4,663 research outputs found

    Middleware for Wireless Sensor Networks: An Outlook

    Get PDF
    In modern distributed computing, applications are rarely built directly atop operating system facilities, e.g., sockets. Higher-level middleware abstractions and systems are often employed to simplify the programmer’s chore or to achieve interoperability. In contrast, real-world wireless sensor network (WSN) applications are almost always developed by relying directly on the operating system. Why is this the case? Does it make sense to include a middleware layer in the design of WSNs? And, if so, is it the same kind of software system as in traditional distributed computing? What are the fundamental concepts, reasonable assumptions, and key criteria guiding its design? What are the main open research challenges, and the potential pitfalls? Most importantly, is it worth pursuing research in this field? This paper provides a (biased) answer to these and other research questions, preceded by a brief account on the state of the art in the field

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water cours

    The Internet of Things for Natural Risk Management (Inte.Ri.M.)

    Get PDF
    This chapter deals with the development of a management system, which integrates the use of IoT in natural risk detection, revention, and management with economic evaluation of each stage. In the introductory part, recent data are presented that document the importance that natural disasters have for the environment and for the Italian economy. Section 2 presents the Inte.Ri.M. project—the Internet of Things for Natural Risk Management—its purpose, activity plan, and bodies involved. Technical aspects are treated in Section 3 with the choice of hardware and software components and the solutions for collecting and transmitting data. Section 4 is about the economic aspects considering the stages of prevention, intervention, and restoration and the relation between the intensity of human activity and environment to define a range of situations. These scenarios call for different economic methodologies useful to estimate economic implications of each stage in the short, medium, and long term. Section 5 describes the structure of the Inte.Ri.M. management system and the foreseen functionalities. In the conclusion, the critical points are discussed, and the steps for the transposition of the work carried out on the territory are outlined, according to the provisions of the work program

    Middleware for Wireless Sensor Networks: An Outlook

    Get PDF
    In modern distributed computing, applications are rarely built directly atop operating system facilities, e.g., sockets. Higher-level middleware abstractions and systems are often employed to simplify the programmer’s chore or to achieve interoperability. In contrast, real-world wireless sensor network (WSN) applications are almost always developed by relying directly on the operating system. Why is this the case? Does it make sense to include a middleware layer in the design of WSNs? And, if so, is it the same kind of software system as in traditional distributed computing? What are the fundamental concepts, reasonable assumptions, and key criteria guiding its design? What are the main open research challenges, and the potential pitfalls? Most importantly, is it worth pursuing research in this field? This paper provides a (biased) answer to these and other research questions, preceded by a brief account on the state of the art in the field

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water course

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications
    corecore