11 research outputs found

    De-interleaving of Radar Pulses for EW Receivers with an ELINT Application

    Get PDF
    De-interleaving is a critical function in Electronic Warfare (EW) that has not received much attention in the literature regarding on-line Electronic Intelligence (ELINT) application. In ELINT, on-line analysis is important in order to allow for efficient data collection and for support of operational decisions. This dissertation proposed a de-interleaving solution for use with ELINT/Electronic-Support-Measures (ESM) receivers for purposes of ELINT with on-line application. The proposed solution does not require complex integration with existing EW systems or modifications to their sub-systems. Before proposing the solution, on-line de-interleaving algorithms were surveyed. Density-based spatial clustering of applications with noise (DBSCAN) is a clustering algorithm that has not been used before in de-interleaving; in this dissertation, it has proved to be effective. DBSCAN was thus selected as a component of the proposed de-interleaving solution due to its advantages over other surveyed algorithms. The proposed solution relies primarily on the parameters of Angle of Arrival (AOA), Radio Frequency (RF), and Time of Arrival (TOA). The time parameter was utilized in resolving RF agility. The solution is a system that is composed of different building blocks. The solution handles complex radar environments that include agility in RF, Pulse Width (PW), and Pulse Repetition Interval (PRI)

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    An Adaptive Landscape Classification Procedure using Geoinformatics and Artificial Neural Networks

    Full text link

    Data driven modelling for environmental water management.

    Get PDF
    Keywords: Data-driven Model, Numerical models, Genetic Programming, Artificial neural networks, recreational water, vegetation, winGamma

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Geospatial Computing: Architectures and Algorithms for Mapping Applications

    Get PDF
    Beginning with the MapTube website (1), which was launched in 2007 for crowd-sourcing maps, this project investigates approaches to exploratory Geographic Information Systems (GIS) using web-based mapping, or ‘web GIS’. Users can log in to upload their own maps and overlay different layers of GIS data sets. This work looks into the theory behind how web-based mapping systems function and whether their performance can be modelled and predicted. One of the important questions when dealing with different geospatial data sets is how they relate to one another. Internet data stores provide another source of information, which can be exploited if more generic geospatial data mining techniques are developed. The identification of similarities between thousands of maps is a GIS technique that can give structure to the overall fabric of the data, once the problems of scalability and comparisons between different geographies are solved. After running MapTube for nine years to crowd-source data, this would mark a natural progression from visualisation of individual maps to wider questions about what additional knowledge can be discovered from the data collected. In the new ‘data science’ age, the introduction of real-time data sets introduces a new challenge for web-based mapping applications. The mapping of real-time geospatial systems is technically challenging, but has the potential to show inter-dependencies as they emerge in the time series. Combined geospatial and temporal data mining of realtime sources can provide archives of transport and environmental data from which to accurately model the systems under investigation. By using techniques from machine learning, the models can be built directly from the real-time data stream. These models can then be used for analysis and experimentation, being derived directly from city data. This then leads to an analysis of the behaviours of the interacting systems. (1) The MapTube website: http://www.maptube.org

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Pertanika Journal of Science & Technology

    Get PDF
    corecore