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Shallow Pampean lakes are located in the most productive plain of Argentina. They are highly variable in
salinity, turbidity and surface area. Laguna Chascomús has been monitored as a representative example
of them. We developed a linear model based on satellite images validated against field measurements
(2001–2011 period). A vegetation index and Landsat Surface Reflectance (Band 4) produced the best cor-
relations with chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD), respectively. In a second instance, a ret-
rospective analysis (1986–2013) was performed. As a result, significant positive trends were observed for
SDD and Chl-a. In addition, both variables displayed trends related to rainfall and site depth.
� 2017 Production and hosting by Elsevier B.V. on behalf of National Authority for Remote Sensing and
Space Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Freshwater is one of the most valuable resources on Earth. Pre-
sently, the main risks for the water resource are human overex-
ploitation (Christie, 2011), decreases of the value of the
ecosystem services provided by the water bodies and changes
related to climate variability (Andersen et al., 2006; Adrian et al.,
2009). Monitoring of water quality of shallow lakes is an obvious
prerequisite for developing mitigation programs.

Dörnhöfer and Oppelt (2016), in a review about remote sensing
as a support for lake research, emphasized the importance of
remote sensing technology for retrieving historical information
about lakes, especially in regions where such information is scarce.
Recent studies (Fuller and Minnerick, 2007; Moses, 2009;
Bonansea et al., 2015; Doña et al., 2015) demonstrated that LAND-
SAT satellite data provide useful tools for monitoring surface
waters over time. The 490–555 nm portion of the electromagnetic
spectrum has been mostly used for chlorophyll-a (Feng et al., 2014)
estimation whereas red and near infrared reflectance has been
used for studies in turbid waters (Moses, 2009).

The Pampean region of Argentina is a heterogeneous landscape,
including large plains, crossed by rivers and scattered with shallow
lakes (Fig. 1). In this region lakes are typically shallow (�2 m) and
highly variable in surface area, salinity and nutrient content
(Dangavs, 2005). The hydrology of Pampean lakes is highly depen-
dent on the rainfall regime (Kruse and Laurencena, 2005).

In a previous study (Diovisalvi et al., 2015) we compared Pam-
pean shallow lakes vs. a large dataset of lakes worldwide (over
2700 lakes) as regards to some basic limnological variables. Inter-
estingly, we found that Pampean lakes are, on average, more
eutrophic than any other group of lakes considered in our study.
Pampean lakes tend to display higher Chl-a concentrations and
shallower SDD. Moreover, the analysis showed that, at comparable
Chl-a concentrations, Pampean lakes have (on average) shallower
SDD than any other grouping of lakes.

Laguna Chascomús is a typical Pampean shallow lake. This lake
has been studied during long periods from different biological per-
spectives (Torremorell et al., 2007; Diovisalvi et al., 2010;
Lagomarsino et al., 2015). Therefore, a long data series of SDD
and Chl-a concentrations is available. Chascomús has remained
in turbid state (non-vegetated) since 1980 (Barla, 1991), which



Fig. 1. Laguna Chascomús: a) hydrological system and localization; b) localization of sampling sites (SS).
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reasonably allows an historical extrapolation back to the early
1980’s given that it has not switched between alternative steady
states. By necessity, in situ measurements in the lake are restricted
to three sampling sites. A satellite application could be convenient
to obtain knowledge of the spatio-temporal variations in the water
quality parameters with a high frequency of monitoring and in the
entire extension of the water body. Also, the aforementioned pos-
sibility could promote the generation of retrospective studies
related to the environmental history of the lake.

The first objective of this work was to formulate and validate an
empirical model to estimate Chl-a concentrations and SDD in a
typical Pampean shallow lake by combination of satellite (LAND-
SAT ETM+(L7) and TM (L5)) and field data. A second objective
Table 1
General characteristics of Laguna Chascomús.

Shallow lake parameter

Morphometric parameters1 perimeter (km)
area (km2)
Coastal Line Development (CLD)
shape and origin by CLD

Topographic features2 altitude (masl)
regional slope (�)

Climatological parameters3 mean annual precipitation (mm y�1

mean annual temperature (�C)
mean wind annual velocity (km h�1

evapotranspiration (mm y�1)
Limnological characteristics4, 5 depth (m)

Chl-a (mg/L) (June 2005–May 2009)

SDD (cm) (June 2005–May 2009)

Main use2

1 Dangavs (2005). Estimations from LANDSAT TM 5 scene (224/085) 11th November
2 IGN - Secretaría de Recursos Hídricos de la Nación – INA.
3 Servicio Meteorológico Nacional (SMN).
4 Diovisalvi et al., 2014. SD: Standard Deviation; Min: Minimum; Max: Maximum.
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was to use the model to reconstruct the lake history back to middle
19800s and to map the spatial distribution of Chl-a and SDD during
predefined dates.

2. Materials and methods

2.1. Study area

Laguna Chascomús is a shallow lake located in the ‘‘Pampean
region” (Argentina), characterized by a plain landscape, except
for two hill systems (Fig. 1). The Pampean region has a temperate
climate (mean annual temperature: 14–20 �C) and it is character-
ized by a strong rainfall gradient, which decreases from the NE
Data

26.44
28.73
1.39
subcircular, deflation
5
<4

) 900–1000
14–16

) 10.1
1100–1200

Min 1.5
Max 1.9
Mean (SD) 328.5 (173.4)
Range (Min–Max) 50.6–856.3
Mean (SD) 10.2 (3.1)
Range (Min–Max) 5.0–18.3

fishing, recreative activities

2009.
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Table 2
Calculated indexes between in situ log-data (83 pairs) and reflectance values: qNIR

Reflectance Near Infrared qRed Reflectance Red; C1and C2 Coefficient to correct aerosol
scattering in the Red band by the use of the Blue band; L soil adjustment factor; k1
and k2 center wavelengths of the red and infrared bands, respectively.

Index Equation Author

Normalized Difference
Vegetation Index (NDVI)

NDVI = (qNIR-qRed)/
(qNIR + qRed)

Rouse et al.
(1974)

Enhanced Vegetation Index
(EVI)

EVI = G*((qNIR-qRed)/
(qNIR + (C1

* qRed-C2
* qblue) + L))

Liu and Huete
(1995)

Normalized Area Vegetation
Index (NAVI)

NAVI = (1-qk1/qk2) Carmona et al.
(2015)

Ratio Vegetation Index (RVI) RVI = NIR/red Huete and
Jackson, 1987
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(1000 mm year�1) to the SW (400 mm year�1) (Viglizzo et al.,
2009). There are five climatic subregions (Díaz and Mormeneo,
2002), covering a range from warm humid to cold sub-humid con-
ditions. This region is one of the most productive of Argentina, in
terms of agriculture and cattle breading. Chascomús belongs to a
system of seven shallow lakes arranged as chained water bodies
(Dangavs, 2005). The physical characteristics of Chascomús
(Table 1) favor a state of continual mixing and lack of stratification
(Torremorell et al., 2007).

2.2. Field measurements

Laguna Chascomús has been sampled every other week during
the 2001–2011 period. A total of 29 sampling dates corresponding
to this period, for which nearly simultaneous satellite images are
available, were selected for this study. In situ measurements were
done in three sampling sites (Fig. 1). In these 2001–2011 field
campaigns, concentrations of Chl-a were estimated spectrophoto-
metrically after extraction with methanol (Lopretto and Tell,
1995) and Secchi depth readings were measured in situ. Lake
depth was measured during the June 2001–June 2012 period at
a gauging station for which topographic altitude is known (IGN).
The graduated scale is located in the dock of the Laguna
Chascomús shallow lake.

2.3. Remote sensing data

Landsat 5 TM and 7 ETM + were the sensors used in this study.
Landsat images (Land Surface Reflectance) were downloaded from
the USGS Earth Resources Observation and Science (EROS) Center
Science Processing Architecture (ESPA) on Demand Interface
(https://espa.cr.usgs.gov/) webpage and from Glovis (http://glo-
vis.usgs.gov/) visor (https://espa.cr.usgs.gov). Surface Reflectance
data are generated from the Landsat Ecosystem Disturbance Adap-
tive Processing System (LEDAPS), a specialized software developed
by NASA GSFC and the University of Maryland. The software
applies MODIS atmospheric correction routines to Level-1 data
products.

2.4. Data processing and analysis

Two sets of satellite data were used in this study. In the first
instance, the downloaded satellite images (n = 29) were selected
according to sampling date (±3 days) (2001–2011 period). In the
second instance, 103 satellite images were collected and processed
to obtain the retrospective tendency of SDD and Chl-a for Laguna
Chascomús (1986–2013). According to availability (data age,
absence of clouds) an average of 4 satellite images per year were
processed. Only 16.5% of this set of images were used also for the
validation of the model. In summary, a total of 115 satellite images
were analyzed in this study. Regardless of the specific objective,
satellite images were digitally processed using ENVI 4.7 software.
The analysis included the retrieval of Surface Reflectance values
for every SS (Fig. 1) and for every date. As a result, a total of 83
pairs of data (satellite and in situ data) and 309 surface reflectance
values for the model development and for the retrospective analy-
sis were collected. The retrieval of a mean value around in situ sam-
pling sites was considered more appropriate in both cases in order
to reduce sensor and algorithm noise (Hu et al., 2001). Therefore, a
region of interest (ROI) was defined for each of the three sampling
sites. The ROI included a predefined number of pixels (5x5) which
was proportional to the shallow lake size (�29 km2) and consid-
ered appropriate for the number of SS. For each ROI, Landsat
Reflectance values were retrieved. Paired in situ measurements
(Log-transformed) and satellite band readings were considered
Please cite this article in press as: Bohn, V.Y., et al.. Egypt. J. Remote Sensing S
appropriate (Sriwongsitanon et al., 2011; Bonansea et al., 2015)
to develop the regression models for SDD and Chl-a estimation.
For the first set of data, a table containing the totality (83 pairs)
of in situ log-data and reflectance values (for all the spectral bands)
was constructed. Moreover, several vegetation indices (Table 2)
were calculated and added to the table. Water indices usefulness
has been demonstrated in different studies for drought monitoring
and early warming assessment (i.e. Ceccato et al., 2002; Haq et al.,
2012; Memon et al., 2015). However, the vegetation indices and
reflectance values (individuals bands and band ratios) application
is highly encouraged for the estimation of water quality parame-
ters (i.e. chlorophyll-a, transparency) in lakes (i.e. Kahru et al.,
1993; Duan et al., 2010; Bonansea et al., 2015; Doña et al., 2015).
For the second set of data, a table containing the values of surface
reflectance of the bands 3 and 4 was constructed. NDVI was calcu-
lated from those values. Finally, the model equations (Eqs. (1) and
(2), see Results section) were applied. As a result, SDD and Chl-a
content were estimated for the 1986–2013 period.

Infostat software (http://www.infostat.com.ar/) was used for
statistical analysis. Each linear regression equation was based on
two sets of data: calibration and validation data sets. Both included
field data for 3 sampling sites in Laguna Chascomús. The calibra-
tion set involved 56 pairs of values and the validation set, 27, for
each parameter (Chl-a and SDD). They were randomly selected.

In situ lake depth measurements and the Oceanic Niño Index
(ONI) (http://www.cpc.ncep.noaa.gov) were used for the analysis
of the physical temporal variations in Laguna Chascomús. Finally,
for the purpose of verifying the developed regression models, stan-
dard regression assumptions were verified, both graphically and
statistically. The prediction quality of the algorithms was validated
by simple regression analysis using Landsat images randomly
selected. These images were used only during the model validation
process. The spatio-temporal distributions of Chl-a and SDD were
mapped for representative dates of the retrospective analysis
based on the linear regression equations generated in this research.
Mapping of Chl-a concentrations and SDD was performed in ENVI
4.7 and ArcGIS 10.1.

3. Results

3.1. Model development

Regression models were obtained using 83 pairs (field and
satellite) of data. For the Chl-a model 4 equations were evaluated,
with the following independent variables: the NDVI, NAVI, EVI and
RVI index. On the other hand, for the SDD model, the independent
variable were the reflectance corresponding to Bands 2 and 4 of
Landsat satellite images. Equation coefficients (and their associ-
ated errors) and r2 are shown in Table 3, for each model. After
pace Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2017.04.005



Fig. 2. Pearson correlation by bands and index analysis, p-value < 0.0001.

Table 3
Equations and coefficients calculated for the Chl-a and SDD estimations in Laguna Chascomús.

Dependent variable Independent variable slope constant r2

ln(Chl-a)
NDVI 6.3167 ± 0.4884 5.0224 ± 0.0607 0.75
NAVI 3.2712 ± 0.2718 5.1029 ± 0.0618 0.72
EVI 22.5577 ± 1.7284 4.9363 ± 0.0631 0.75
RVI 2.8729 ± 0.2116 2.0754 ± 0.2457 0.77

ln(SDD)
B2 �24.7211 ± 2.7637 3.8148 ± 0.1628 0.59
B4 �15.204 ± 1.6394 3.3334 ± 0.1069 0.61
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the correlation by bands and index analysis (Fig. 2), the following
equations (see also Table 3) were selected as the best alternatives
for the Chl-a and SDD estimations, respectively

lnðChl� aÞ ¼ 6:317NDVIþ 5:022 ð1Þ
lnðSDDÞ ¼ �15:204q4 þ 3:333 ð2Þ

where ln Chl-a = natural logarithm of chlorophyll-a concentration
(ug/L); NDVI = Normalized Difference Vegetation Index based on
Landsat satellite data; ln SDD = Secchi Disk Depth (cm) natural log-
arithm and b4 = Surface Reflectance value extracted from the band
4 of Landsat satellite data. The formulated equations are ln (y) =
a1 * x + b1, where X is the considered band or index and Y is the
variable to estimate.
Fig. 3. Correlation between C
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Regarding the relation between both variables, there was
observed a negative correlation: when the SDD was higher, the
chlorophyll-a concentration was lower. This phenomena allowed
us to infer that the chlorophyll-a is a major cause of turbidity in
the studied shallow lake (Fig. 3).

3.2. Validation

The model was tested by comparison between observed vs.
estimated Chl-a concentrations (lg/l) and observed vs. estimated
SDD values (cm) (Fig. 4). Chl-a and SDD were estimated using
satellite values retrieved from images that were not used in the
calibration instance. Chl-a and SDD estimates were obtained by
using the best models obtained during the development process
(Eqs. (1) and (2)).
hl-a and SDD (observed).

pace Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2017.04.005



Fig. 4. Estimated values of Chl-a and SDD vs. Observed values of Chl-a and SDD for the selected models: a) NDVI (Chl-a); b) B4 (SDD).
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Based on the developed model, regarding the comparison
between observed vs. estimated Chl-a concentrations (ug/L) for
in situ data of Laguna Chascomús (November 2001 – September
2011 period), the results were: a) NDVI, R2 = 0.83; b) NAVI,
R2 = 0.79; c) EVI and d) RVI, R2 = 0.84. As a result, the option a)
(NDVI equation) was selected as the best option. For this case,
the root-mean-square error (RMSE) was 83 (lg/l). For the SDD,
the best case was represented by the Band 4 equation which
showed a RMSE and R2 of 3.70 cm and 0.72, respectively. For the
Band 2 equation, the R2 was not acceptable (R2 = 0.51).

As a result, the derived model for mapping Chl-a concentration
was considered acceptable since it has adjusted R2 values of 0.75
and 0.83 for the calibration and validation processes, respectively.
Regarding to the estimation of SDD, the model was also acceptable
since it has adjusted R2 values of 0.61 (calibration process) (Fig. 2)
and 0.72 (validation process) (Fig. 4).
3.3. Application of the regression model: a retrospective analysis

A retrospective analysis of the SDD and Chl-a was obtained
from the application of the model developed in this study for the
period January 1986–December 2013. As a result, a tendency of
Chl-a and SDD was estimated for Laguna Chascomús during
27 years. In most dates, the estimates were homogeneous across
SS (Fig. 5). According to the above mentioned tendency, a relation
between Chl-a concentrations, SDD and depth/ONI index, was
observed. For 2001–2012 years (the period in which the depth val-
ues were available), when the depth (Figs. 5 and 6) and ONI index
were highest, the lower Chl-a concentration and the higher SDD
values were shown. During the period in which the depth values
were unknown (1986–2000), ONI index (Fig. 6) was as approximation
of the lake depth. The following examples illustrate the usefulness
Please cite this article in press as: Bohn, V.Y., et al.. Egypt. J. Remote Sensing S
of this approach. Laguna Chascomús showed a depth > 2 m and
ONI index close to 0 during the 2001–2003 years in concordance
with a Chl-a concentration < 200 mg/L and a SDD > 12 cm (Figs. 5
and 6). In contrast, during the 2009–2010 period, the lake showed
a mean depth of 1.50 m, a Chl-a concentration > 400 mg/L and a
SDD < 12 cm. The ONI index in this time framewas negative (Figs. 5
and 6). As an example of the cited relation during periods in which
the depth values were not available, we could mention the 1987–
88 and 1990 years. During those periods Chl-a concentrations were
lower than 200 mg/L, SDD values were higher than 8 cm (peaks of
16 cm were detected) and ONI index was positive, suggesting that
the lake remained relatively deep. In contrast, for the years 1998–
2000 we could infer a shallowest condition taking into account the
negative ONI values, Chl-a concentrations > 200 mg/L and SDD val-
ues � 12 cm (Figs. 5 and 6).
3.3.1. Chl-a concentration and SDD mapping
As an application of the satellite data, the validated algorithms

were used in order to obtain a multi-temporal map series. These
maps showed the space–time distribution of Chl-a and SDD in
Laguna Chascomús for representative dates.

The spatio-temporal Chl-a distribution was estimated by the
regression model developed previously, which was subsequently
applied on 2 LANDSAT satellite images (none of which have been
used for model development). The 2 satellite images were chosen
to represent extreme and representative cases: March 1988
(Chl-a < 43 mg/l; SDD > 17 cm) (Fig. 7) and March 2007 (Chl-
a � 700 mg/l; SDD � 8 cm) (Fig. 8).

As a result, the spatial distribution of calculated chl-a was
homogeneous in the lake during the less turbid condition (Fig. 7)
whereas during the most turbid condition the lake showed
differences between the NW and SE zones (Fig. 8). In addition,
pace Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2017.04.005



Fig. 5. Retrospective analysis of Chl-a: (a) SDD; (b) regression model application and (c) Mean values (between SS) of estimated SDD and Chl-a concentration. SS: sampling
site, Date: dd-mm-yy.

Fig. 6. Chascomús shallow lake: a) Lake mean depth for April 2001–April 2012 period; b) ONI Index evolution in the shallow lake region (January 1986–December 2013
period).
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differences in values over time were detected. Remote sensing effi-
ciency was also demonstrated for the estimation of transparency
(SDD) of water in Laguna Chascomús. In all analyzed cases,
Please cite this article in press as: Bohn, V.Y., et al.. Egypt. J. Remote Sensing S
transparency differed between NW and SE basins. In both cases,
the same relation between the Chl-a concentration and SDD
was observed: the higher concentration of Chl-a, the lower
pace Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2017.04.005



Fig. 7. Estimated Chl-a (a) and SDD (b) spatial distribution during a ‘‘lowest turbidity” condition in Laguna Chascomús.

Fig. 8. Estimated Chl-a (a) and SDD (b) spatial distribution during a ‘‘highest turbidity” condition in Chascomús shallow lake.
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transparency and vice versa. This may point to the strong influence
of Chl-a (organic portion) on the turbidity of this shallow lake. Dur-
ing the two selected dates the area of the shallow lake was of 30
km2 approximately.

4. Discussion

This research is one of the first studies that evaluate and com-
pare data from satellite and in situ measurements of water quality
parameters in Pampean shallow lakes (Argentina).

The results revealed that satellite-based monitoring data gener-
ally agrees well with in situ monitoring data, and that the
operational satellite monitoring system is a rather reliable
methodology. Although satellite data cannot be a replacement for
Please cite this article in press as: Bohn, V.Y., et al.. Egypt. J. Remote Sensing S
field data, the quality of the information is much improved when
satellite data is added to in situ generated data (Lindell et al.,
1999). This work has demonstrated that remote sensing for water
quality using traditional band ratio methods is especially relevant
in shallow and highly dynamic water bodies and that its applica-
tion is adequate for Chascomús shallow lake.

Importantly, the depth of a shallow lake can be subject to strong
fluctuations resulting from climate variability. Numerous observa-
tions highlight the importance of the water level for shifts between
a vegetation dominated state and a turbid state in shallow lakes.
Also a very low water level may have more complicated pro-
nounced effects. For instance, desiccation of the lake bottom may
in some cases damage the vegetation sufficiently to push a lake
to a turbid state (Scheffer and van Nes, 2007). Maximum and
pace Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2017.04.005
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minimum depth showed their influence in the chlorophyll-a
concentration and SDD in Chascomús shallow lake (Argentina).
This phenomenon has been previously detected during floods
alternance by traditional sampling (Torremorell et al., 2007).

Remote sensing introduction in the study of the dynamic of bio-
logical and physical parameters in Laguna Chascomús is encourag-
ing. This method allowed studying the spatial distribution of the
analyzed parameters as a complement to site-based traditional
studies. This spatial analysis provides possible research lines about
the hydrodynamics of the shallow lake for the future. The high cor-
relation achieved between in situ values and satellite information
in both images confirms that SDD and Chl-a can be readily mapped
using Landsat satellite data. The results presented here, taking into
account the low level of error, are comparable to other studies
(Bonansea et al., 2015; Doña et al., 2015).

The empirical spectral band ratio method is the most commonly
used method for retrieving water quality using remote sensing and
it has been shown to be effective in the retrieval of many water
quality parameters. It has been found that the ratio of two bands
reduces the effects of factors such as measurement geometry and
atmosphere on the retrieval of water quality (Koponen, 2006). A
semi-log regression has also been used in most other inland water
quality band ratios.

In this paper, we show the potential for estimating chlorophyll-
a content for past situations. Even though there are several water
indices (i.e. the Normalized Water Index (NDWI), Gao, 1996) in this
research only vegetation indices were evaluated for the
chlorophyll-a concentrations estimation. Several authors have
demonstrated that the water indices are an appropriate alternative
for delineating water bodies and developing wetland inventories
(El-Asmar et al., 2013; Rawat and Manish, 2015; Ahmed et al.,
2016). However, vegetation indices appeared as a best alternative
to model chlorophyll-a and transparency, principally when the
transparency is highly affected by phytoplankton (Kahru et al.,
1993; Novo et al., 2013). In this research, like other authors
(Doña et al., 2015; Bonansea et al., 2015), we could showed the
high correlation between the predicted values and the observed
values of SDD and chl-a concentration. Vegetation indices and
Landsat band ratio (notably B1, 2 and 4) were mostly used for esti-
mation of chlorophyll-a in lakes and reservoirs (Brezonik et al.,
2005; Olmanson et al., 2008; Fadel et al., 2016).

In this research, the NDVI was used in relation to Chl-a estima-
tion for its optical characteristics and because it is sensitive to the
pigment absorption. It was an appropriate descriptor for the Chl-a
content estimation in Laguna Chascomús. NDVI is very sensitive to
changes in the environment (Kahru et al., 1993). Moreover, the
application of this index is more successful in zones with moderate
wind speeds without developing or waves shortage, such as
Laguna Chascomús (Table 1).

Chl-a is a variable of great ecological importance but probably
one of the most difficult to map accurately (Lindell et al., 1999).
The clarity of lake water is reduced by the presence of suspended
sediment, organic particulates, free-floating algae, and zooplank-
ton. Algae are often the dominant influence on transparency of lake
water (Fuller and Minnerick, 2007). The SDD is probably the most
commonly used water variable as indicator of water quality in lim-
nology (Meijer et al., 1999). There have been many efforts to map
this variable from satellite imagery. As SDD is highly correlated to
different turbidity concepts we can expect rather good results. It is
therefore also fairly simple to model SDD from satellite data. Many
algorithms in the literature are based on some logarithmic relation
of the reciprocal of the SDD. Lindell et al. (1999) have found that
the use of spectral TM bands gives an acceptable correlation for
its estimation. The presented method provides an inexpensive tool
for monitoring SDD and has the potential to fill-in during periods
in which field data is not available (Harvey et al., 2015). It gives
Please cite this article in press as: Bohn, V.Y., et al.. Egypt. J. Remote Sensing S
the possibility to extrapolate the data in a retrospective way in
order to analyze past eutrophic conditions of the lake as well as
in order to predict the future environment dynamics in the studied
shallow lake.

Our model limitation is in their application for the Chl-a and
SDD mapping. There were detected mixed values in the coastline.
The effect of reflection from the lake bed near the margins was
seen as elevated erroneous chl-a and SDD predictions as well as
in previous studies (Allan et al., 2007). Therefore, our model was
more appropriate for open waters.

Regarding the correlation between observed and estimated val-
ues our results were comparable with those found by Doña et al.
(2015). In the case of the Chl-a variable, our result showed a
R2 � 0.83 whereas the R2 for the SDDwas of 0.72. As well as several
authors (i.e.: Fuller and Minnerick, 2007; Moses, 2009; Dalu et al.,
2015; Fadel et al., 2016) we recommend the application of Landsat
as a satisfactory and cost effective method for monitoring
chlorophyll-a and SDD in shallow lakes.

5. Conclusions

Remote sensing, in combination with in situ data, provides
information about water quality. In our study there was demon-
strated that the combination between in situ and satellite data
allowed an estimation of water quality parameters in Pampean
shallow waters. In the present study, correlation between in situ
data with reflectance values of Band 4 (SDD) and the NDVI (Chl-
a) was appropriate.

The generated maps provided information about the spatio and
temporal patterns of Chl-a and SDD. They emphasize the impor-
tance of extreme event occurrence in the control of algal produc-
tion and transparency of water in Laguna Chascomús.
Satisfactory values were obtained for the estimation of Chl-a and
SDD, with high correlation between predicted and observed values.
Maps showed the temporal variations of SDD and Chl-a concentra-
tion with an error of 3.7 cm and 83 mg/L, respectively. This method
supplied information pixel-by-pixel in opposition, for instance, to a
simple interpolation of SS. Moreover, it allowed not only to obtain
an estimation for dates for which in situ data are unavailable, but
also to monitor shallow waters at low cost. The introduction of
other parameters related to water quality as well as the extrapola-
tion of this method to other shallow lakes in a regional scale, could
be useful in order to extend this study.
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