1,428 research outputs found

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    A Bridge from Semantic Value to Content

    Get PDF
    A common view relating compositional semantics and the objects of assertion holds the following: Sentences φ and ψ expresses the same proposition iff φ and ψ have the same modal profile. Following Dummett, Evans, and Lewis, Stanley argues that this view is fundamentally mistaken. According to Dummett, we must distinguish the semantic contribution a sentence makes to more complex expressions in which it occurs from its assertoric content. Stojnić insists that views which distinguish the roles of content and semantic value must nevertheless ensure a tight connection between the two. But, she contends, there is a crucial disanalogy between the views that follow Lewis and the views that follow Dummett. Stanley’s Dummettian view is argued to contain a fatal flaw: On such views, there is no way to secure an appropriate connection between semantic value and a theoretically motivated notion of assertoric content. I will review the background issues from Dummett, Evans, Lewis, and Stanley, and provide a principled way of bridging the gap between semantic value and a theoretically motivated notion of assertoric content

    Towards a Cognitive Semantics of Type

    Get PDF
    Types are a crucial concept in conceptual modelling, logic, and knowledge representation as they are an ubiquitous device to un- derstand and formalise the classification of objects. We propose a logical treatment of types based on a cognitively inspired modelling that ac- counts for the amount of information that is actually available to a cer- tain agent in the task of classification. We develop a predicative modal logic whose semantics is based on conceptual spaces that model the ac- tual information that a cognitive agent has about objects, types, and the classification of an object under a certain type. In particular, we ac- count for possible failures in the classification, for the lack of sufficient information, and for some aspects related to vagueness

    Uncertainty representation in software models: a survey

    Get PDF
    This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling and introduces a classification framework that allows to compare and classify existing proposals, analyze their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.This work is partially supported by the European Commission (FEDER) and the Spanish Government under projects APOLO (US1264651), HORATIO (RTI2018-101204-B-C21), EKIPMENT-PLUS (P18-FR-2895) and COSCA (PGC2018-094905-B-I00)

    Uncertainty Measures in Ordered Information System Based on Approximation Operators

    Get PDF
    This paper focuses on constructing uncertainty measures by the pure rough set approach in ordered information system. Four types of definitions of lower and upper approximations and corresponding uncertainty measurement concepts including accuracy, roughness, approximation quality, approximation accuracy, dependency degree, and importance degree are investigated. Theoretical analysis indicates that all the four types can be used to evaluate the uncertainty in ordered information system, especially that we find that the essence of the first type and the third type is the same. To interpret and help understand the approach, experiments about real-life data sets have been conducted to test the four types of uncertainty measures. From the results obtained, it can be shown that these uncertainty measures can surely measure the uncertainty in ordered information system

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Rough sets, their extensions and applications

    Get PDF
    Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data-mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological
    corecore