24,090 research outputs found

    Fault Localization in Multi-Threaded C Programs using Bounded Model Checking (extended version)

    Full text link
    Software debugging is a very time-consuming process, which is even worse for multi-threaded programs, due to the non-deterministic behavior of thread-scheduling algorithms. However, the debugging time may be greatly reduced, if automatic methods are used for localizing faults. In this study, a new method for fault localization, in multi-threaded C programs, is proposed. It transforms a multi-threaded program into a corresponding sequential one and then uses a fault-diagnosis method suitable for this type of program, in order to localize faults. The code transformation is implemented with rules and context switch information from counterexamples, which are typically generated by bounded model checkers. Experimental results show that the proposed method is effective, in such a way that sequential fault-localization methods can be extended to multi-threaded programs.Comment: extended version of paper published at SBESC'1

    Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Get PDF
    This document is a self-archiving copy of the accepted version of the paper. Please find the final published version in IEEEXplore: http://dx.doi.org/10.1109/TE.2014.2358551This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to design FDD strategies for a real system. To this end, the paper proposes a lab project where students are requested to develop a discrete event dynamic system (DEDS) diagnosis to cope with two faulty conditions in an autonomous mobile robot task. A sample solution is discussed for LEGO Mindstorms NXT robots with LabVIEW. This innovative practice is relevant to higher education engineering courses related to mechatronics, robotics, or DEDS. Results are also given of the application of this strategy as part of a postgraduate course on fault-tolerant mechatronic systems.This work was supported in part by the Spanish CICYT under Project DPI2011-22443

    Bayesian sequential change diagnosis

    Get PDF
    Sequential change diagnosis is the joint problem of detection and identification of a sudden and unobservable change in the distribution of a random sequence. In this problem, the common probability law of a sequence of i.i.d. random variables suddenly changes at some disorder time to one of finitely many alternatives. This disorder time marks the start of a new regime, whose fingerprint is the new law of observations. Both the disorder time and the identity of the new regime are unknown and unobservable. The objective is to detect the regime-change as soon as possible, and, at the same time, to determine its identity as accurately as possible. Prompt and correct diagnosis is crucial for quick execution of the most appropriate measures in response to the new regime, as in fault detection and isolation in industrial processes, and target detection and identification in national defense. The problem is formulated in a Bayesian framework. An optimal sequential decision strategy is found, and an accurate numerical scheme is described for its implementation. Geometrical properties of the optimal strategy are illustrated via numerical examples. The traditional problems of Bayesian change-detection and Bayesian sequential multi-hypothesis testing are solved as special cases. In addition, a solution is obtained for the problem of detection and identification of component failure(s) in a system with suspended animation

    Theory of reliable systems

    Get PDF
    An attempt was made to refine the current notion of system reliability by identifying and investigating attributes of a system which are important to reliability considerations. Techniques which facilitate analysis of system reliability are included. Special attention was given to fault tolerance, diagnosability, and reconfigurability characteristics of systems

    On-line diagnosis of unrestricted faults

    Get PDF
    A formal model for the study of on-line diagnosis is introduced and used to investigate the diagnosis of unrestricted faults. A fault of a system S is considered to be a transformation of S into another system S' at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau, and like S' thereafter. Notions of fault tolerance error are defined in terms of the resulting system being able to mimic some desired behavior as specified by a system similar to S. A notion of on-line diagnosis is formulated which involves an external detector and a maximum time delay within which every error caused by a fault in a prescribed set must be detected. It is shown that if a system is on-line diagnosable for the unrestricted set of faults then the detector is at least as complex, in terms of state set size, as the specification. The use of inverse systems for the diagnosis of unrestricted faults is considered. A partial characterization of those inverses which can be used for unrestricted fault diagnosis is obtained
    • …
    corecore