28 research outputs found

    Neural, Genetic, And Neurogenetic Approaches For Solving The 0-1 Multidimensional Knapsack Problem

    Get PDF
    The multi-dimensional knapsack problem (MDKP) is a well-studied problem in Decision Sciences. The problem’s NP-Hard nature prevents the successful application of exact procedures such as branch and bound, implicit enumeration and dynamic programming for larger problems. As a result, various approximate solution approaches, such as the relaxation approaches, heuristic and metaheuristic approaches have been developed and applied effectively to this problem. In this study, we propose a Neural approach, a Genetic Algorithms approach and a Neurogenetic approach, which is a hybrid of the Neural and the Genetic Algorithms approach. The Neural approach is essentially a problem-space based non-deterministic local-search algorithm. In the Genetic Algorithms approach we propose a new way of generating initial population. In the Neurogenetic approach, we show that the Neural and Genetic iterations, when interleaved appropriately, can complement each other and provide better solutions than either the Neural or the Genetic approach alone. Within the overall search, the Genetic approach provides diversification while the Neural provides intensification. We demonstrate the effectiveness of our proposed approaches through an empirical study performed on several sets of benchmark problems commonly used in the literature

    Hybrid tabu search – strawberry algorithm for multidimensional knapsack problem

    Get PDF
    Multidimensional Knapsack Problem (MKP) has been widely used to model real-life combinatorial problems. It is also used extensively in experiments to test the performances of metaheuristic algorithms and their hybrids. For example, Tabu Search (TS) has been successfully hybridized with other techniques, including particle swarm optimization (PSO) algorithm and the two-stage TS algorithm to solve MKP. In 2011, a new metaheuristic known as Strawberry algorithm (SBA) was initiated. Since then, it has been vastly applied to solve engineering problems. However, SBA has never been deployed to solve MKP. Therefore, a new hybrid of TS-SBA is proposed in this study to solve MKP with the objective of maximizing the total profit. The Greedy heuristics by ratio was employed to construct an initial solution. Next, the solution was enhanced by using the hybrid TS-SBA. The parameters setting to run the hybrid TS-SBA was determined by using a combination of Factorial Design of Experiments and Decision Tree Data Mining methods. Finally, the hybrid TS-SBA was evaluated using an MKP benchmark problem. It consisted of 270 test problems with different sizes of constraints and decision variables. The findings revealed that on average the hybrid TS-SBA was able to increase 1.97% profit of the initial solution. However, the best-known solution from past studies seemed to outperform the hybrid TS-SBA with an average difference of 3.69%. Notably, the novel hybrid TS-SBA proposed in this study may facilitate decisionmakers to solve real applications of MKP. It may also be applied to solve other variants of knapsack problems (KPs) with minor modifications

    Xqx Based Modeling For General Integer Programming Problems

    Get PDF
    We present a new way to model general integer programming (IP) problems with in- equality and equality constraints using XQX. We begin with the definition of IP problems folloby their practical applications, and then present the existing XQX based models to handle such problems. We then present our XQX model for general IP problems (including binary IP) with equality and inequality constraints, and also show how this model can be applied to problems with just inequality constraints. We then present the local optima based solution procedure for our XQX model. We also present new theorems and their proofs for our XQX model. Next, we present a detailed literature survey on the 0-1 multidimensional knapsack problem (MDKP) and apply our XQX model using our simple heuristic procedure to solve benchmark problems. The 0-1 MDKP is a binary IP problem with inequality con- straints and variables with binary values. We apply our XQX model using a heuristics we developed on 0-1 MDKP problems of various sizes and found that our model can handle any problem sizes and can provide reasonable quality results in reasonable time. Finally, we apply our XQX model developed for general integer programming problems on the general multi-dimensional knapsack problems. The general MDKP is a general IP problem with inequality constraints where the variables are positive integers. We apply our XQX model on GMDKP problems of various sizes and find that it can provide reasonable quality results in reasonable time. We also find that it can handle problems of any size and provide fea- sible and good quality solutions irrespective of the starting solutions. We conclude with a discussion of some issues related with our XQX model

    Meta-raps: Parameter Setting And New Applications

    Get PDF
    Recently meta-heuristics have become a popular solution methodology, in terms of both research and application, for solving combinatorial optimization problems. Meta-heuristic methods guide simple heuristics or priority rules designed to solve a particular problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy. The advantage of using meta-heuristics over conventional optimization methods is meta-heuristics are able to find good (near optimal) solutions within a reasonable computation time. Investigating this line of research is justified because in most practical cases with medium to large scale problems, the use of meta-heuristics is necessary to be able to find a solution in a reasonable time. The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001. Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied to different types of combinatorial optimization problems and achieved comparable solution performance to other meta-heuristic techniques. The specific problem studied in this dissertation is parameter setting of Meta-RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied in the literature. Although the parameter setting method devised in this dissertation is used primarily on Meta-RaPS, it is applicable to any meta-heuristic\u27s parameter setting problem. This dissertation not only enhances the power of Meta-RaPS by parameter tuning but also it introduces a robust parameter selection technique with wide-spread utility for many meta-heuristics. Because the distribution of solution values generated by meta-heuristics for combinatorial optimization problems is not normal, the current parameter setting techniques which employ a parametric approach based on the assumption of normality may not be appropriate. The proposed method is Non-parametric Based Genetic Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms (NPGA) is able to enhance the solution quality of Meta-RaPS more than any other parameter setting procedures benchmarked in this research. NPGA sets the best parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time (ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP). In addition to the parameter setting procedure discussed, this dissertation provides two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives the best meta-heuristic solution performance so far in the literature for common ETP test sets. For the large ETP test set, Meta-RaPS provided better solution performance than Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four different small problem sets, the Meta-RaPS solution performance outperformed exiting algorithms in terms of average percent deviation from the optimal solution value. For the 0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application presented here has better solution quality than the existing Meta-RaPS application (Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent deviation, from the best known solutions, for the 270 0-1 MKP test problems

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    The bus sightseeing problem

    Get PDF
    The basic characteristic of vehicle routing problems with profits (VRPP) is that locations to be visited are not predetermined. On the contrary, they are selected in pursuit of maximizing the profit collected from them. Significant research focus has been directed toward profitable routing variants due to the practical importance of their applications and their interesting structure, which jointly optimizes node selection and routing decisions. Profitable routing applications arise in the tourism industry aiming to maximize the profit score of attractions visited within a limited time period. In this paper, a new VRPP is introduced, referred to as the bus sightseeing problem (BSP). The BSP calls for determining bus tours for transporting different groups of tourists with different preferences on touristic attractions. Two interconnected decision levels have to be jointly tackled: assignment of tourists to buses and routing of buses to the various attractions. A mixed-integer programming formulation for the BSP is provided and solved by a Benders decomposition algorithm. For large-scale instances, an iterated local search based metaheuristic algorithm is developed with some tailored neighborhood operators. The proposed methods are tested on a large family of test instances, and the obtained computational results demonstrate the effectiveness of the proposed solution approaches

    Orienteering Problem: A survey of recent variants, solution approaches and applications

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ
    corecore