56 research outputs found

    Usporedba modela umjetne neuralne mreže za predviđanje drvnog volumena krimskih borova u šumama pokrajine Cankiri

    Get PDF
    In this study, it is aimed to use and compare Artificial Neural Network (ANN) models for predicting individual tree volumes for of Crimean Black Pine trees within the Cankiri Forests. The single and double entry-volume equations and the Fang et al. (2000)’s compatible volume equation based on the classical and traditional methods were used by 360 Crimean Black Pine trees to obtain these tree volume predictions. To determine the best predictive alternative for ANN models, a total of 320 trained networks in the Multilayer Perceptron (MLP) and a total of 20 trained networks in the Radial Basis Function (RBF) architectures was trained and used to obtain the individual tree volume predictions. On the basis of the goodness-of-fit statistics, the ANN-based on MLP 1-9-1 including dbh as an input variable for single entry volume predictions showed a better fitting ability with SSE (2.7763), (0.9339), MSE (0.00910), RMSE (0.0954), AIC (-823.25) and SBC (-1421.81) than that by the other studied volume methods including dbh as an explanatory variable. For double entry volume predictions, including dbh and total height as input variables, ANN based on MLP 2-15-1 resulted in better fitting statistics with SSE (0.8354), (0.9801), MSE (0.00274), RMSE (0.0523), AIC (–579.55) and SBC (–1788.11).Cilj ovog rada je usporediti modele umjetne neuralne mreže (ANN) za predviđanje pojedinih drvnih volumena krimskih borova u šumama Çankirija. Jednoulazne i dvoulazne jednadžbe i kompatibilna volumna jednadžba Fang et al. (2000) temeljena na klasičnim i tradicionalnim metodama primijenjena je na 360 krimskih borova u cilju dobivanja ovih drvnih volumena. Kako bi se odredila najbolja alternativna metoda za predviđanje ANN modela, ukupno je obučeno 320 treniranih mreža u višeslojnom perceptronu (MLP) i ukupno 20 treniranih mreža u arhitekturi Radial Basis Function (RBF). Na temelju statistike goodness-of-fit, ANN u smislu MLP 1-9-1 uključujući dbh kao input varijablu za jednoulazna volumna predviđanja pokazao je bolju fitting sposobnost sa SSE (2.7763), Radj2 (0.9339), MSE (0.00910), RMSE (0.0954), AIC (-823.25) i SBC (-1421.81) nego onaj u ostalim proučavanim volumnim metodama koje uključuju dbh kao eksplanatornu varijablu. Za dvoulazna volumna predviđanja, što uključuju dbh i ukupnu visinu kao input varijable, ANN temeljen na MLP 2-15-1 rezultirao je boljom fitting statistikom sa SSE (0.8354), Radj2 (0.9801), MSE (0.00274), RMSE (0.0523), AIC (-579.55) and SBC (-1788.11)

    Wood Properties and Processing

    Get PDF
    Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Statistical Data Modeling and Machine Learning with Applications

    Get PDF
    The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section “Mathematics and Computer Science”. Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties

    Quantitative Techniques in Participatory Forest Management

    Get PDF
    Forest management has evolved from a mercantilist view to a multi-functional one that integrates economic, social, and ecological aspects. However, the issue of sustainability is not yet resolved. Quantitative Techniques in Participatory Forest Management brings together global research in three areas of application: inventory of the forest variables that determine the main environmental indices, description and design of new environmental indices, and the application of sustainability indices for regional implementations. All these quantitative techniques create the basis for the development of scientific methodologies of participatory sustainable forest management

    Quantitative Techniques in Participatory Forest Management

    Get PDF
    Forest management has evolved from a mercantilist view to a multi-functional one that integrates economic, social, and ecological aspects. However, the issue of sustainability is not yet resolved. Quantitative Techniques in Participatory Forest Management brings together global research in three areas of application: inventory of the forest variables that determine the main environmental indices, description and design of new environmental indices, and the application of sustainability indices for regional implementations. All these quantitative techniques create the basis for the development of scientific methodologies of participatory sustainable forest management

    Performance modelling and validation of biomass gasifiers for trigeneration plants

    Get PDF
    Esta tesis desarrolla un modelo sencillo pero riguroso de plantas de trigeneración con gasificación de biomasa para su simulación, diseño y evaluación preliminar. Incluye una revisión y estudio de diferentes modelos propuestos para el proceso de gasificación de biomasa.Desarrolla un modelo modificado de equilibrio termodinámico para su aplicación a procesos reales que no alcanzan el equilibrio así comodos modelos de redes neuronales basados en datos experimentales publicados: uno para gasificadores BFB y otro para gasificadores CFB. Ambos modelos, ofrecen la oportunidad de evaluar la influencia de las variaciones de la biomasa y las condiciones de operación en la calidad del gas producido. Estos modelos se integran en el modelo de la planta de trigeneración con gasificación de biomasa de pequeña-mediana escala y se proponen tres configuraciones para la generación de electricidad, frío y calor. Estas configuraciones se aplican a la planta de poligeneración ST-2 prevista en Cerdanyola del Vallés.This thesis develops a simple but rigorous model for simulation, design and preliminary evaluation of trigeneration plants based on biomass gasification. It includes a review and study of various models proposed for the biomass gasification process and different plant configurations. A modified thermodynamic equilibrium model is developed for application to real processes that do not reach equilibrium. In addition, two artificial neural network models, based on experimental published data, are also developed: one for BFB gasifiers and one for CFB gasifiers. Both models offer the opportunity to evaluate the influence of variations of biomass and operating conditions on the quality of gas produced. The different models are integrated into the global model of a small-medium scale biomass gasification trigeneration plant proposing three different configurations for the generation of electricity, heat and cold. These configurations are applied to a case study of the ST-2 polygeneration plant foreseen inCerdanyola del Valles

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes
    corecore