9,215 research outputs found

    Seventh year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    There are no author-identified significant results in this report

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Water Body Distributions Across Scales: A Remote Sensing Based Comparison of Three Arctic Tundra Wetlands

    Get PDF
    Water bodies are ubiquitous features in Arctic wetlands. Ponds, i.e., waters with a surface area smaller than 104 m2, have been recognized as hotspots of biological activity and greenhouse gas emissions but are not well inventoried. This study aimed to identify common characteristics of three Arctic wetlands including water body size and abundance for different spatial resolutions, and the potential of Landsat-5 TM satellite data to show the subpixel fraction of water cover (SWC) via the surface albedo. Water bodies were mapped using optical and radar satellite data with resolutions of 4mor better, Landsat-5 TM at 30mand the MODIS water mask (MOD44W) at 250m resolution. Study sites showed similar properties regarding water body distributions and scaling issues. Abundance-size distributions showed a curved pattern on a log-log scale with a flattened lower tail and an upper tail that appeared Paretian. Ponds represented 95% of the total water body number. Total number of water bodies decreased with coarser spatial resolutions. However, clusters of small water bodies were merged into single larger water bodies leading to local overestimation of water surface area. To assess the uncertainty of coarse-scale products, both surface water fraction and the water body size distribution should therefore be considered. Using Landsat surface albedo to estimate SWC across different terrain types including polygonal terrain and drained thermokarst basins proved to be a robust approach. However, the albedo–SWC relationship is site specific and needs to be tested in other Arctic regions. These findings present a baseline to better represent small water bodies of Arctic wet tundra environments in regional as well as global ecosystem and climate models

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    Survey of users of earth resources remote sensing data

    Get PDF
    A user survey was conducted to determine current earth resources survey (ERS) data use/user status and recommendations for strengthening use. Only high-altitude aircraft and satellite (primarily LANDSAT) data were included. Emphasis was placed on the private sector/industrial user. Objectives of the survey included: who is using ERS data, how they are using the data, the relative value of current data use as well as obtaining user views as to possible ways of strengthening future ERS data use. The survey results are documented and should provide relevant decision making information for developing future programs of maximum benefit to all end users of satellite ERS data

    Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop

    Program on Earth Observation Data Management Systems (EODMS)

    Get PDF
    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products

    Development of an empirical model for chlorophyll-a and Secchi Disk Depth estimation for a Pampean shallow lake (Argentina)

    Get PDF
    Shallow Pampean lakes are located in the most productive plain of Argentina. They are highly variable in salinity, turbidity and surface area. Laguna Chascomús has been monitored as a representative example of them. We developed a linear model based on satellite images validated against field measurements (2001–2011 period). A vegetation index and Landsat Surface Reflectance (Band 4) produced the best correlations with chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD), respectively. In a second instance, a retrospective analysis (1986–2013) was performed. As a result, significant positive trends were observed for SDD and Chl-a. In addition, both variables displayed trends related to rainfall and site depth.Fil: Bohn, Vanesa Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; ArgentinaFil: Carmona, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; ArgentinaFil: Rivas, Raúl Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; ArgentinaFil: Lagomarsino, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Diovisalvi, Nadia Rosalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Zagarese, Horacio Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    The application of remote sensing to resource management and environmental quality programs in Kansas

    Get PDF
    There are no author-identified significant results in this report

    Remote sensing of aquatic plants

    Get PDF
    Various sensors were tested in terms of their ability to detect and discriminate among noxious aquatic macrophytes. A survey of researchers currently studying the problem and a brief summary of their work is included. Results indicated that the sensor types best suited to assessment of the aquatic environment are color, color infrared, and black-and-white infrared film, which furnish consistently high contrasts between aquatic plants and their surroundings
    corecore