433 research outputs found

    Remote Sensing for Land Administration

    Get PDF

    Remote Sensing for Land Administration 2.0

    Get PDF
    The reprint “Land Administration 2.0” is an extension of the previous reprint “Remote Sensing for Land Administration”, another Special Issue in Remote Sensing. This reprint unpacks the responsible use and integration of emerging remote sensing techniques into the domain of land administration, including land registration, cadastre, land use planning, land valuation, land taxation, and land development. The title was chosen as “Land Administration 2.0” in reference to both this Special Issue being the second volume on the topic “Land Administration” and the next-generation requirements of land administration including demands for 3D, indoor, underground, real-time, high-accuracy, lower-cost, and interoperable land data and information

    Towards Automated Cadastral Boundary Delineation from UAV data

    Get PDF
    This PhD research aims to design and implement a method to facilitate land rights mapping through indirect surveying techniques from UAV data. It is based on the assumption that a large portion of cadastral boundaries is physically manifested through objects such as hedges, fences, stone walls, tree lines, roads, walkways or waterways. Those visible boundaries bear the potential to be extracted with methods from photogrammetry, remote sensing and computer vision. The automatically extracted outlines require further (legal) adjudication that allows incorporating local knowledge from a human operator. The method currently being designed and developed within this PhD research aims to provide a delineation approach that includes this automated extraction combined with an interactive delineation (Figure 1). This work is part of the Horizon 2020 program of the European Union (project its4land)

    Automatic Building Roof Plane Extraction in Urban Environments for 3D City Modelling Using Remote Sensing Data

    Get PDF
    Delineating and modelling building roof plane structures is an active research direction in urban-related studies, as understanding roof structure provides essential information for generating highly detailed 3D building models. Traditional deep-learning models have been the main focus of most recent research endeavors aiming to extract pixel-based building roof plane areas from remote-sensing imagery. However, significant challenges arise, such as delineating complex roof boundaries and invisible boundaries. Additionally, challenges during the post-processing phase, where pixel-based building roof plane maps are vectorized, often result in polygons with irregular shapes. In order to address this issue, this study explores a state-of-the-art method for planar graph reconstruction applied to building roof plane extraction. We propose a framework for reconstructing regularized building roof plane structures using aerial imagery and cadastral information. Our framework employs a holistic edge classification architecture based on an attention-based neural network to detect corners and edges between them from aerial imagery. Our experiments focused on three distinct study areas characterized by different roof structure topologies: the Stadsveld–‘t Zwering neighborhood and Oude Markt area, located in Enschede, The Netherlands, and the Lozenets district in Sofia, Bulgaria. The outcomes of our experiments revealed that a model trained with a combined dataset of two different study areas demonstrated a superior performance, capable of delineating edges obscured by shadows or canopy. Our experiment in the Oude Markt area resulted in building roof plane delineation with an F-score value of 0.43 when the model trained on the combined dataset was used. In comparison, the model trained only on the Stadsveld–‘t Zwering dataset achieved an F-score value of 0.37, and the model trained only on the Lozenets dataset achieved an F-score value of 0.32. The results from the developed approach are promising and can be used for 3D city modelling in different urban settings

    Application of natural language parsing for identifying non-surveyed boundaries towards enhanced systematic land titling: results from preliminary experiment

    Get PDF
    The need for the adoption of systematic land titling (SLT) in Nigeria cannot be overemphasised. Nonetheless, the problems of speed and cost of geospatial data acquisition, as well as identification of non-surveyed boundaries, remain unresolved, impeding the effectiveness of SLT for non-surveyed boundaries. The integration of language into Artificial Intelligence (AI) has allowed Natural Language Parsing (NLP) to effectively serve as a tool for communication between humans and computer systems. This study presents preliminary results of testing a prototype application that utilises NLP to convert textual descriptions into graphic sketches as a tool towards the production of a-priori sketches that can aid SLT in non-surveyed boundaries. The study determines that NLP alone cannot be used to achieve the required accuracy in geospatial data for SLT; however, the study concludes that NLP can be integrated alongside other ancillary information to enhance SLT in peri-urban regions

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups

    Review of remote sensing for land administration: Origins, debates, and selected cases

    Get PDF
    Conventionally, land administration—incorporating cadastres and land registration—uses ground-based survey methods. This approach can be traced over millennia. The application of photogrammetry and remote sensing is understood to be far more contemporary, only commencing deeper into the 20th century. This paper seeks to counter this view, contending that these methods are far from recent additions to land administration: successful application dates back much earlier, often complementing ground-based methods. Using now more accessible historical works, made available through archive digitisation, this paper presents an enriched and more complete synthesis of the developments of photogrammetric methods and remote sensing applied to the domain of land administration. Developments from early phototopography and aerial surveys, through to analytical photogrammetric methods, the emergence of satellite remote sensing, digital cameras, and latterly lidar surveys, UAVs, and feature extraction are covered. The synthesis illustrates how debates over the benefits of the technique are hardly new. Neither are well-meaning, although oft-flawed, comparative analyses on criteria relating to time, cost, coverage, and quality. Apart from providing this more holistic view and a timely reminder of previous work, this paper brings contemporary practical value in further demonstrating to land administration practitioners that remote sensing for data capture, and subsequent map production, are an entirely legitimate, if not essential, part of the domain. Contemporary arguments that the tools and approaches do not bring adequate accuracy for land administration purposes are easily countered by the weight of evidence. Indeed, these arguments may be considered to undermine the pragmatism inherent to the surveying discipline, traditionally an essential characteristic of the profession. That said, it is left to land administration practitioners to determine the relevance of these methods for any specific country context. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore