1,270 research outputs found

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    Signaling Security in LTE Roaming

    Get PDF
    LTE (Long Term Evolution) also known as 4G, is highly in demand for its incomparable levels of experience like high data rates, low latency, good Quality of Services(QoS) and roaming features. LTE uses Diameter protocol, which makes LTE an all IP network, connecting multiple network providers, providing flexibility in adding nodes and flexible mobility management while roaming. Which in turn makes LTE network more vulnerable to malicious actors. Diameter protocol architecture includes many nodes and the communication between the nodes is done through request and answer messages. Diameter manages the control session. Control session includes the signaling traffic which consists of messages to manage the user session. Roaming signaling traffic arises due to subscribers movement out of the geographical range of their home network to any other network. This signaling traffic moves over the roaming interconnection called S9 roaming interface. This thesis project aims to interfere and manipulate traffic from both user-to-network and network-to-network interfaces in order to identify possible security vulnerabilities in LTE roaming. A fake base-station is installed to establish a connection to a subscriber through the air interface. The IMSI (International Mobile Subscription Identity) is captured using this fake station. To explore the network-to-network communication an emulator based LTE testbed is used. The author has investigated how Diameter messages can be manipulated over the S9 interface to perform a fraud or DoS attack using the IMSI number. The consequences of such attacks are discussed and the countermeasures that can be considered by the MNOs (Mobile Network Operators) and Standardization Committees

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Serviços multimédia multicast de próxima geração

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesUma das mais recentes conquistas na evolução móvel foi o 3G, permitindo o acesso a serviços multimédia com qualidade de serviço assegurada. No entanto, a tecnologia UMTS, tal como definida na sua Release ’99, é apenas capaz de transmitir em modo unicast, sendo manifestamente ineficiente para comunicações multimédia almejando grupos de utilizadores. A tecnologia IMS surge na Release 5 do 3GPP que começou a responder já a algumas necessidades, permitindo comunicações sobre IP oferecendo serviços Internet a qualquer momento e em qualquer lugar sobre tecnologias de comunicação móveis fornecendo pela primeira vez sessões multimédia satisfatórias. A Release 6 por sua vez trouxe a tecnologia MBMS que permite transmissões em broadcast e multicast para redes móveis. O MBMS fornece os serviços de aplicações multimédia que todos estavam à espera, tanto para os utilizadores como para os prestadores de serviços. O operador pode agora fazer uso da tecnologia existente aumentando todo o tipo de benefícios no serviço prestado ao cliente. Com a possível integração destas duas tecnologias passa a ser possível desenvolver serviços assentes em redes convergentes em que os conteúdos são entregues usando tecnologias unicast, multicast ou broadcast. Neste contexto, o principal motivo deste trabalho consiste essencialmente em fazer uso dos recursos da rede terminando com o desperdício dos mesmos e aumentando a eficiência dos serviços através da integração das tecnologias IMS e MBMS. O trabalho realizado começa com o estudo do estado da arte das telecomunicações móveis com referência às tecnologias referidas, seguindo-se a apresentação da possível integração IMS-MBMS e terminando com o projecto de uma plataforma de demonstração que no futuro possa ser uma implementação de serviço multimédia multicast. O objectivo principal é mostrar os benefícios de um serviço que era normalmente executado em unicast relativamente ao modo multicast, fazendo uso da nova convergência de tecnologias IMS e MBMS. Na conclusão do trabalho são referidas as vantagens do uso de portadoras multicast e broadcast, tendo como perspectiva de que este trabalho possa ser um ponto de partida para um novo conjunto de serviços poupando recursos de rede e permitindo uma eficiência considerável em serviços inovadores.3G is bang up to date in the mobile phone industry. It allows access to multimedia services and gives a guarantee of quality of service. The UMTS technology, defined in 3GPP Release ’99, provides an unicast transmission, but it is completely inefficient when it comes to multimedia group communications. The IMS technology first appeared in Release 5 that has already started to consider the interests of the clients. It provides communications over IP, offering Internet services anytime, anywhere on mobile communication technologies. Also, it offers for the first time satisfactory multimedia sessions. On the other hand, Release 6 gave rise to the MBMS technology that provides broadcast and multicast transmissions for mobile networks. The MBMS provides multimedia applications services that everyone was waiting, including users and service providers. Now the operator makes use of existing technology in order to provide better costumer services. The possible integration of these two technologies will contribute to develop services based on converged networks in which contents are delivered through the unicast, multicast or broadcast technologies. Therefore, the objective of this work is basically to make use of network resources avoiding wastes and improving customer services through the integration of the IMS and the MBMS technologies. The executed work starts with the mobile telecommunications state of the art with reference to the referred technologies, followed by the IMS-MBMS convergence presentation and finishing with the proposal for implementation of a service platform that can be used for a multimedia multicast service. The main point is to show the benefits of a service that has been normally executed in unicast mode over the multicast mode, making use of the new IMS and MBMS technologies integration. To closure the work it is referred the advantages to use multicast and broadcast bearers, with the perspective that this work could be a starting point to a new set of services, saving network resources and allowing for innovate services a considerable efficency

    Review on NEXT Generation Technologies of Wireless Communication

    Get PDF
    Cellular communication has brought in an unparalleled revolution in the field of communication during the past two decades. The mobile communication industry growth has surpassed growth of all other fields. Even o ur own country is not left behind. The number of mobile subscribers in the country rose to over 9 11 m in Mar 201 2 . 3G system has been introduced in line with other countries. Talks have started about 4G / 5G. The implementation of 4G /5G will most probably be the ultimate goal in the field of communication

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Supervisor

    Get PDF
    Abstract. This thesis examines the current techniques in LTE-WiFi data handover. Handovers take place when a mobile device switches from one network to another. It is interesting to look at methods to offload the rather expensive mobile data connections to the cheaper WiFi (home) networks. This transition is usually not seamless. A good example is when you start a streaming video whilst on mobile data and a known WiFi network appears. Your mobile device automatically connects to the WiFi network and the streaming video stops. These so-called vertical handovers have not been made seamless yet. This thesis compares several techniques that operate on different layers of the OSI model. To facilitate vertical handover, it is useful to know how horizontal handovers work. This kind of handover occurs when, for example, a mobile phone switches from one cell tower to another. Contrary to vertical handover, horizontal handover occurs practically seamless. Horizontal handovers in both LTE and WiFi networks are discussed, to give a heads up for the problems that arise for vertical handovers. Vertical handovers can be done at different points in the OSI model. This thesis covers solutions that have been devised on a few of these layers. Th

    LTE Advanced: Technology and Performance Analysis

    Get PDF
    Wireless data usage is increasing at a phenomenal rate and driving the need for continued innovations in wireless data technologies to provide more capacity and higher quality of service. In October 2009, 3rd Generation Partnership Project (3GPP) submitted LTE-Advanced to the ITU as a proposed candidate IMT-Advanced technology for which specifications could become available in 2011 through Release-10 . The aim of “LTE-Advanced” is to further enhance LTE radio access in terms of system performance and capabilities compared to current cellular systems, including the first release of LTE, with a specific goal to ensure that LTE fulfills and even surpass the requirements of “IMT-Advanced” as defined by the International Telecommunication Union (ITU-R) . This thesis offers an introduction to the mobile communication standard known as LTE Advanced, depicting the evolution of the standard from its roots and discussing several important technologies that help it evolve to accomplishing the IMT-Advanced requirements. A short history of the LTE standard is offered, along with a discussion of its standards and performance. LTE-Advanced details include analysis on the physical layer by investigating the performance of SC-FDMA and OFDMA of LTE physical layer. The investigation is done by considering different modulation schemes (QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA. To evaluate the performance in presence of noise, an Additive White Gaussian Noise (AWGN) channel was introduced. A set of conclusions is derived from our results describing the effect of higher order modulation schemes on BER and error probability for both OFDMA and SC-FDMA. The power spectral densities of both the multiple access techniques (OFDMA and SC-FDMA) are calculated and result shows that the OFDMA has higher power spectral density.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore