), leading to
the induced substitution matrix

S2 =

⎛
⎜⎝0 0 1

1 1 0
1 1 0

⎞
⎟⎠ . (8)

The Perron–Frobenius eigenvector (cf. Section 3.2) of S2 is �vPF,2 = [φ−3 φ−2 φ−2]T .
Hence, the gaps can be labeled by integer linear combinations of negative powers of φ. Since every
positive power of φ can be reduced to a linear expression of the form φg = Ngφ + Ng−1, where Ng

is the Fibonacci number of generation g, and it also holds that φg + φ−g ∈ N∗, the situation can be
reduced to an integral linear combination of 1 and φ. Thus, the positions of the gaps in the IDOS of a
Fibonacci sequence within the WM can by given by

{Gn} = {nφ mod 1, ∀n ∈ Z}. (9)

Another interesting remark, arising from the DOS values of a single-stranded Fibonacci DNA
sequence consisting of G and C, is that the ratio among the distances between DOS of consecutive
generations tends to φ [110]. The IDOS of periodic, several aperiodic, and random binary DNA
sequences with G and A on the same strand, calculated within the WM, taking into account both
diagonal and off-diagonal disorder is presented in Figure 3 [83]. Periodic sequences display two well
defined bands, separated by a single energy gap (the largest among all cases). Thue–Morse, Fibonacci,
Rudin–Shapiro, and Kolakoski sequences possesss a staircase-like IDOS, while the shape of random
sequence IDOS resembles, albeit it is more disrupted, to that of Rudin–Shapiro, and its main energy gap
is the smallest among all cases. The fractal, Cantor set based, sequences have a very rough spectrum.
For all sequences, the value of the IDOS at the largest energy gap is equal to the occurrence percentage
of A. Furthermore, it has been observed that there are steps in the IDOS, the relative value of which is
equal to the occurrence percentages of the possible base-pair triplets [83]. This remark holds for all
categories of deterministic aperiodic sequences, either generated by a primitive substitution matrix
or not, such as Kolakoski (1,2), further connecting the specific base-pair sequence of a DNA segment
with its energy structure. The above-mentioned IDOS steps and the corresponding values are marked
(where possible) in the left vertical axes of Figure 3.
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Apart from the sequential disorder, mentioned above, other disorder types are present or can
be induced in nucleic acid sequences. In Ref. [111], the authors study single poly(CG) or poly(CT)
DNA strands with diluted base-pairing, i.e., for example, the G sites are randomly attached to their
complementary C sites, with a probability p. The C-G base pairs are renormalized onto the first strand,
leading to two inter-penetrating lattices: a periodic one containing the G or T sites and a random
one containing bare and renormalized C sites. The DOS for three indicative cases, i.e., for p = 0, 0.5,
and 1, is presented at the top panels of Figure 4. When p = 0, there are two well defined bands
arising from the periodicity of the segment. The band character is maintained for p = 1, with a
smaller gap for poly(CG), while for poly(CT) the number of bands changes to three, reflecting the
total number of different sites (since the renormalization procedure takes into account the original
structure). When p = 0.5, for poly(CG), fluctuations of the same magnitude in both allowed energy
regions arise and the singularities are rounded off due to the induced disorder. For poly(CT), the bands
collapse at a single energy region, stronger fluctuations are present at smaller energies than at larger
ones, and there is a persisting van Hove singularity exactly at the on-site energy of T. Hence, in this
case, diluted base-pairing produces a gapless structure and keeps a number of states extended (around
the on-site energy of T), which is an ideal scenario for charge transport.

Several human diseases are associated with aberrant DNA methylation, which is heritable during
cell division but does not alter the DNA sequence. In Ref. [112], a poly(CG) single-stranded segment
is considered, with methyl groups randomly connected with the 5-carbon of C bases (forming the
so-called 5-methylcytosine), again, with probability p. For completely unmethylated or methylated
segments, the DOS consists of two smooth bands, derived by the on-site energy of G and C, for p = 0,
and of G and 5-methylcytosine for p = 1, respectively; the only difference is in the energy intervals of
the allowed states. For 0 < p < 1, the smooth profile of the DOS is degraded, since the presence of
randomly distributed methyl groups along the chain introduces a small disorder, which in turn leads
to an enhancement in the effective resistance that can reach one order of magnitude.
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Figure 3. Normalized IDOS of various categories of binary DNA segments with purines on the
same strand, within the WM. (a) Poly(GA); (b) Thue–Morse; (c) Fibonacci (d) Period-doubling;
(e) Rudin–Shapiro; (f) Cantor Set; (g) Generalized Cantor Set (4,2); (h) Kolakoski(1,2); (i) Kolakoski(1,3);
(j) Random (50% G, 50% A). Reprinted figure from K. Lambropoulos and C. Simserides, Periodic,
quasiperiodic, fractal, Kolakoski, and random binary polymers: Energy structure and carrier transport,
Phys. Rev. E 2019, 99, 032415 [83] http://dx.doi.org/10.1103/PhysRevE.99.032415, c© 2019 by the
American Physical Society.
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Figure 4. DOS of (a) poly(CG), and (b) poly(CT) DNA strands with diluted base-pairing at random
cytosine sites with probability p. Figure reproduced with permission from F. A. B. F. de Moura, M.
L. Lyra and E. L. Albuquerque, Electronic transport in poly(CG) and poly(CT) DNA segments with
diluted base pairing, J. Phys. Condens. Matter 2008, 20, 075109 [111] http://dx.doi.org/10.1088/0953-
8984/20/7/075109, c© 2008 IOP Publishing. All rights reserved.

5. Coupling Nucleic Acids with Leads: Transmission Coefficients

In order to study the charge transport properties of nucleic acid nanowires within a TB framework,
the system under examination is attached to two semi-infinite homogeneous metallic leads, which
play the role of a carrier bath. The leads are characterized by a single on-site energy, εM, and a single
hopping integral, tM, so that the allowed energy states of the incident and outgoing waves lie in the
interval [εM − 2|tM|, εM + 2|tM|]. Since detailed information on the nucleic acid’s chemical bonding at
the contacts is not known, one introduces effective parameters dealing with the tunneling probability
between the frontier orbitals, roughly encompassing the bonding effects at the interface [113].
These parameters are tR(L) and couple the left (right) lead with the nucleic acid wire.

A first useful physical quantity to evaluate the charge transport properties of a quantum system
is the transmission coefficient, T(E). It is an energy-dependent quantity that describes the probability
that a carrier, incident to a quantum wire, transmits through its eigenstates. Charge transport will
experience a sequence-dependent contribution of backscattering, according to the distribution of
potential barriers, corresponding to bases or base pairs, over the length scale of the sequence [24].

The coupling between the nucleic acid and the leads plays an important role on the transmission
profiles. It has been shown that stronger coupling does not necessarily mean higher transmission.
In Ref. [114], the authors studied the transmission profiles of a single-stranded poly(GACT) DNA
chain within the WM, with purely diagonal disorder, assuming equal coupling parameters with both
leads (tR = tcL = τ), and arrived at the resonance condition τ =

√
tMt, where t is the hopping integral

between the wire sites. From Figure 5, it is evident that, when the value of the coupling parameter
is either smaller or larger than the one fulfilling the resonance condition, quite smaller transmission
peaks are obtained. This result properly illustrates the influence of contacts on electrical transport.
This extreme sensitivity is due to interference effects between the DNA molecular bands and the
electronic structure of the leads at the lead-DNA interface.

The above-mentioned results were generalized in an analytical manner for any periodic WM,
through the conditions ω = tMtu

tRtL
= ±1 (ideal coupling condition), where tu couples the moieties at the

end of a unit cell and at the start of the next, and χ = tL
tR

= ±1 (symmetric coupling condition) [60].
The ideal coupling condition, ω = ±1, implies that the system and the leads are interconnected as if
they were connected to themselves. When this condition is reached, the existence of fully resonant
states is guaranteed at specific energies determined by the zeros of Chebyshev polynomials of the
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second kind [115]. Hence, any periodic sequence can display full transmission, if appropriate couplings
are utilized. Deviations from the symmetric coupling condition give rise to secondary peaks. The effect
of the coupling strength and the asymmetry factors, together with the internal hoppings, is exemplified
in Figure 6, for a generic periodic WM with two sites per unit cell (hence, two hopping integrals t1 and
t2 connect the wire sites) and N = 10. It is evident that the ideal and symmetric coupling conditions
lead to the most efficient transmission. For ideal and asymmetric coupling, except for the peaks of
magnitude 1, there is one additional peak, which is of significant magnitude only when |t1| ≈ |t2|.
In the strong (weak) and symmetric coupling regimes, the peaks that are closer to the band gap vanish
(emerge) as

∣∣∣ t1
t2

∣∣∣ increases. When the coupling is asymmetric, transmission is enhanced only in one of
the two bands.

Analogous conclusions can be obtained for more complex TB models. In Ref. [31], a poly(G)-
poly(C) oligomer (N = 5) was studied within the FM. The authors report that, for small values of
coupling, the transmission shows sharp and narrow unit resonances due to the localization of states,
while, as the coupling increases, the well-arranged resonant peaks overlap. An inspection of Figure 7
of Ref. [31] indicates that there are intermediate values of tL(= tR) in which the overall transmission is
more enhanced compared to smaller and larger values.

In Ref. [116], the authors study a poly(G)-poly(C) chain within an extension of the FLM, which
allows hopping between backbone sites as well as all possible diagonal hoppings (between the
nitrogenous bases as well as between the bases and the backbone). Each of the two strands containing
the DNA bases is connected with each lead with equal coupling parameters. For diagonal hoppings
being switched either on or off, it can again be concluded that stronger coupling with the leads does
not necessarily lead to enhanced transmission (cf. the panels in the first two rows in Figure 7). This is
also evident by comparing the averaged transmission coefficient, which is defined as

Ta(E) =

∫ E

Emin

T(e)de

E − Emin
, (10)

cf. the panels in third row of Figure 7. Although T(E) and Ta(E) are indeed much smaller for
tL = tR = 0.1 eV, an increase from 0.5 eV to 0.9 eV does not lead to transmission enhancement. In fact,
for diagonal hoppings switched both on and off, Ta reaches larger values for the intermediate coupling
tL = tR = 0.5 eV.

The above discussion demonstrates that, apart from the internal degree of disorder of a given
sequence, other factors can significantly affect their charge transport properties.
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Figure 5. Transmission coefficient for a poly(GACT) chain within the WM, with N = 60, tM = 1.0 eV,
t = 0.4 eV, and τ = 0.4 eV; i.e., τ =

√
tMt (top), τ =

√
0.4 eV (middle), τ =

√
0.8 eV (bottom).

Reprinted figure with permission from E. Maciá, F. Triozon, and S. Roche, Contact-dependent effects
and tunneling currents in DNA molecules, Phys. Rev. B 2005, 71, 113106 [114] http://dx.doi.org/10.
1103/PhysRevB.71.113106, c© 2005 by the American Physical Society.

Figure 6. Transmission coefficient of a periodic WM with two sites per unit cell and N = 10 for ideal
(top), strong (middle), and weak (bottom) coupling with the leads. (Left column) Symmetric coupling.
(Middle column) Asymmetric coupling with |χ| > 1. (Right column) Asymmetric coupling with |χ| < 1.
The leads parameters are such that all the eigenstates of the system are contained. Reprinted from
Ref. [60], K. Lambropoulos and C Simserides, Spectral and transmission properties of periodic 1D
tight-binding lattices with a generic unit cell: an analysis within the transfer matrix approach, J. Phys.
Commun. 2018, 2, 035013 [60] http://dx.doi.org/10.1088/2399-6528/aab065, CC BY 3.0.
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Figure 7. Transmission spectra as a function of energy without (a–c) and with (d–f) the diagonal
hoppings; (g–i) average transmission spectra as a function of energy: gray line (diagonal hoppings
switched off) and black line (diagonal hoppings switched on). (Left column) tL = tR = 0.1 eV.
(Middle column) tL = tR = 0.5 eV. (Right column) tL = tR = 0.9 eV. Reprinted from S. Malakooti, E. R.
Hedin, Y. D. Kim, and Y. S. Joe, Enhancement of charge transport in DNA molecules induced by the next
nearest-neighbor effects, J. Appl. Phys. 2012, 112, 094703 [116], http://dx.doi.org/10.1063/1.4764310,
with the permission of AIP Publishing.

6. Current–Voltage Curves

The situation is more complex as far as the calculation of I − V characteristic curves is concerned.
The I − V curve of a given nucleic acid segment can be given, using the Landauer–Büttiker
formalism [61,117,118], by the relation

I(V) =
2e
h

∫ ∞

−∞
T(E, V)[ fL(E − μL)− fR(E − μR)]dE, (11)

under the assumption that charge propagates from left to right. μL(R) and fL(R)(E) are the chemical
potential and the Fermi–Dirac distribution at the left (right) lead, respectively. From Equation (11),
we deduce that there are several factors, apart from the structure of the sequence under examination
that have an effect on the magnitude of currents, the bias regime and the shape of the I − V curves.
These factors include:

(a) The choice of the Fermi level of the leads EF, which coincides with εM if one electron per site is
assumed. If EF is not aligned with an allowed energy region of the segment, then no currents
occur in the vicinity of V = 0, while a metallic behavior is expected otherwise.

(b) The way the external bias is applied. For example, only one of the leads’ energy bands can
be shifted, so that μL = EF + eV, and μR = EF, or, alternatively, both leads’ bands can be
symmetrically shifted so that μL

R
= EF ± eV

2 . This choice affects both the way the voltage drop is

induced in the nucleic acid sequence and the energy limits of the conductance channel. At zero
temperature, the Fermi–Dirac distributions become Heaviside step functions and determine the
limits of integration. Hence, Equation (11) can be simplified to

I(V) =
2e
h

∫ μL

μR

T(E, V)dE, (12)

while, at finite temperatures, it can be written in the form

I(V) =
2e
h

sinh
(

eV
2kBT

) ∫ ∞

−∞

T(E, V)dE

cosh
(

E−EF
kBT

)
+ cosh

(
eV

2kBT

) , (13)
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i.e., the I − V curve occurs from the modulation of the hyperbolic function sinh
(

eV
2kBT

)
by the

integral factor expression [119].
(c) Whether or not the transmission coefficient is considered as bias-dependent. Although assuming

bias-independent transmission coefficient could be a justified choice in the small bias regime,
and it is indeed less computationally costly, this assumption cannot lead, under any circumstances,
to the occurrence of negative differential resistance, since an increasingly larger part (as V
increases) of a nonnegative function is integrated.

There are several works discussing the I − V curves of nucleic acid sequences, considering
different types of order or disorder. Regarding sequential order or disorder, in Ref. [83], the I − V
curves of periodic, deterministic aperiodic, and random binary DNA segments have been studied
within the WM. The curves have been shown to have clearly distinct shapes for different sequence
categories. It has also been demonstrated that periodic sequences lead to the most enhanced currents.
Additionally, there are several categories deterministic aperiodic sequences (specifically, Fibonacci,
Period-doubling, Cantor and generalized Cantor) that can also display significant currents, depending
on the Fermi level of the leads. Random sequences represent the least efficient category, since they
were found to always display smaller currents than all their deterministic aperiodic counterparts with
similar base-pair content.

In Ref. [120], the authors study dry and hydrated DNA sequences with correlated and uncorrelated
disorder within a WM, for N = 50 and at a temperature of 300 K. For different concentrations of G and
A sites, the resulting currents are larger for correlated disorder, both for dry and backbone-hydrated
sequences. Generally, the authors report a conductor to semiconductor to insulator transition as a
function of three effects, i.e., sequence size, disorder, and hydration, suggesting that an appropriate
choice of chain size and relative concentration of base pairs can be used to tailor the electrical behavior
of DNA strands.

A similar transition has been reported by introducing conformal variation at the helical symmetry
as well as backbone disorder into a FLM [121]. Helical symmetry is taken into account via the inclusion
of hopping integrals between bases in adjacent pitches (i.e., turns of the helix). The number of base-pairs
within a given pitch is denoted by n. Backbone disorder is introduced by a random distribution of
backbone on-site energies, characterized by a disorder strength w. The results for poly(G)-poly(C) and
poly(A)-poly(T) chains with N = 50, for different values of n and w are shown in Figure 8. At low
disorder, the effect of n is smaller, since, in that case, any path of charge conduction is equivalent, as an
electron feels almost no potential variation. As the disorder increases, the effect of n becomes more
distinctive, since there is substantial variation of the effective potential at different sites and an increase
of n gives an electron more shortcut pathways to move along the DNA chain. The current is enhanced
with increasing n, and the effect is more vivid for strong disorder. Furthermore, for weak disorder,
a cut-off voltage is observed in the I − V curves, which reduces with increasing n. At strong disorder,
the current is enhanced and almost linear response is observed at larger values of n, which indicates a
transition from the insulating to the metallic phase.

Thermal structural disorder has been studied in Ref. [122], by introducing a random variation in
the hopping integrals of a poly(G)-poly(C) chain with N = 5, within an FLM allowing inter-backbone
hoppings. Comparing the I − V curves of such systems for T = 0 K and T = 300 K, the authors report
that the voltage threshold for current onset is about the same, indicating that the thermal structural
disorder does not affect the voltage gaps. Above that threshold, as the temperature increases, the linear
behavior of the current changes to a step-like behavior, and the current is reduced, since the static
distortion increases elastic scattering of electrons through the DNA molecule.
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Figure 8. I − V curves for poly(dA)-poly(dT) and poly(dG)-poly(dC) various disorder strengths w and
pitch-size values n. For weak disorder, the cut-off voltage reduces with n, showing semiconducting
behaviour. For strong disorder, the current is considerably enhanced with increasing n, giving a
insulator to metal transition. Reproduced from Ref. [121], S. Kundu and S. N. Karmakar, Conformation
dependent electronic transport in a DNA double-helix, AIP Adv. 2015, 5, 107122 [121] http://dx.doi.
org/10.1063/1.4934507, CC BY 3.0.
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The effect of cytosine methylation disorder on the I − V curves of a single stranded
GAGCTGACGTTCACGG segment retrieved from the first sequenced human chromosome
(chromosome 22) has been studied within the WM in Ref. [123]. The effect of all possible single,
double, and triple methylation defects (out of the totally four C sites) is addressed. It is demonstrated
that even a single methylated site reduces the currents by one order of magnitude. This reduction
is directly associated with the fact that such sites act as additional impurity centers. The observed
sensitivity of the saturation current on the position of the methylated cytosine is related to the impact
of methylation on the hopping integrals to the neighboring bases. Thus, for a single methylation defect,
the saturation current is strongly suppressed when cytosine is connected with guanine; for two defects,
this suppression is smaller; for three methylations, the non-methylated base is the one that acts as
a defect, hence the suppression of the saturation current will be larger when the cytosine has both
hopping amplitudes to the neighboring bases enhanced by methylation. These results suggest the
feasibility of using I − V curves to develop biosensors for the purpose of diagnosis.

There also exist efforts aiming to examine the potentiality to utilize the charge transport
characteristics of nucleic acids as a tool to probe several diseases or disorders. In Ref. [124], the I − V
characteristics of twenty seven single-stranded microRNA chains (with 21 to 23 nucleotides) related to
the autism spectrum disorder have been studied. The authors classified the chains into five groups
according to their conductivity (from high to negligible), suggesting that a kind of electronic biosensor
can be developed to distinguish different profiles of autism disorders.

In Ref. [125], a similar treatment was employed to study DNA sequences related to the
Huntington’s Disease. A segment of the human chromosome 4p16.3 was modified by the addition of
a variant number of CAG repeats, the number of which determines whether a person does or does
not have Huntington’s Disease; repeats smaller than 27 are normal; repeats between 27 and 35 are
rarely associated with the disease, but it may expand in paternal transmission; repeats between 36
and 39 are associated with reduced penetration, so individuals may or may not develop the disease;
40 and above are associated with the disease [126]. The increasing presence of periodicity leads to
enhanced transmission and thus to more efficient electronic transport. I − V calculations revealed that
the above-mentioned groups based on the number of repeats can be characterized by different value
ranges for the saturation currents, indicating a promising method for identifying Huntington’s disease.

7. Conclusions

This review was devoted to tight-binding (TB) modeling of nucleic acid sequences like DNA and
RNA. We briefly presented the TB approach and discussed its various submodels: wire, ladder,
extended ladder, fishbone (wire), and fishbone ladder. We addressed various types of orders
(periodic, quasiperiodic, fractal) or disorder (diagonal, non-diagonal, random, methylation) and
explained how these various types of order or disorder affect charge transport. We proceeded to a
discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences.
Specifically, we discussed the notions of primitive substitutions, Perron–Frobenius eigenvalue, induced
substitutions, and Pisot property. We explained how the energy structure of nucleic acid wires is
affected by order or disorder. We also discussed the corresponding transmission coefficients, focusing
on the effects of coupling the nucleic acids to external leads, and demonstrating that, apart from
the internal degree of order or disorder of a given sequence, there are several other factors that can
significantly affect their charge transport properties. We also discussed the effects that various types of
order or disorder induce on the current–voltage curves and presented some efforts aiming to examine
the potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several
diseases or disorders. The sensitivity that the results demonstrate regarding the choice of the nucleic
acids sequence, the recruited models and parametrizations, the way the systems are coupled to external
leads, the nature of the leads, the environmental conditions, etc, indicate that much work is needed in
order to reach a thorough description of the effect the combination such a multitude of factors has on
charge transport. Furthermore, other factors, such as the sequence geometry or the use of modified
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nitrogenous bases could be potentially used to tailor the above-mentioned properties of nucleic acids
and analogues.
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Abstract: Unlike periodic and random structures, many aperiodic structures exhibit unique
hierarchical natures. Aperiodic photonic micro/nanostructures usually support optical multimodes
due to either the rich variety of unit cells or their hierarchical structure. Mainly based on our recent
studies on this topic, here we review some developments of aperiodic-order-induced multimode
effects and their applications in optoelectronic devices. It is shown that self-similarity or mirror
symmetry in aperiodic micro/nanostructures can lead to optical or plasmonic multimodes in a series of
one-dimensional/two-dimensional (1D/2D) photonic or plasmonic systems. These multimode effects
have been employed to achieve optical filters for the wavelength division multiplex, open cavities
for light–matter strong coupling, multiband waveguides for trapping “rainbow”, high-efficiency
plasmonic solar cells, and transmission-enhanced plasmonic arrays, etc. We expect that these
investigations will be beneficial to the development of integrated photonic and plasmonic devices for
optical communication, energy harvesting, nanoantennas, and photonic chips.

Keywords: quasiperiodic order; self-similarity; quasiperiodic photonic micro/nanostructures;
fractal-like photonic micro/nanostructures; quasiperiodic or fractal-like plasmonic structures

1. Introduction

Motivated by the discovery of quasicrystal [1], much research has been conducted on aperiodic
systems in recent years [2–11]. Aperiodic structures broaden the regime of ordered systems beyond
periodic structures, and thereby play a significant role in a wide range of science and engineering
disciplines. Unlike periodic and random structures, many aperiodic structures exhibit unique
hierarchical natures. For these aperiodic structures, on one hand, the lack of periodicity may create
fascinating features on some occasions, such as extraordinary optical transmission and enhanced
transmission resonances, etc. On the other hand, aperiodic order can be artificially imposed during
sample fabrication and can be precisely controlled. These properties have opened a new avenue for
the design of novel devices based on aperiodic structures. Among them, optoelectronic devices based
on the multimode effects, which can be induced by aperiodic order, have attracted much attention
because of their potential in optical communication [12,13], energy harvesting [14], nanoantennas [15],
and so on.

In this review, we mainly summarize the research work in our group concerning the
aperiodic-order-induced multimode effects, which have been demonstrated by both theoretical and
experimental observations. Moreover, several optoelectronic devices have been designed on the basis
of the multimode effects in either one-dimensional (1D) or two-dimensional (2D) aperiodic structures.
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2. Aperiodic Structures

In order to design optoelectronic devices based on aperiodic structures, proper aperiodic lattices
should be chosen. These are usually obtained by following the substitution rules. Several typical
aperiodic structures are introduced in this section, ranging from one dimension to two dimensions.

2.1. One-Dimensional Aperiodic Structures

A representative example of 1D aperiodic structures is the Fibonacci structure, which follows
Fibonacci sequence as shown in Figure 1a [16]. This sequence can be constructed by applying the
substitution rule A→AB and B→A repeatedly. By intentionally varying the growth sequence and
the number of building blocks, a standard two-component Fibonacci structure can be generalized to
a k-component Fibonacci structure [17]. The feature of this k-component Fibonacci structure is related
to k, which can show periodic (k = 1), quasiperiodic (k ≤ 5), or only aperiodic ordering (k > 5).

The Thue–Morse sequence is another well-known 1D aperiodic sequence. It can be structured
by repeating two building blocks (A and B) applying the substitution rules A→AB and B→BA
(Figure 1b) [18]. The initial few generations Sn of the Thue–Morse sequence have the following forms:
S0 = {A}, S1 = {AB}, S2 = {ABBA}, S3 = {ABBABAAB}, and so on. The Thue–Morse lattice is not
quasiperiodic but deterministically aperiodic, which shows the properties of an intermediate between
periodic and quasiperiodic lattices [19,20].

On the basis of various substitution rules, many other 1D aperiodic sequences have been proposed.
For example, the Rudin–Shapiro sequence can be produced by repeated application of the substitution
rule AA→BBAB and BB→BBBA [21], and the period-doubling sequence can be structured by using the
substitution rule A→AB and B→AA [22]. In addition, a kind of quasiperiodic superlattice structures
called the precious mean sequences were reported by Birch et al., which can be produced by A→AnB
and B→A [23], whereas the metallic mean sequences can be generated by the inflation rule A→ABn

and B→A [24].

2.2. Two-Dimensional Aperiodic Structures

Substitution rules used in 1D quasiperiodic structures can be extended to two dimensions.
A simple way to obtain a 2D quasiperiodic lattice is to alternate the iterations of 1D inflation rules
along different spatial dimensions. For example, as shown in Figure 1c, a 2D Fibonacci quasi-lattice
can be structured by using two complementary 1D Fibonacci inflation maps along the horizontal and
vertical directions, respectively (fA: A→AB, B→A; fB: A→B, B→BA) [25].

Another way to construct 2D quasiperiodic structures is by employing aperiodic tilings.
These tilings are composed of collections of polygons, which could cover a plane without gaps
and overlaps with a lack of translational symmetries [26]. Various aperiodic tilings have been proposed
before, such as Penrose tiling [27] and square Fibonacci tiling [28], etc. Figure 1d illustrates a Penrose
tiling; this tiling is composed of two types of rhombuses. A Penrose construction possesses a long-range
quasiperiodic order but lacks translational symmetry. In this case, the notion of repetitiveness mainly
shows local isomorphism instead of periodic arrangements [8].

2.3. Fractal Patterns

Fractal patterns exhibit self-similarity, where a structure is repeated over multiple spatial scales.
Similar to quasi-crystalline order, certain motifs of the self-similar samples contain the whole structure
enfolded within them [29]. A typical fractal design is the Koch snowflake fractal. It can be obtained
by repeatedly constructing new triangles based on the middle segments of previous triangles; therefore,
fractals can be defined by iteration. A triadic Koch snowflake fractal with an iteration of 3 is shown in
Figure 1e [30]. Figure 1f shows another typical fractal pattern, i.e., the Sierpinski carpet pattern. It consists
of hierarchically-arranged iteratively-shrinking squares, showing different sizes at different scales [31].
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Figure 1. Schematic description of the typical aperiodic structures. (a) Fibonacci structure [16].
(b) Thue–Morse structure [18]. (c) 2D Fibonacci structure [25]. (Inset: Inflation rules of the first two
generations of a 2D Fibonacci sequence). (d) Regular Penrose tiling [27]. (e) Koch snowflake fractal [30].
(f) Sierpinski carpet pattern [31].

3. Aperiodic-Order-Induced Multimode Effects in Photonic Micro/Nanostructures

Photons in periodic dielectric structures such as photonic crystals can be considered as a counterpart
to electrons in solids. As analog of electronic band structures, photonic band structures possess
bandgaps in which photons are prohibited from propagating. In view of the fact that numerous
photonic devices are required to work at specific wavelengths or photonic modes, the introduction of
photonic band structures with multiple modes is desirable for designing these devices. Studies on
the multimode effects have been extended to various aperiodic structures including quasiperiodic
structures, symmetric self-similar structures, and others. The multimode effects in aperiodic structures
offer a new platform for using photons with various frequencies at the same time.

3.1. Multimode Effects Induced by Self-Similarity

Multiple fundamental photonic band gaps (PBGs) can exist in some aperiodic dielectric multilayers.
A typical example is in the Thue–Morse structure (Figure 2a) [32], in which the self-similarity of the
structure imparts a trifurcation feature on the resonant transmissions around the central frequency.
In the Thue–Morse multilayer, the amount of the completely transparent states can be counted [33].
We define Rn as the amount of the resonant transmission mode around the central frequency (where n
represents the number of the generation). Then we obtain:

Rn+2 = Rn + Rn+1 + Rn (n ≥ 3) (1)

considering the initial conditions R3 = 1 and R4 = 3. Finally, we have:

Rn = 2Rn−1 − 1± 1 = 1 +
2n−1 ± 1

3
, where

{
+ f or even n
− f or odd n

, . (2)

which is the number of PBGs around the central frequency ω0. According to Equation (2), the inner
feature of the Thue–Morse structure determines the mode amount of resonant transmissions. That is to
say, special positional correlation between two blocks in the Thue–Morse structure causes resonant
transmission. Multiple PBGs can coexist at the same frequency range in these structures, which is
intuitively shown in the photonic band structures in Figure 2b. Moreover, the number of PBGs can be
increased by tuning the refractive index contrast. This theoretical analysis was verified by measuring
Thue–Morse SiO2/TiO2 multilayers in the range of visible and near-infrared frequencies [34].
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Similar to the Thue–Morse structures, photonic quasicrystals can also support multiple modes
because of their self-similarity properties [35,36]. For example, a photonic quasicrystal with
eighth-generation Fibonacci series made by two blocks of Ta2O5 and SiO2 was constructed (Figure 2c).
From the transmission spectra calculated by the transfer matrix method, three photonic modes could
be observed in the dispersion map shown in Figure 2d, as demonstrated experimentally [37].

 

Figure 2. Aperiodic structures and their optical band diagrams: (a,b) Thue–Morse multilayer
structure [32,34], and (c,d) Fibonacci multilayer structure [37].

3.2. Multimode Effects in Symmetric Aperiodic Structure

As mentioned previously, multiple modes appearing in photonic quasiperiodic structures have
been demonstrated in both calculations and experiments [17,37,38]. However, low transmission
coefficients in these work limit their potential applications. A feasible way to realize multiple
perfect transmissions is to introduce internal symmetry into a 1D aperiodic dielectric multilayer
structure [39–41]. For example, a photonic crystal with two types of layers can be arranged in a binary
Fibonacci-class (FC(n)) sequence. Then, binary symmetric Fibonacci-class (SFC(n)) can be constructed
as shown in Figure 3a. SiO2 and TiO2 were chosen as two elementary layers with the thickness of
a quarter wavelength (λ0/4), and the transmission coefficient for the two different systems can be
calculated by the transfer matrix method (Figure 3b,c), which shows that the transmission coefficient of
the symmetric Fibonacci structure behaves rather differently from that of the Fibonacci structure [39].
As shown in Figure 3, the localization property of optical waves can be influenced by the symmetric
internal structure in a quasiperiodic system, which is demonstrated by the sharp transmission peaks
with transmission coefficients near unity. That is to say, with the help of symmetric internal structures
in the quasiperiodic system, a perfect transmission of the optical wave can replace the initially poor
transmission. This improvement is benefited from the positional correlations in the system. Moreover,
the resonant transmission can be varied to a certain frequency by tuning the aperiodic structures
(Figure 3d). For example, as shown in Figure 3e, the transmission coefficients vary in different
symmetric multilayers with defects (SMD) [41].
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Figure 3. Multimodes in symmetric aperiodic structures. (a) Schematic of the symmetric Fibonacci-class
(SFC(1)) multilayer structure. (b) The transmission coefficient of Fibonacci-class (FC(1)) (13 layers)
and (c) SFC(1) (26 layers) systems. (d) Symmetrical fifth-generation Fibonacci TiO2/SiO2 multilayer
film. (e) The measured (upper row) and calculated (lower row) transmission coefficient T as a function
of the wave number for the symmetric TiO2/SiO2 mutilayers with defects in the central gap with
different layers (SMD V2, SMD V3, and SMD V4 from left to right). (Adapted from ref. [39] (a–c) and
ref. [41] (d,e)).

4. Optoelectronic Devices Based on One-Dimensional Aperiodic Structures

The application diversity of modern optoelectronic and photonic devices requires novel
functionalities and the tunability of band structures enabled by a unique alignment of materials.
By introducing 1D aperiodic order into multilayer structures, some optical modes can be generated at
the desired frequencies, which can be applied in constructing functional components such as optical
filters, multiband waveguides, and so on.

4.1. Optical Filters for the Wavelength Division Multiplexing (WDM) Systems

The propagation of photons with a certain range of energies can be suppressed by PBGs in
photonic crystals. Tunable structural parameters are more plentiful in quasiperiodic designs than
those in periodic structures, which can be used to control the propagation of light waves with high
transmittivity at desired frequencies. Moreover, by combining with mirror symmetry of the structures,
resonant transmission will definitely occur, which makes it possible to fabricate multiwavelength
narrow band optical filters. For example, an optical filter could be fabricated by following k-component
Fibonacci structures. According to the calculated results, the optical transmission coefficient shows
a plentiful structure, which depends on the different incommensurate interval sequences k, the layer
number N, and the frequency of the light (Figure 4). The transmission coefficient can be tuned
by changing the layer number and the number of k; this property makes it useful in the design of
high-performance optical filters [40–42].
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Figure 4. Transmission coefficient T as a function of the phase with the different incommensurate
intervals k in k-component Fibonacci structures. The number of layers N are as follows: (a) N = 28,657;
(b) N = 27,201; (c) N = 31,422; (d) N = 29,244; (e) N = 233; (f) N = 277; (g) N = 250; and (h) N = 245,
respectively. (Adapted from ref. [42]).

4.2. Open Cavities for the Light–Matter Strong Coupling

Recently intensive studies have been carried out on light–matter interactions, especially their strong
coupling. Apart from the studies on interactions between a single excitonic mode with an individual
photonic mode, there has been some work on multimode coupling where the excitonic mode couples
with multiple photonic modes. Photonic quasicrystals possess multiple optical modes and thus present
a platform for showing multimode light–matter interaction. In order to demonstrate it experimentally,
a Fibonacci sequence composed of SiO2/Ta2O5 multilayers was chosen and J-aggregates on the top
surface of structure offered excitons (Figure 5a) [37]. Figure 5b shows the measured transmission
spectrum, where three peaks of different optical modes are recognized. The Rabi splitting and newly
generated hybrid polariton bands can be verified from the dispersion map of the hybrid system,
clearly showing successive coupling between the modes H, C, and L and the excitons (Figure 5c,d).
By varying the substitution rule of the photonic quasicrystal, the open-cavity system can be optimized
to provide the various photonic modes in need. By introducing this design, multimode photon–exciton
strong couplings can be realized, which may inspire some potential applications, such as optical
spectroscopy and multimode sensors.

 

Figure 5. Multimode photon-exciton coupling. (a) Schematic of a Fibonacci photonic quasicrystal with
J-aggregates on the top surface. (b) Experimentally measured transmission spectra of the photonic
quasicrystal; the modes labeled C, L, and H correspond to three peaks. (c) Transmission spectra of the
sample under various incident angles. Polariton bands were traced by dashed lines. (d) Dispersion map of
the sample. Calculated dashed lines fit the polariton bands and Rabi splitting. (Adapted from ref. [37]).
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4.3. Multiband Waveguides for Trapping “Rainbow”

In telecommunications and optoelectronics, optical waveguides play a significant role because of
their abilities to confine and guide the light waves. However, conventional hollow-core designs have
disadvantages such as narrow transmission bands and detrimental dispersive resonances. Introducing
a self-similar dielectric waveguide (SDW) is a useful approach to achieve multiband transmission and
overcome baneful dispersive resonance, and even to guide the light waves with spatial separation [43].
As shown in Figure 6a, the SDW is designed as a hollow core surrounded by a coaxial Thue–Morse
multilayer. In the photonic band structure, multiple transmission bands appear because of the intrinsic
self-similar furcation of the structure. In this case, the propagated light with different resonant
frequencies are separated in various cladding layers as shown in Figure 6b. Therefore, different modes
are separated spatially, forming a “rainbow” trapped in the SDW (Figure 6c). Moreover, both the
transmission modes and the photonic bands can be modulated by altering the temperature in an SDW
infiltrated by liquid crystal [44]. These designs can be applied to fabricate compact photonic devices,
such as integrated spectrographs, color-sorters, and temperature-sensitive optical circuit switches.

 

Figure 6. Multiband waveguide. (a) Structure of a self-similar dielectric waveguide (SDW),
where a coaxial Thue–Morse multilayer consisting of two building blocks was employed to cover
a hollow core. The lower figure manifests refractive-index distributions in the SDWs. (b) Photonic bands
and transmission modes in the SDW. (c) The electric-field time-average energy density distribution in
the SDW for different modes. (Adapted from ref. [43]).

4.4. Solar Cells with Multi-Intermediate Band Structures

Numerous designs have been developed to improve the performance of solar cells.
The enhancement of efficiency may originate from additional photon-induced transitions between
the designed intermediate levels, as shown in Figure 7a [45]. Therefore, additional photons whose
energies are lower than the original band gap in the solar cell can be absorbed, due to the transitions
between bands in the multiband structure. In this way, various intermediate band structures can yield
different efficiency limits for solar cells as shown in Figure 7b. It is shown that aperiodic semiconductor
superlattices can produce these intermediate energy bands. For example, the continuous minibands in
the In0.49Ga0.51P/GaAs superlattices can be split by introducing aperiodic order, such as that of the
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Thue–Morse sequence, the Fibonacci sequence, or even the random case (Figure 7c). This approach by
introducing a multi-intermediate band structure may produce low-dimensional high-performance
photovoltaic devices based on electronic band gap engineering, and can also be used in other ranges
such as optoelectronics.

 

Figure 7. Enhancement of solar cells caused by photon-induced transitions in multi-intermediate
band structures. (a) Various radiation transitions between intermediate multiband structures in the
designed solar cell. (b) Limiting efficiency η for three model solar cells with diverse intermediate
multiband structures (k = 1,2,3). (c) Electronic miniband structures of several periodic and aperiodic
In0.49Ga0.51P/GaAs superlattices. The inset shows the band-edge diagram of the In0.49Ga0.51P/GaAs
interface (at room temperature). (Adapted from ref. [45]).

5. Optoelectronic Devices Based on Two-Dimensional Aperiodic Structures

Combining typical 2D aperiodic structures (such as Penrose tiling or fractal patterns) with
optoelectronic devices is a feasible way to achieve resonant transmission or absorption enhancement,
which can improve the optical response of devices and pave the way toward the integration of devices
on a chip.

5.1. Aperiodic Plasmonic Aperture Arrays with Extraordinary Optical Transmission

As we know, much attention has been paid to the resonant transmission of light through
subwavelength apertures for its potential applications in photolithography, displays, and near-field
microscopy. The phenomena originate from the effect in which surface plasmon polaritons (SPPs)
mediate light transmission through the periodic structure. Actually, resonantly enhanced transmission
can be achieved not only in periodic structures but also through 2D quasiperiodic aperture arrays
(Figure 8a) [46]. The broad transmission of a single aperture can interact with the discrete resonances
caused by diffraction from the array, thus the spectral peaks described by Fano interference at terahertz
frequencies occur, as shown in Figure 8b.

In addition to quasiperiodic structures, geometric self-similarity can also be employed to make
multiple resonant transmission [47,48]. A Sierpinski carpet fractal-featured metallic thin film was
fabricated as shown in Figure 8c. The existence of extraordinarily high transmission at specific
wavelengths in infrared frequencies was verified by the transmission spectra. This high transmission
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was determined by the hierarchy of apertures of various sizes. Therefore, this unique structure may
play an important role in the miniaturization and integration of plasmonic circuits.

 
Figure 8. Transmission through aperiodic aperture arrays. (a) A Penrose quasicrystal constructed
of thin and thick rhomb tiles. (b) Transmission of the Penrose-type quasicrystal perforated films
with different side lengths. (c) Scanning electron micrograph of an aluminum film perforated with
a Sierpinski carpet fractal-featured aperture array. (d) Transmission of the metallic Sierpinski carpet
structure. (a,b) are obtained experimentally; (c–e) are simulated results. (Adapted from ref. [46] (a,b)
and ref. [47] (c,d)).

5.2. Solar Cell with a Plasmonic Fractal

The keys to fabricating high-performance solar cells are to extend the absorption of sunlight
irradiation to broader bandwidths and increase the power conversion efficiency. A feasible way to
enhance broadband absorption is to introduce silver nano cuboids with a fractal-like pattern atop
a silicon solar cell, as shown in Figure 9 [49]. The incident light with different wavelengths could
couple into various cavity modes and surface plasmon modes in the structure. In this system, the cavity
modes originate from Fabry–Perot resonances at the longitudinal and transverse cavities, while the
surface plasmon modes exist at the silicon–silver interface. Benefitting from the various feature sizes
in the fractal structure, low-index and high-index surface plasmon modes are excited simultaneously.
Eventually, broadband absorption can be achieved in this solar cell. By tuning the geometry of the
fractal and applying an additional SiO2 antireflection layer, the quantum efficiency of the solar cell
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could be improved further. Therefore, these kinds of plasmonic fractal structures can be applied to
design miniaturized compact photovoltaic devices with high performance.

Figure 9. Solar cell with a plasmonic fractal to achieve broadband absorption. (a) Schematic of the
solar cell with a plasmonic fractal. Including a Ag fractal-like pattern, a Si absorbent layer, and a silver
back reflector. (b) Absorbance spectra of the solar cell with or without the antireflection coating (ARC).
(c) Quantum efficiencies of the 50 nm thick silicon solar cells: ref-1 (bare Si film); ref-2 (Si film with Ag
back reflector); solar cells with base-periodicity patterns (P1 = 100 nm, P2 = 200 nm, P3 = 400 nm);
solar cells with a plasmonic fractal and additional dielectric ARC. (Adapted from ref. [49]).

6. Conclusions

Mainly based on the recent work in our group, we have briefly reviewed the
aperiodic-order-induced multimode effects in photonic and plasmonic micro/nanostructures and
their applications in optoelectronic devices. We present the multimode effects in a series of 1D/2D
photonic or plasmonic aperiodic structures. These multimode effects have been employed to achieve
optical filters for the WDM systems, open cavities for light–matter strong coupling, multiband
waveguides for trapping “rainbow”, high-efficiency plasmonic solar cells, transmission-enhanced
plasmonic arrays, and other devices. The investigations can be applied to the design of integrated
photonic and plasmonic devices, which achieve potential applications in areas of optical communication,
optical data storage, energy harvesting, nanoantennas, photonic chips, and so on.
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